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This paper approaches, under a unified framework, several algorithms for the spectral analysis of musical signals. Such algorithms
include the fast Fourier transform (FFT), the fast filter bank (FFB), the constant-Q transform (CQT), and the bounded-Q trans-
form (BQT), previously known from the associated literature. Two new methods are then introduced, namely, the constant-Q
fast filter bank (CQFFB) and the bounded-Q fast filter bank (BQFFB), combining the positive characteristics of the previously
mentioned algorithms. The provided analyses indicate that the proposed BQFFB achieves an excellent compromise between the
reduced computational effort of the FFT, the high selectivity of each output channel of the FFB, and the efficient distribution of
frequency channels associated to the CQT and BQT methods. Examples are included to illustrate the performances of these meth-
ods in the spectral analysis of music signals.
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1. INTRODUCTION

This paper aims at describing tools for the spectral analy-
sis of music signals that are characterized by high-selectivity
filters, a channel frequency spacing that is more efficient
for this kind of signals, and acceptable computational com-
plexity. The paper includes a brief overview of some related
techniques used in music spectral analysis. New tools which
achieve a good compromise between computational com-
plexity and component discrimination are then introduced.

The standard spectral tool is the fast Fourier transform
(FFT), which is the fast algorithm for the discrete Fourier
transform (DFT). The FFT is widely used in several applica-
tions due to its simplicity [1]. Taking the FFT as a filter bank,
it can be interpreted that such simplicity comes partly from
the use of a low-order kernel filter, which results in poorly
selective channels. As an attempt to solve this problem, Lim
and Farhang-Boroujeny [2] took advantage of the FFT tree
structure but with more complex kernel filters, resulting in
the so-called fast filter bank (FFB). The FFB complexity is
slightly higher than the FFT’s, but with highly selective chan-
nels in the frequency domain.

The FFT and FFB channels are uniformly distributed
along the frequencies, which means that all the channels
present the same bandwidth, regardless of their center fre-

quencies. Depending on the envisaged application, this ap-
proach, shown in Figure 1(a), may not be efficient for mu-
sic signals, due to the equal tempered scale used in Western
music [3]. Focusing on this issue, Brown [4] created, based
on the DFT, the constant-Q transform (CQT), in which the
channel bandwidth Δ f varies proportionally to its center fre-
quency f0 (as seen in Figure 1(b)), thus keeping its quality
factor Q = f0/Δ f constant. Regarding the identification of
musical notes, this transform shows to be a more appropriate
spectral representation due to its geometrically spaced chan-
nels.

Even the fast implementation of the CQT [5] requires
a great amount of computation, compared to the FFT. The
answer to this issue was to approximate the geometric fre-
quency “axis” by a piecewise linear one, which was proposed
as the bounded-Q transform (BQT) [6], also based on the
DFT. In that approach, just the octaves are geometrically
spaced, whereas the channels inside each octave are linearly
spaced, which is shown in Figure 1(c).

These previous tools are unable to combine all the de-
sired characteristics for the spectral analysis of audio sig-
nals, namely, efficient frequency distribution, reduced com-
putational complexity, and high selectivity in each distinct
channel. The goal of the present paper is to help solving this
issue.



2 EURASIP Journal on Advances in Signal Processing

f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f Frequency

(a)

f 3 f 7 f Frequency

(b)

f 2 f 3 f 4 f 6 f 8 f 10 f 12 f Frequency

Linear Linear

(c)

Figure 1: Methods for spectral analysis of music signals: (a) linear
frequency spacing; (b) geometric frequency spacing; (c) piecewise
linear frequency spacing. The scales were arbitrarily selected.

For that purpose, the constant-Q fast filter bank
(CQFFB) and the bounded-Q fast filter bank (BQFFB) tools
are thoroughly analyzed. The CQFFB [7, 8] is seen as a high-
resolution version of the CQT, from which it inherits the
high computational cost. After that, the BQFFB is introduced
as the most efficient tool, combining the FFT-like reduced
complexity, the BQT-like linear geometric frequency distri-
bution, and the FFB-like high resolution. The original con-
cept of the BQFFB was first given in [9]. The present paper
includes a complete description of this tool along with other
spectral analysis tools under a unified framework. A more
efficient implementation of the BQFFB, which avoids deci-
mation filters, is newly introduced.

In the context of music information retrieval, the algo-
rithms discussed in this work find application, for example,
in automatic music transcription and musical feature extrac-
tion.

The remains of this paper are organized as follows:
Section 2 describes the linear frequency spacing methods,
which are the FFT and its high-selectivity counterpart, the
FFB. Section 3 presents the geometric frequency spacing
methods, which are the CQT and its high-selectivity equiv-
alent, the CQFFB. Section 4 describes the piecewise lin-
ear frequency methods, which are the BQT and its newly
implemented high-selectivity form, the BQFFB. Section 5
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Figure 2: Tree-like representation for the sFFT and FFB, allowing
both algorithms to have a fast modular implementation. Each node
in the diagram is composed by a pair of prototype and complemen-
tary filters, which work in tandem, to generate the input signals for
the next layer of filters.

describes some practical issues, such as the choice of param-
eters values and their effects on the computational complex-
ity of the proposed tools. Section 6 describes computer ex-
periments to illustrate the performance of the proposed filter
bank. Finally, Section 7 concludes the paper, emphasizing its
main contributions.

2. LINEAR FREQUENCY SPACING METHODS

2.1. Fast Fourier transform

The short-time DFT is defined by

X[k] = 1
N

N�1∑

n=0

w[n]x[n]e� j2πkn/N , (1)

where x[n] is the nth sample of the input signal, 2πk/N is the
normalized digital frequency in radians (the period in sam-
ples is N), 0 � k � (N � 1) is the frequency bin index, and
w[n] is a window function, such as the Hamming window
[10]. Shifting a rectangular window w[n] along x[n] in hops
of S samples, one turns the DFT into a block transform. The
FFT is the family of fast algorithms for the DFT [11], respon-
sible for the latter being widely employed [12]. Its most pop-
ular type is the radix-2 FFT, which is based upon a simple
modular lattice structure.

Making S = 1 in the FFT setup yields the so-called sliding
FFT (sFFT), which can be promptly seen as an N-channel fil-
ter bank [13], with N = 2L, where L is an integer, organized
as the tree-like structure shown in Figure 2. Each channel fil-
ter is composed by the cascade of L subfilters. At each node
of the diagram, one finds a prototype and its complementary
filter, thus allowing to halve the number of multiplications.
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Figure 3: Building of channel-0 filter in an 8-channel sFFT or FFB
scheme, from modified versions of the kernel filters. From top to
bottom, the plots show the hypothetical magnitude response of
prototype filters (0, 0), (1, 0), and (2, 0), followed by the resulting
channel-0 filter (see Figure 2).

Every prototype filter is a modulated and an interpolated ver-
sion of the same kernel filter

H(z) = 1 + z�1, (2)

with only two nonzero coefficients. A given filter Hl,b(z) is
built by replacing z in H(z) by

W�b̃
N z2L�l�1 = {e� j2π/N}�b̃z2L�l�1

, (3)

where l = 0, . . . , (L� 1) is the level index, b = 0, . . . , (2l � 1)
is the filter index within each level, and b̃ is the bit-reversed
representation of the integer b.

The overall filtering scheme is made clearer by Figure 3,
which illustrates how channel-0 filter is formed in an 8-
channel sFFT.

The FFT complexity can be shown to be of N log2 N com-
plex multiplications for a length-N sequence [10], if no fur-
ther simplification is assumed. The above described sFFT, in
turn, requires CFFT = 1 complex multiplication per input
sample per channel [1].

Combining the FFT algorithm with a nonrectangular
window function (e.g., Hamming, Kaiser, etc.) improves the
attenuation level in a given band, but highly increases the su-
perposition between adjacent bands. This effect, commonly
referred to as interchannel interference, causes a single fre-
quency tone to appear in a few adjacent bins in the frequency
domain [10].

2.2. Fast filter bank

Aiming to avoid the trade between sidelobe rejection and
main lobe width inherent to the windowed-FFT solution,
Lim and Farhang-Boroujeny [2] proposed to associate the
FFT tree structure with longer kernel filters. The idea is to
profit from the modular implementation of the FFT to get
filters with very steep passband-stopband transitions. Their
design follows the frequency response masking (FRM) ap-
proach [14].

The FRM technique is intended for the design of digital
filters with very sharp transition bands and low complexity. It
starts from the observation that the frequency response of an
interpolated filter in the form H(zL) is composed by periodic
replicas of the frequency response of H(z) compressed by L.
Each replica exhibits passband-stopband transitions L times
sharper than those of H(z). A moderately selective masking
filter G(z) can be designed to suppress the undesired images,
thus keeping only the desired selective passband. Since the
number of nonzero coefficients of H(zL) is L times smaller
than its order, and the specifications of G(z) need not be very
stringent, the resulting filter may exhibit a very low complex-
ity. The overall design is carried out through properly chosen
optimization procedures.

The FFT filter bank discussed in Section 2.1 (see espe-
cially Figures 2 and 3) is structurally suited for the FRM de-
sign, since it is based on cascaded interpolated filters. The
main modification necessary to turn the original FFT chan-
nels into high-selectivity filters is to employ a distinct higher-
order kernel filter at each level l of the structure, instead of
the unique low-order FFT kernel given in (2). An adequate
FRM procedure can be recursively employed to generate the
necessary filters along the structure, in such a way that each
interpolated filter is masked by the subsequent filters in cas-
cade. The resulting technique is the so-called fast filter bank
(FFB) (whose design is detailed in [15, 16]), which keeps the
linear-phase characteristics of the FFT structure, thus avoid-
ing phase distortions on the signal.

In this paper, the FFB follows the same specifications
as in [2], thus keeping the same filter orders, as given in
Table 1. Figure 4 depicts the high-selectivity nature of the
FFB method against the FFT’s. Considering the minimum
rejection level at the highest sidelobes in each case, the FFT
filters present a rejection of about 13 dB [2], while the FFB
filters attain a 56 dB attenuation level. The singular FFB-filter
stopbands result from the cascade of several masking filters,
each with its own distinct stopband response. If a window
function is employed to increase the FFT sidelobe attenua-
tion level, it will also increase the FFT interchannel interfer-
ence, as discussed above [10].

The number of filter coefficients per FFB level is pre-
sented in Table 1. It can be seen that the accumulated amount
of distinct nonzero coefficients until a given cascade level
l � 5 is (2N + 23). This yields a number of complex
multiplications per channel per input sample

CFFB(l) = C(l) = (2N + 23)
N

� 2, (4)
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Table 1: Number of nonzero coefficients per level of FFB subfilter
structure.

Cascade
level (l)

Distinct
coefficients
per filter

Prototype
filters

Coefficients
per level

Accumulated
coefficients
C(l)

1 7 1 7 7

2 6 2 12 19

3 3 4 12 31

4 3 8 24 55

5 2 16 32 87

6 2 32 64 151

7 2 64 128 279

8 2 128 256 535
...

...
...

...
...

log2 N 2 N/2 N 2N + 23

�100
�80

�60

�40

�20

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized frequency (�π rad/s)

(a)

�100
�80

�60

�40

�20

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized frequency (�π rad/s)

(b)

Figure 4: Magnitude response of the 35th channel of a 128-channel
filter bank: (a) FFT; (b) FFB. The FFB magnitude response is formed
by the cascade of interpolated filters designed by FRM: each in-
terpolated filter, exhibiting sharp transition bands, is followed by
a composed masking filter that eliminates the former’s undesired
passband images.

where N is the number of channels of the FFB. This is twice
the computational load of the radix-2 FFT. So, a great in-
crease in selectivity is attained by the FFB at the cost of a
slight raise in complexity. A matrix formulation of the FFB
[17] seems to be more suitable for a fast implementation.

It must be emphasized that the linear frequency spacing
tools for spectral analysis described above exhibit a constant
frequency resolution along the spectrum. The following sec-
tions deal with variable resolution tools.

3. GEOMETRIC FREQUENCY SPACING METHODS

Despite the high selectivity of the FFB, it still distributes
the channels uniformly along the frequencies. However, the
frequencies of musical notes in modern Western music (in
the equal tempered scale) are geometrically spaced [3]. So,
low-pitched notes are much closer in Hz than high-pitched
notes. As a consequence, in the spectral analysis of music sig-
nals, if channel spacing is made linear, a sufficient resolution
to discriminate between low-pitched notes implies an over
detailed precision for the high-pitched ones, while a good
resolution for the latter yields an insufficient resolution for
the former. One can circumvent this problem by distributing
geometrically the bin frequencies, thus employing a reduced
number of channels.

The goal of the constant-Q transform (CQT) [4], which
is based on the DFT, is to provide a geometric frequency
spacing. This is accomplished by varying the channel spacing
directly with the channel frequencies in such a way that their
ratio remains constant. Given a desired number of channels
per octave, one can define this constant quality factor as

Q = fk
Δ fk

, (5)

where fk is the kth channel frequency and Δ fk is the spacing
between channels k and k + 1. Therefore, as fk increases ge-
ometrically, a constant Q is achieved by a similar bandwidth
Δ fk increase, in such a manner that the filters keep filling in
the entire spectrum, as desired.

With reference to (1), attributing a fixed value to Q is
equivalent to choosing a different length window for each
spectral component, turning N into

Nk = fs
Δ fk

= fs
fk
Q, (6)

where fs is the sampling frequency.
The above definitions lead to the expression for the kth

CQT spectral component

XCQ[k] = 1
Nk

Nk�1∑

n=0

w[n, k]x[n]e� j2πkn/Nk . (7)

A detailed discussion on the choice of the window function
can be found in [4].

3.1. Constant-Q fast filter bank

The CQFFB [7] combines the high selectivity of the FFB with
the constant-Q behavior of the CQT. The idea is to allocate
the CQT frequency distribution to the filter spacing within
the filter bank. The varying window length Nk of the CQT
is now replaced by filters with varying bandwidths. The bin
frequencies of the CQT become the center frequencies of the
corresponding filters of the CQFFB, while the distance be-
tween two CQT neighbor bins is replaced by one CQFFB fil-
ter bandwidth. Naturally, the improved selectivity implies an
increase in computational cost.
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In the following, two different implementations of the
CQFFB are presented. The first one consists of the following
steps.

(1) Knowing the necessary Q to achieve the desired level
of frequency detail, design an FFB with the minimum
integer L such that N = 2L � 2Q channels, and take
the filter corresponding to channel �Q�.

(2) For each channel k of the CQFFB,

(i) resample the input signal so that the new sam-
pling frequency is

fs(k) = N

Q
fminr

k�1, (8)

where

r = 2 + 1/Q2 + (1/Q)
√

4 + 1/Q2

2
(9)

is the center frequency ratio between contigu-
ous channels and fmin is the center frequency of
channel k = 1,

(ii) filter the resampled version of the input signal by
the FFB filter chosen in the first step.

Resampling the input signal to fs(k) moves the desired
frequency range of the input signal into the passband of the
selected FFB filter. The main disadvantage of this approach is
spending a great amount of calculations to perform several
resamplings of the input signal. Moreover, it requires addi-
tional antialiasing filterings. The complexity for a given chan-
nel k, in terms of complex multiplications per input sample,
amounts to

CCQFFB(k) = CR(k) +
(
CQ + 1

)
γ(k), (10)

where CR(k) is the resampling cost, γ(k) is the resampling
factor, both for channel k, and CQ is the cost of the FFB filter
selected in the first step of the algorithm above.

An alternative implementation resamples the filters in-
stead of the input signal [8]. Now the procedure is the fol-
lowing.

(1) Knowing the necessary Q to achieve the desired level
of frequency detail, design an FFB with the minimum
integer L such that N = 2L � 2Q channels, and take
the filter corresponding to channel �Q�.

(2) For each channel k of the CQFFB,

(i) resample the impulse response of the filter cho-
sen in the first step according to (8),

(ii) filter the input signal by the filter modified in the
previous step.

Resampling the impulse response of the selected FFB fil-
ter to fs(k) moves the filter passband to the desired frequency
range of the input signal. This renders the filtering more
complex, since the filter bank loses an important feature of
the original FFB filters: the large amount of null coefficients.
On the other hand, the calculations for obtaining the filters
can be performed only once, offline. Now, the complexity for

a given channel k becomes

CCQFFB(k) = (CQ + 1
)
γ(k). (11)

Equations (11) and (12) show that the second CQFFB imple-
mentation is less costly, since it does not include the parcel
related to the resampling, performed only in the first imple-
mentation. The overall complexity amounts to

CCQFFB, Total =
q2∑

k=q1

(
CQr

�k + 1
)
, (12)

where q1 = �logr(2�D(N/2Q))�, q2 = �logr(N/2Q)�, and D
is the number of octaves.

This kind of tool can be useful, for example, in automatic
music transcription, which requires the detection of which
musical notes were played during the recording of a music
signal. Conventional notes in Western equal tempered scale
are geometrically spaced; therefore, contiguous note patterns
become equally spaced in a constant-Q representation [4]
(the ideal case would be a perfectly tuned fixed note instru-
ment), which turns their detectability homogeneous along
the spectrum. As a highly selective tool, the CQFFB makes
an interesting choice for this application. The issue of har-
monics is discussed in Section 5.3.

4. PIECEWISE LINEAR FREQUENCY
SPACING METHODS

In order to reduce the high complexity inherent to the CQT,
the bounded-Q transform (BQT) was proposed in [6]. In this
analysis tool, only the octaves are geometrically separated,
whereas within each octave, the frequency bins are equally
spaced, as seen in Figure 1(c). This channel distribution be-
comes a good approximation for the geometric scale with a
proper number of channels per octave, as will be illustrated
in Section 6.

A constant-Q method designed for R channels per octave
would divide an octave starting at frequency f0 into band-
widths given by

BWCQ(k) = f0
[(

R
	

2
)k
�
(

R
	

2
)k�1]

, (13)

where k = 1, . . . ,R is the channel index. On the other hand,
a bounded-Q method designed for N = 2L channels per oc-
tave, with L is an integer, would result in bandwidths

BWBQ = f0
N
. (14)

Making BWBQ = BWCQ(1) and solving for N , one ob-
tains the minimum number of bounded-Q channels per
octave that provides bandwidths equal to the narrower
constant-Q bandwidth

Nmin = 2�log2(1/( R�2�1))�. (15)



6 EURASIP Journal on Advances in Signal Processing

π

2
π 2π

π

2
π 2π

π

2
π 2π

π

2
π 2π

2-channel FFB

2-channel FFB

4-channel FFB

Octave D

Octave D � 1

Figure 5: Procedure for building CQFFB filters in order to separate
octaves in the BQFFB.

4.1. Bounded-Q fast filter bank

The BQFFB combines the piecewise linear spacing of the
bounded-Q scheme with the high selectivity of the FFB. This
can be achieved by using a CQFFB to separate the input sig-
nal into octaves, and then applying an FFB within each oc-
tave to obtain linearly spaced frequency bins. In this scheme,
the CQFFB requires only ten output channels, correspond-
ing to the 10-octave human auditory range, which does not
demand a heavy computational load. Each octave is then iso-
lated from the others by using filters designed according to
the following procedure (see Figure 5).

(1) Obtain the filter for the highest octave, D, from the
second filter of a 2-channel FFB.

(2) Obtain the filter for each remaining octave, d = (D �
1), . . . , 1, as a cascade of the second filter of a 2(D�d+1)-
channel FFB with the first filter of a 2(D�d)-channel
FFB.

Using the filters already mentioned in Section 2.2 (i.e., with
the same orders as those described in [2]) for octave separa-
tion, the total of nonzero coefficients required by the proce-
dure above is given in Table 2.

The reasoning for this procedure is that the filter assigned
to the highest octave, indexed by D, is the second filter of a

Table 2: Accumulated number of nonzero coefficients of the
CQFFB octave separation filters used in the BQFFB, where d = D is
the highest octave.

Number of
octaves (D)

Octave
index (d)

Coefficients
in octave d

Accumulated
coefficients F(D)

1 D 7 7

2 D � 1 6 13

3 D � 2 3 16

4 D � 3 3 19

5 D � 4 2 21

6 D � 5 2 23

7 D � 6 2 25

8 D � 7 2 27

9 D � 8 2 29

10 D � 9 2 31

2-channel FFB. Actually, this filter would be wider than nec-
essary. But, since the input signal is assumed to be real, the
resulting band is limited to its left half. For the octave (D�1),
the filter must be designed in such a way that it is lower
bounded by π/4 and upper bounded by π/2. These limits can
be reached by combining the first filter (lowpass) of the oc-
tave D and the second filter (bandpass) of the octave (D�1).
This process is carried out until the lower octave is reached.

After the octaves from the constant-Q stage have been
separated, each one must be divided into N linearly spaced
channels, through the following procedure.

(1) For d = 1, . . . ,D, downsample the signal from the oc-
tave d by the factor 2(D�d+1).

(2) Submit each downsampled signal to a 2N-channel
FFB, obtaining the separated channels assigned to the
octave d.

The downsampling of each octave signal makes its spec-
trum wider (from 0 to 2π), without requiring additional dec-
imation filtering, since the high-selectivity FFB filters em-
ployed in the octave separation stage are sufficient to avoid
aliasing. It is important to notice that the FFB employed
within each octave must have twice the number of channels
to be separated, since it also generates the negative part of the
filter responses. Table 2 shows the accumulated number F(D)
of nonzero coefficients for the octave separation filters com-
puted for distinct values of the number D of octaves. Then,
the number of complex multiplications per input sample for
the BQFFB is

CBQFFB, Total =
(
F(D) + D

)
+ 2C(l)D, (16)

where C(l) is obtained from Table 1.
An earlier implementation of the bounded-Q concept

[9] employed conventional antialiasing filtering instead of
a CQFFB to separate the octaves. As a consequence, there
would occur considerable overlapping between contiguous
octaves unless the antialiasing filters were extremely consum-
ing. Furthermore, it employed (4N)th-order FFBs within the
octaves. The new implementation proposed here evidently
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Table 3: Comparison between different spectral analysis tools. The
asterisk refers to the FFB-based high-selectivity tools, which tend to
be more complex than the FFT-based algorithms.

Analysis
tool

Frequency
spacing

Channel
selectivity

Computational
complexity

FFT Linear Low Low

FFB Linear High Low (�)

CQT Geometric Low High

CQFFB Geometric High High (�)

BQT Piecewise linear Low Medium

BQFFB Piecewise linear High Medium (�)

supersedes that one with respect to frequency discrimina-
tion, at a comparable computational burden.

Table 3 summarizes the main characteristics of all spec-
tral analysis algorithms seen in this paper.

As a final remark, it must be added that, as opposed to the
FFT and the FFB, neither the CQFFB nor the BQFFB is struc-
turally invertible. The direct resynthesis of a signal analyzed
through these methods requires a synthesis filter bank which
can only approximate perfect reconstruction. This fact re-
sults from the noninvertibility of their originating CQT [4].

5. PRACTICAL ISSUES

In the following, some design aspects concerning the prac-
tical implementation and application of the proposed algo-
rithms are addressed.

5.1. Choice of parameter values

The first problem to be taken into consideration is the fil-
ter bank resolution. In musical applications, one can refer to
the geometric organization of the equal tempered scale used
in Western music [3]: each octave is divided into 12 musical
notes following a geometric progression of ratio 12

	
2 � 1.06.

This ratio is known as a semitone. In order to detect a semi-
tone variation, the resolution should be the square root of
this value, that is, 24

	
2 � 1.03 (one quartertone).

If one wants to use constant-Q channels, as in the CQFFB
[7], the corresponding quality factor is given by

Q= fk
(Δ f )CQ

= fk(
21/48 � 2�1/48

)
fk
� 1

0.0289
� 34.6, (17)

where fk is the central frequency (in a geometric sense) and
(Δ f )CQ is the bandwidth of any given channel k. To sim-
plify the calculations, the resulting value for the Q-factor will
be 35.

The intended quartertone separation corresponds to R =
24. Using (15), the bounded-Q solution should employ at
least Nmin = 64 channels per octave to make them all nar-
rower than the constant-Q channels. For all practical pur-
poses, N = 32 can be used, since only three of the twenty
four CQFFB channels are narrower than their BQFFB coun-
terparts.
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Figure 6: Complexity comparison between the CQFFB (dots) and
the BQFFB (circles), here introduced, as a function of the number
of channels.

5.2. Complexity comparison

In order to compare the computational loads of the CQFFB
and BQFFB approaches presented in this paper, Figure 6
plots the number of complex multiplications required to an-
alyze a 10-octave spectrum as a function of the number of
channels. These curves follow (12) for the CQFFB and (16)
for the BQFFB. It becomes clear that the BQFFB outperforms
the CQFFB. In typical applications using around 100–320
channels, the gain is about five orders of magnitude in favor
of the former.

5.3. Requirements versus applications

This work is concerned with spectral analysis tools with high
selectivity (as the FFB), also reduced number of channels (as
the CQFFB), and also low complexity (as the BQFFB). A
brief discussion linking applications with the requirements
on these methods can be useful. In Section 3.1, automatic
music transcription (AMT) was cited as a potential applica-
tion of a geometrically spaced frequency representation.

In AMT, even in the simple case of monophonic signals,
the identification of musical notes by such a tool must face
several problems.

(i) Absolute tuning (modern Western convention dictates
A4 = 440 Hz) is not always guaranteed.

(ii) Instruments may be simply out of tune, thus shifting
notes arbitrarily.

(iii) Instruments (e.g., bells) may exhibit inharmonicity; in
this case, perceived pitch is not necessarily associated
to a “fundamental” frequency.

(iv) Most instruments emit continuously variable notes
(e.g., the violin, as opposed to the piano).

Additionally, in the more usual polyphonic contexts, when
the overlap of notes’ spectra must be solved, harmonics must
be carefully accounted for—but they are linearly spaced.
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All these considerations can be summarized in one sen-
tence: there is no ideal frequency grid for the spectral analysis
of music signals. In fact, depending on the target application,
different solutions may be preferable. Under this perspective,
the bounded-Q economy of 5 orders of magnitude in com-
plexity over the constant-Q makes it a preferable analysis tool
in general. The linear spacing of harmonics must not cause
much concern, if sufficient granularity is available, for ex-
ample, it can be easily shown that with N linear channels
per octave, the system can separate the first 2N harmonics
of a given musical note. Of course, the fine granularity must
be paralleled by sufficient separation capability, and this is
the importance of including the FFB filters in the proposed
structures.

In broad terms, the proposed methods can be seen as
music-oriented time-frequency representations. They can
provide (magnitude, frequency) x time as parameters for
general music feature extraction systems, where higher-level
layers may process the information in a myriad of ways. Since
related applications often deal with great amounts of data,
the reduced number of channels (and generated output sam-
ples) is an important issue of the CQFFB and BQFFB tech-
niques.

6. COMPUTER EXPERIMENTS

In this section, some computer simulations are carried out
to assess the performance of the variable resolution high-
selectivity methods using the linear frequency spacing meth-
ods as a reference.

6.1. Two synthetic musical notes

First, consider a one-second test signal formed as the sum of
8 pure tones of unit magnitude. The first two tones are at fre-
quencies 263 Hz and 295 Hz, which correspond to notes C4
and D4 slightly out of tune with respect to an equal tempered
scale, to simulate a realistic situation. Their next three har-
monics are also included. Since the main concern in this ex-
periment is frequency detection, the component magnitudes
were made equal to simplify their visualization.

The frequency resolution value adopted in the CQFFB
simulation is Q = 35, as shown in (17), and will also serve
as a reference in choosing the number of channels for the
remaining methods. To keep the comparison fair, the chan-
nel with the worst resolution in the linear spacing tools
should satisfy the quarter tone constraint. This restriction
applies to the lowest channel, which must contain the low-
est test tone. To meet these conditions, both FFT and FFB
divide the spectrum in 4096 channels from 0 to 22050 Hz
(assuming a sampling rate of 44100 Hz), each one 5.38 Hz
wide.

The BQFFB, in turn, divides the spectrum (from its high-
est limit) in seven octaves, plus the remaining lower fre-
quency band (which includes the lowest test tone). Each of
these eight subbands is linearly divided in 32 channels, thus
keeping in the lowest band the same spacing as the FFT and
FFB tools.
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Figure 7: FFT analysis of the test signal formed with sinusoids. The
linear frequency distribution of the FFT keeps the resolution con-
stant throughout the entire spectrum, and the reduced sidelobe at-
tenuation generates a noise-floor effect that can mask medium level
tones in practical signals.

0

0.2

0.4

0.6

0.8

1

300 400 500 600 700 800 900 1000 1100 1200

FF
T

am
pl

it
u

de

Frequency (Hz)

Figure 8: FFB analysis of the test signal formed with sinusoids. The
linear frequency distribution of the FFB keeps the resolution con-
stant throughout the entire spectrum, whereas the FFB selectivity
avoids the noise-floor effect.

Figures 7 to 10 show the responses of FFT, FFB, CQFFB,
and BQFFB to the test signal. From these figures, it becomes
evident that the FFT yields some noise level around the test
tones, due to the poor selectivity of the associated FFT filters.
Such a noise may become a negative factor in practical cases,
as it can mask some signal components close to the major
frequency components. In contrast, the FFB is able to detect
the peaks clearly, but with the same unnecessarily large num-
ber of channels. The CQFFB identifies the tones with fewer
channels, yet increasing considerably the computational cost.
In fact, the BQFFB attains the same performance as the FFB,
with about five orders of magnitude lower complexity than
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Figure 9: CQFFB analysis of the test signal formed with sinusoids.
The geometric frequency distribution of the constant-Q scheme
scatters the channel bins more efficiently, unfortunately at a high
computational cost, and the FFB selectivity avoids the noise-floor
effect.
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Figure 10: BQFFB analysis of the test signal formed with sinusoids.
The mixed linear geometric frequency distribution of the bounded-
Q method scatters the channel bins more efficiently, at a reasonable
computational cost, and the FFB selectivity avoids the noise-floor
effect.

the CQFFB, as predicted. The slight magnitude distortion
observed in Figure 10 can be minimized by the use of longer
filters for octave separation, at negligible increase in the over-
all complexity.

6.2. A stationary excerpt from a real audio signal

The signal used in this example is a four-second extract from
the recording of an organ work by César Franck. It contains
an A-Major chord composed by the notes A3 (220 Hz), E4
(329.63 Hz), A4 (440 Hz), C#5 (554.37 Hz), E5 (659.26 Hz),
and C#6 (1108.73 Hz) played on the manuals plus an A0
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Figure 11: FFT analysis of the test signal acquired from an audio
recording.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

100 200 300 400 500 600 700 800 900 1000 1100 1200

A
m

pl
it

u
de

Frequency (Hz)

A2

A3 E4

A4

C#5 E5

C#6

Figure 12: FFB analysis of the test signal acquired from an audio
recording.

(27.5 Hz + octaves) pedal bass. The fundamental frequencies
of the prescribed notes are indicated on the plots.

One can clearly notice that all four tools were able to dis-
criminate these components. Figure 11 shows that the FFT
output is quite noisy, masking some important information.
Furthermore, while the FFB (seen in Figure 12) requires an
excessively large number of channels and the CQFFB (seen
in Figure 13) employs a great amount of computation, the
BQFFB (seen in Figure 14) presents a good compromise be-
tween all these aspects. Harmonics of the lowest note (dis-
cernible by the 27.5 Hz spacing) could only be detected by
the FFB-based tools.
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Figure 13: CQFFB analysis of the test signal acquired from an audio
recording.
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Figure 14: BQFFB analysis of the test signal acquired from an audio
recording.

6.3. Two real audio signals along the time

Since the best choice for combining high selectivity, reduced
number of channels, and low complexity is the BQFFB,
this section shows the analysis of two real audio signals
performed by this method along the time. Once more,
the system was designed with 32 equal-width channels per
octave.

The first signal (Figure 15) is an excerpt of the record-
ing of a piece composed by J. S. Bach (1685–1750) for solo
flute. The second signal (Figure 16) is the beginning of the
recording of a piece composed by D. Shostakovich (1906–
1975) for piano solo. In both figures, the sheet music is first
presented as a reference, followed by a sequence of plots. Each
plot depicts in greyscale the magnitude of the 32 channels
(along a linear frequency scale in Hz) inside an octave versus
time (in seconds). Only those octaves with significant con-
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Figure 15: BQFFB analysis of flute recording: excerpt from the Cor-
rente of the Partita in A Minor, BWV 1013, by J. S. Bach.

tent are shown in the figures. Additionally, in order to turn
the visualization easier, since the power spans a large dy-
namic range along different portions of the spectrum, each
octave plot was individually normalized in magnitude—as
a side effect, magnitudes inside different octaves cannot be
quantitatively compared.

The flute example is a one-voice signal, with predomi-
nance of medium-high frequencies, and moderate tempo. In
Figure 15, it is possible to distinguish the several note har-
monics following the tune evolution. Variable dynamics, in-
cluding some vibrato effect can be recognized inside the first
three octaves. A trill shortly after 2.5 s can be clearly dis-
cerned. Localization is quite good, since the acoustics is fairly
dry. The magnitude normalization per octave accounts for
the sparse aspect in the [2757–5513] octave as well as the
fuzzy appearance in the next two octaves.

The piano extract is a two-voice signal with wide fre-
quency span. In Figure 16, it can be seen that the right hand
plays around 13 notes per second—a quite fast passage— and
the legato touch yields the visible note overlaps; the bass notes
sound quite resonant, which is reflected by their longer dura-
tions. The restricted dynamic range employed by the pianist
in right-hand part allied to the constant pulse and equal note
values allow the melody shape to be easily followed along the
plots.

The examples above attest that the BQFFB can be a useful
spectral analysis tool for music signals.

7. CONCLUSION

This paper presented several algorithms for the spectral anal-
ysis of music signals. The FFB is seen as a high-selectivity
version of the standard FFT algorithm. The CQT and BQT
can be seen as variations of the FFT with more efficient
channel distribution in the frequency domain. The CQT
uses a geometric frequency separation that emulates the or-
ganization of the usual Western music scale. Meanwhile,
the BQT uses a linear geometric separation, to allow a fast
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Figure 16: BQFFB analysis of piano recording: excerpt from the Prelude in D Major, op. 34/5, by D. Shostakovich.

implementation of the algorithm without sacrificing the abil-
ity of discriminating musical tones. Two novel methods were
then introduced: the CQFFB and the BQFFB, which can be
seen as high-selectivity versions of the CQT and BQT, respec-
tively. In such framework, the BQFFB is an efficient spectral
analysis tool for the analysis of music signals, combining rea-
sonable computational cost, suitable channel distribution in
the frequency domain, and high selectivity between adjacent
frequency channels. Such properties make the BQFFB an at-
tractive tool for applications like automatic music transcrip-
tion systems and music feature extraction.
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