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Abstract—Parametric methods for direction-of-arrival (DoA)
estimation have become very popular due to their low computa-
tional complexity and good accuracy. Among parametric DoA
algorithms, ESPRIT is one of the most widely used, since it
presents low computational complexity in comparison to other
parametric methods. Covariance-based DoA (CB-DoA) estima-
tion algorithm provides an even lower complexity alternative to
ESPRIT, while imposing the same constraints on the geometry of
the receiving array. This letter presents a new algorithm, based
on the CB-DoA approach, comprising only real operations. The
constraints on the algorithm are the same imposed to the unitary
ESPRIT algorithm, allowing a reduction of about 67% on the
required computational effort, for equivalent error measure.

Index Terms—Antenna arrays, direction-of-arrival estimation,
parameter estimation.

I. INTRODUCTION

E STIMATING the direction-of-arrival (DoA) of impinging
waves for antenna-array receivers is a very useful tool

for spatially separating sources in multiuser communication
systems. Some DoA standard techniques, such as ESPRIT [1]
and matrix-pencil (MP) methods [2], are based on parametric
estimation techniques, which present lower computational
complexity than previous nonparametric methods. MP methods
are simpler than the ESPRIT method, at the cost of a more
restricted constraint on the geometry of the receiving an-
tenna array. Recently, a covariance-based DoA (CB-DoA)
estimation algorithm [3], [4] was fully presented combining
the ESPRIT-like translational invariance constraint and MSE
performance with computational complexity advantages over
MP methods.

This letter simplifies even further the CB-DoA algorithm, by
imposing an additional geometrical constraint on the receiving
antenna array, similar to the one employed by the unitary ES-
PRIT [5]. The proposed algorithm, although related, presents
less restrictive constraints than the MP-based algorithm pre-
sented in [6]. Section II presents the formulation for the DoA
problem with the additional constraints on the geometry of
the receiving array. Section III describes the proposed real
CB-DoA algorithm. Section IV compares the computational
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effort required by unitary ESPRIT and the proposed algorithm.
Section V presents some computer simulations for both unitary
ESPRIT and real CB-DoA, whereas Section VI summarizes
the main conclusions of this work.

II. BASIC FRAMEWORK

In this section, the DoA system model is presented, focusing
on the centro-Hermitian constraints, as well as TLS solution to
the original complex-valued problem, as presented in [1] and
[3].

A. General Structures

Consider a multiple-input multiple-output (MIMO) envi-
ronment with transmitting and receiving antennas,
with . Each channel is corrupted by an additive white
Gaussian noise (AWGN). The receiving antennas are grouped
in pairs (doublets). In each doublet, there is a constant dis-
placement between the antennas, providing a translational
invariance in the geometry of the array. If one divides the
antennas of the receiving array in two sub-arrays, where each
doublet is split between the sub-arrays, the received signal

, for the th antenna in the th sub-array, is represented by

(1)

for and , where refers
to the gain of the th receiving antenna for the impinging
angle of the signal transmitted by the th antenna,
and denotes the associated noise component. The same
receiving antenna may belong to both sub-arrays, since each an-
tenna may belong to two different doublets. Considering uni-
form time-sampling, the discrete receiving snapshots may be
represented as

(2)

where and are selec-
tion matrices, used for separating the antennas into sub-ar-
rays,
represents the received snapshot in the th sub-array, and

rep-
resents the noise vector. The receiving sub-array ma-
trix , which represents the directional gains for the
th sub-array, is defined by , with

, and . Besides
that, is the trans-
mitted data structure. The larger structure
comprising the gains of the overall receiving array is known as
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Fig. 1. Receiving array with the constraints of both rotational invariance, as
well as the new centro-Hermitian constraints. Antennas with the same pattern
should have the same receiving characteristics.

the array manifold. Due to the constant displacement of the
receiving doublets, there is a unitary diagonal matrix such
that

(3)

Each diagonal element of is related to the DoA by the
expression [5]

(4)

where represents the speed of light and is the frequency for
transmission.

In order to perform only real operations, matrix must be
also centro-Hermitian, that is, [5]

(5)

where refers to an -permutation matrix with ones in its
main antidiagonal and zeros outside, and the superscript asterisk
represents the conjugate operation. Geometrically, an array is
considered centro-Hermitian if its elements are symmetric with
respect to the centroid, as represented in Fig. 1, and the receiving
characteristics of symmetrically located antenna pairs are equiv-
alent [5].

For a given matrix , where is even, consider the
transformation and rotation matrix such that

(6)

(7)

For odd values of , some changes are needed in the structure
of , without affecting the following results. It is shown in [5]
that the operation transforms a centro-Hermitian matrix into a
matrix containing only real elements. Moreover, if denotes
the matrix containing the eigenvectors of , then one has that

(8)

For any matrix , the extended matrix

(9)

is centro-Hermitian. Therefore, the composite transformation
yields a real matrix.

B. TLS Solution to the Original DoA Problem

Consider matrix comprising snapshots of in its
columns. Defining the forward-backward (FB) structure for
the received snapshots, , then it can be shown
that the FB correlation matrix may be ex-
pressed as

(10)

such that, from the property stated in (8)

(11)

By partitioning as

(12)

the new geometric constraint on the receiving antennas leads to
an invariance relation [5], whose total least-squares
(TLS) solution may be determined by an eigendecompo-
sition operation [7]

(13)

followed by the matrix multiplication

(14)

C. Equivalent TLS Problem

From the definitions of the transformations and in
Section II-A

(15)

Defining , then one has that

(16)

Hence, by partitioning as

(17)

an alternative TLS solution may be determined as [7]

(18)

which is related to the original TLS solution by

(19)
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TABLE I
SHORT DESCRIPTIONS OF UNITARY ESPRIT AND REAL CB-DOA ALGORITHMS

III. REAL CB-DOA ALGORITHM

Both (14) and (18) involve complex operations. In this sec-
tion, an equivalent and computationally simpler solution to these
equations is presented based only on real operations.

A. TLS Solution With Real Operations

Let comprise the eigenvectors of associated to the
signal subspace. From the definitions of , , , and ,
then (15) may be rewritten as

(20)

By defining the new selection matrices

(21)

(22)

then, since , one has that

(23)

From (20), the structure of has an invariance equation
property that may be expressed as

(24)

which is the core of the unitary ESPRIT algorithm [5]. Per-
forming an eigenvalue decomposition on , such that

, the DoA estimation results based
on the diagonal elements of .

B. Real Covariance-Based Approach

Consider the covariance matrix of the output signal, as
given in (10), and the received data matrix , corrupted by noise,
as presented in Section II-B. Using selection matrices and

, new covariance structures are defined as

(25)

(26)

TABLE II
NUMBER OF MATRIX OPERATIONS REQUIRED

BY UNITARY ESPRIT AND REAL CB-DOA

where is the estimated noise power. Performing the eigen-
decomposition , one can establish the
signal subspace by grouping the largest eigenvalues of into

and their associated eigenvectors into matrix . Then,
one has

(27)

where is a full-rank matrix, and
is the noiseless

overall transmitted data matrix. From (24) and (27)

(28)

Defining the transformation , such that

(29)

and applying it onto , one gets

(30)

Hence, matrix is determined by the eigendecomposition of
matrix , leading to the DoA estimation ,
as before.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, the proposed real CB-DoA and the unitary
ESPRIT algorithms, summarized in Table I, are compared with
respect to their computational complexity. Consider as the
number of elements in each subarray, as the number of
sources, as the amount of sensors, and as the amount
of snapshots used. A more direct comparison between unitary
ESPRIT and real CB-DoA is addressed by Table II, which in-
cludes the complexity effort associated to each matrix operation
for both algorithms.

Since represents the number of samples, it is, in general,
much larger than the amount of antennas. Then, the term
containing tends to dominate the complexity analysis. For
large , the computational requirement for the real CB-DoA
becomes approximately 33% of the one required by unitary
ESPRIT.
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One may also make a comparison to MP methods. MP uses
the first six operations as defined in Table I for ESPRIT, which
are the most computationally complex ones, including the domi-
nant term present in the flop analysis. MP methods require
one generalized EVD, much more complex than the traditional
EVD. Therefore, real CB-DoA is less computationally complex
than MP. In addition, MP requires the additional constraint that
the receiving array must present uniformly spaced elements.

V. SIMULATIONS

Some experiments were included to compare the perfor-
mance of real CB-DoA algorithm to the standard unitary
ESPRIT algorithm. Signal from each source was randomly
generated from a Gaussian distribution. Both the array manifold
matrix and the DoA gain vector were randomly determined.

The performance assessment is based on the mean-square
error (MSE) between the estimated and actual arriving an-
gles, that is, MSE , .
The MSE value, measured by an ensemble average over 300
runs, was determined for distinct values of the signal-to-noise
ratio (SNR) measured over 7500 snapshots, taken at the re-
ceiver input. The results are presented in Fig. 2. Simulations
were performed using two transmitting sources and 12 receiving
antennas. Afterwards, two more sources were added in the sce-
nario. The receiving array geometry is constrained to present
both translational invariance, as well as being centro-Hermitian,
as described in Section II.

From Fig. 2, one may conclude that the measured MSEs are
quite close for both algorithms for the whole simulated range
of SNR. The MSE result is also comparable to the performance
of original CB-DoA and ESPRIT algorithms [3]. For both sce-
narios, the amount of flops required by real CB-DoA is approx-
imately 33% of the flops required by unitary ESPRIT. Simula-
tions with different numbers of sources or receiving antennas
also present similar MSE results and computational savings.

VI. CONCLUSIONS

This work proposed an alternative algorithm to covariance-
based determination of direction-of-arrival (CB-DoA), whose
computational complexity is further reduced by using strictly
real operations, after imposing a central-symmetric constraint
on the geometry of the receiving antenna array. Computational
analysis and computer simulations show that the proposed real
CB-DoA algorithm presents 67% less computing operations and

Fig. 2. MSE comparison for unitary ESPRIT and real CB-DoA algorithms,
for two simulation scenarios: using two and four sources, respectively, and a
receiving array of 12 antennas, in both scenarios.

equivalent MSE performance in comparison to unitary ESPRIT
algorithm, an accelerated version of ESPRIT. Computational
advantages are also observed over MP methods.
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