
Direction-of-Arrival Estimation using a Direct-Data
Approach

This paper presents a direct-data (DD) counterpart to the

covariance-based (CB) algorithm for direction-of-arrival (DOA)

estimation. The proposed DD-DOA scheme provides reduced

computational complexity as compared with other ESPRIT

variations, filling in a theoretical gap not covered by previously

presented schemes. A mean-squared error (MSE) analysis as

well as computer simulations are provided allowing performance

comparisons between DD-DOA and ESPRIT algorithms. The

MSE performance is compared with the Cramer-Rao lower

bound (CRLB) for one source. Results indicate that the proposed

algorithm represents an efficient trade-off between computational

complexity and final MSE as compared with standard ESPRIT

schemes.

I. INTRODUCTION

Several modern wireless communication systems

use spatial filtering for interference mitigation

or source separation. Direction-of-arrival (DOA)

estimation of the desired signal is a very useful

technique for estimating optimal spatial filter

coefficients [1]. First DOA estimation algorithms

were based on nonparametric spectral estimation

tools. Afterwards, new parametric maximum

likelihood (ML) or eigenspace-based algorithms,

such as the multiple signal classification (MUSIC)

scheme [2], were proposed, reducing the associated

computational load. Another popular family of

DOA algorithms known as estimation of parameters

via rotational invariance techniques (ESPRIT)

[3] take advantage of redundancies within the

receiving-array geometry to allow simplified

implementations. The most recent proposal was the

covariance-based (CB) DOA algorithm [4, 5], an

ESPRIT variation with even lower computational

complexity requiring the same geometrical constraints

as before.

This article presents a direct-data (DD) alternative

to the CB-DOA algorithm. The new scheme works

with smaller data structures than ESPRIT, thus
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resulting in a simpler DOA estimation technique,

quite suitable for practical application scenarios

such as radar systems [6]. This paper is organized as

follows. Section II introduces the DOA problem and

establishes the mathematical notation used throughout

the paper; in Section III the DD-DOA algorithm is

presented, where the associated convergence analysis

is provided in Section IV; practical performance

of the DD-DOA algorithm is verified in Section V,

illustrating the positive characteristics of the proposed

scheme with respect to final estimation error and

overall computational complexity as compared

with ESPRIT. Besides that, a comparison with the

theoretical Cramer-Rao lower bound (CRLB) is also

provided; Section VI closes the paper emphasizing its

main contributions.

II. SYSTEM REPRESENTATION

Consider a wireless system comprising M signal

sources and N receiving sensors. Assume that the

receiving sensors may be grouped into pairs called

doublets with a constant relative displacement ¢,

as indicated in Fig. 1, constituting the so-called

translational invariance constraint. One should keep

in mind that a sensor may belong to two different

doublets, as the initial or the terminal point of the

displacement vector in each case. For instance,

using the array of Fig. 1 with another choice for

the doublets, sensor 2 may belong to a doublet with

sensor 1, as the terminal point of the displacement

vector, and to another doublet with sensor 3, as the

initial point of the displacement vector.

Assume also that narrowband signals are

transmitted, that the sources are coplanar, and that

they all lie in the far-field of the receiving array.

Let sm(t), for 0·m· (M ¡ 1) represent the signal
transmitted by the mth source at time t, and zm,j(t),

for 0·m· (M ¡ 1) and 0· j · (N ¡ 1), denote the
signal received at the jth sensor from the mth source.

Then one may write that

zm,j(t) = am,jsm(t)+ nm,j(t) (1)

where am,j and nm,j represent the directional gain

and the additive white Gaussian noise (AWGN)

component, respectively, in the jth receiving sensor

for the impinging wave from the mth source.

The sensor pairing gives rise to two subarrays: one

containing only the initial sensor and another with

only the terminal sensor in each displacement vector.

Let xm,p and ym,p denote the receiving signal in these

two subarrays by the pth sensor, with 0· p· (P¡ 1),
where P is the total number of doublets, for the

mth signal source. Then P represents the number

of sensors in each subarray, whereas N represents

the total amount of sensors. One should notice

that P and N must be in the range (N=2)· P <N.
Therefore, for each subarray, one may rewrite (1)
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Fig. 1. Example of receiving array whose geometry satisfies translational invariance constraints.

as

xm,p(t) = am,psm(t) + nm,p(t) (2)

ym,p(t) = am,N¡P+psm(t) + nm,N¡P+p(t)

= am,pe
j!¢sinμm=csm(t)+ nm,N¡P+p(t) (3)

where μm is the mth DOA angle, ! is the central

frequency used for the transmission, and c represents

the speed of light. The overall signal in each sensor is

then represented by

xp(t) =

M¡1X
m=0

(am,psm(t)+ nm,p(t)) (4)

yp(t) =

M¡1X
m=0

(am,pe
j!¢sinμm=csm(t)+ nm,p+P(t)) (5)

for 0· p· (P¡ 1). Using a uniform time sampling

t= kTs, where Ts is the sampling period, the following

discrete-time structures arise:

s(k) = [s0(k) s1(k) ¢ ¢ ¢sM¡1(k)]T (6)

x(k) = [x0(k) x1(k) ¢ ¢ ¢xP¡1(k)]T (7)

y(k) = [y0(k) y1(k) ¢ ¢ ¢yP¡1(k)]T (8)

z(k) = [z0(k) z1(k) ¢ ¢ ¢z2P¡1(k)]T (9)

nx(k) =

"X
m

nm,0(k) ¢ ¢ ¢
X
m

nm,P¡1(k)

#T
(10)

ny(k) =

"X
m

nm,N¡P+1(k) ¢ ¢ ¢
X
m

nm,N¡1(k)

#T
(11)

A=

266664
a0,0(k) a0,1(k) ¢ ¢ ¢ a0,P¡1(k)

a1,0(k) a1,1(k) ¢ ¢ ¢ a1,P¡1(k)

...
...

. . .
...

aM¡1,0(k) aM¡1,1(k) ¢ ¢ ¢ aM¡1,P¡1(k)

377775
(12)

©= diag([ej!¢sinμ0=c ¢ ¢ ¢ej!¢sinμM¡1=c]): (13)

If a total of K vectors of samples (snapshots) are

collected, one can define the overall structures

S= [s(0) s(1) ¢ ¢ ¢s(K ¡ 1)] (14)

X= [x(0) x(1) ¢ ¢ ¢x(K ¡ 1)] (15)

Y= [y(0) y(1) ¢ ¢ ¢y(K ¡ 1)] (16)

Z= [z(0) z(1) ¢ ¢ ¢z(K ¡1)] (17)

NX = [nx(0) nx(1) ¢ ¢ ¢nx(K ¡ 1)] (18)

NY = [ny(0) ny(1) ¢ ¢ ¢ny(K ¡ 1)] (19)

allowing the following system description in matrix

form:

X=AS+NX (20)

W=X+Y=A(I+©)S+NX +NY (21)

where I denotes the M £M identity matrix. One

should note that Z=
£
XT YT

¤
. The structure B is also

defined such that

B=

·
X

W

¸
: (22)

III. DIRECT-DATA-BASED DOA ESTIMATION

Assuming that © has full rank and that the noise
is both spatially as well as temporally white, one can

prove that X and W span the same signal subspace.

By performing a singular value decomposition (SVD)

on X,
X=UX§XV

H
X : (23)

One can relate the M largest singular values, as well

as their associated left and right singular vectors [3],

to the signal subspace. Let the diagonal matrix §X
be partitioned into two sections: §X,S, associated
to signal-plus-noise components, containing the M

largest singular values of §X , and §X,N , associated
solely to noise components, containing the remaining

singular values. One may form a new matrix §X,(S¡N)
by subtracting the average of the diagonal entries of

§X,N from §X,S. Then one can define the following
auxiliary structure that spans the signal subspace:

F=UX,S§
1=2

X,(S¡N) (24)

with UX,S comprising the first M columns of UX .
Since the array manifold matrix A also spans the
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signal subspace, there must be a full-rank matrix T1
such that

F=AT1: (25)

By defining ª = F¡1W, from (22) and (25), one

has that

ª = T¡11 (I+©)T2 +F
¡1(NX +NY): (26)

In the noiseless case NX =NY = 0 and T2 = S, and
then © can be estimated from the result of an SVD on

ª . The same operation can also be performed in the
general noisy case, by writing (26) as

ª = T¡11 [(1+®)I+©]T2 (27)

with the parameter ® embodying all effects from the

noise structures NX and NY projected on the signal
subspace matrix F¡1. In practice, ® may reflect the
uncertainty on the estimation of the signal subspace

UX,S, and for that reason its value may be set as the

estimated noise power scaled by a small constant. By

performing an SVD on ª , and subtracting the term
(1+®)I, the DD DOA estimates are determined as

μ̂i = arcsin

μ
c

j!¢
ln(Á̂i)

¶
, 0· i < M (28)

where Á̂i is the ith diagonal entry of the estimated ©̂.

IV. THEORETICAL ANALYSIS FOR THE
MEAN-SQUARED ERROR

Consider the mean-squared error (MSE) for the

DOA parameter μi,

MSE(μi, μ̂i) = E[j¢μij2] = E[jμi¡ μ̂ij2] (29)

where E[¢] represents the statistical mean. For M = 2

sources, based on the analysis performed in [7], the

relation between E[j¢μij2] and E[j¢Áij2] may be
expressed as

E[j¢μij2] =
Ã

1

!i cos μ̂i

!2
E[j¢Áij2]

2
: (30)

Consider that ri are the eigenvectors of ª , that is,
ªri = (1+®+Ái)ri. For the variables ¢ª and ¢Ái,

the following relation holds,

¢ªri =¢Áiri: (31)

Hence, a first-order approximation for ¢Ái is given by

¢Ái ¼ rHi ¢ªri: (32)

One then considers the auxiliary structure B and

the associated matrix VB comprising all eigenvectors

vi of RB = (1=
p
K)BBH in a columnwise manner. By

defining the P£ 2P data-selection matrices JX,2P and
JY,2P such that

JX,2P = [I 0] (33)

JY,2P = [0 I] (34)

where I is a P£P identity matrix, whereas 0 is a P£
P matrix containing only zeros. We may partition VB
in such a way that VX = JX,2PVB and VW = JY,2PVB .

Based on the definition of ª , one assumes that

ªVX =VW (35)

and we may then write

(ª +¢ª )(VX +¢VX) =VW +¢VW: (36)

Therefore, using (35) and considering ¢ª¢VX ¼ 0,
one gets

¢ª = (¢VW ¡ª¢VX)V+X (37)

where V+X is the pseudoinverse of VX . Combining (32)
and (37), and observing that ri are the eigenvectors of
ª , one has that

¢Ái = r
H
i (¢VW ¡ (1+®+Ái)¢VX)V+Xri (38)

which may be expressed as

¢Ái = r
H
i Ci¢VBV

+
Xri (39)

where Ci = (JY,2P ¡ (1+®+Ái)JX,2P). Therefore,
E[j¢Áij2] may be written as

E[j¢Áij2] = rHi (V+X)HE[¢VHBCHi rirHi Ci¢VB]V+Xri:
(40)

By defining ¢vi as the estimation error for each
eigenvector vi of BB

H , one has that

E[j¢Áij2] = rHi (V+X)H
0@ MX
j=1

jrij2
1ACHi R¢vCiV+Xri

(41)
with [7]

R¢v = E[¢vi¢v
H
j ] =

¾i
N

X
k=1,k 6=i

¾i
(¾k ¡¾i)2

vkv
H
k ±(i¡ j)

(42)

where ± stands for the Kronecker impulse and ¾2i
denotes an eigenvalue of ª . Therefore, (41) may be
rewritten as

E[j¢Áij2] = rHi (V+X)H
0@ MX
j=1

jrij2CHi
¾i
N

X
k=1,k 6=i

¾i
(¾k ¡¾i)2

£vkvHk ±(i¡ j)Ci

1AV+Xri (43)

which can be plugged into (30) to obtain an

expression for E[j¢μij2]. The resulting expression
is quite similar to the MSE expression for the

ESPRIT algorithm, with the main differences lying

on the definition of ¢vi, which is associated to

the eigenvectors of (1=
p
K)XXH for the ESPRIT
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TABLE I

Short Descriptions of the TLS Implementation of ESPRIT and

DD-DOA Algorithm

TLS-ESPRIT DD-DOA

[U,§,VH ] = SVD(Z) X= JX,2PZ

UX = JX,2PU W= (JX,2P + JY,2P )Z

UY = JY,2PU [UX ,§X ,V
H
X
] = SVD(X)

Ua =

·
U¤
X

U¤Y

¸
[UX UY]

F¡1 =§¡1=2
X,(S¡N)U

H
X,S

[E,¤] = EVD(Ua) [T1, (1+®)I+ ©̂,T2] = SVD(F
¡1W)

E12 = JX,2MEJ
T
Y,2M

E22 = JY,2MEJ
T
Y,2M

ª =¡E¡1
12
E22

[T1,©̂] = EVD(ª )

TABLE II

Number of Flops and Matrix Operations Required by TLS

Implementation of ESPRIT and DD-DOA Algorithm

TLS-ESPRIT DD-DOA

Operation [8] # Flops # Flops

SVD O(2mn2) 1 4PK2 2 2PK2 +2MK2

EVD O(25n3) 1 200P3 – –

Hermit. EVD O(n2) 1 P2 – –

Full Inverse O(n3) 1 P3 – –

Multiplic. O(mnk) 5 5P3 2 P2K +M2P

4PK2 + 206P3 2PK2 +2MK2

Total +P2 +P2K +M2P

algorithm, and on the definition of Ci, which becomes

CESPRITi = (1¡Á¤i )JX,2P for the ESPRIT algorithm [7].

The MSE analysis above is based on the

eigenvalues of the received signals. As the DD-DOA

algorithm operates on the corresponding singular

values, which are constrained to be real numbers, the

imaginary part of each Ái in (28) must be estimated

from its real part, forcing a unitary norm. This

procedure introduces a cumulative error component

onto the DD-DOA algorithm which is not present in

ESPRIT.

V. PERFORMANCE ASSESSMENT

A. Computational Complexity

In order to compare the computational complexity

of DD-DOA to the TLS (total least-squares)

implementation of the standard method ESPRIT [3],

Table I summarizes the main operations performed

by each algorithm, where JX,2M and JY,2M are similar
structures to the selection matrices defined by (33)

and (34), respectively, also comprising an identity and

a null matrix. For matrices JX,2M and JY,2M , however,

both the null submatrix 0 and the identity submatrix
I have dimensions M £M. One may notice that the
DD-DOA algorithm uses the data structures X and
W= (X+Y), not requiring Y explicitly. Note also

that F¡1 is directly computed, requiring the lower
complexity operation of inverting a diagonal matrix.
One observes, from Table I, that the ESPRIT

algorithm requires:

1) 1 SVD for an N £K matrix;
2) 2 EVD (eigenvalue/eigenvector decomposition)

(1 for a P£P non-Hermitian matrix, and 1 for a
P£P Hermitian matrix);
3) 1 full inversion for a P£P matrix;
4) 5 multiplications, all of them between P£P

matrices.

On the other hand, the DD-DOA algorithm
requires:

1) 2 SVD (1 for a P£P matrix and one for an
M £K matrix);
2) 2 multiplications (1 between a P£P matrix and

a P£K matrix, and 1 between an M £M matrix and
an M £P matrix).
A more detailed comparison of the two algorithms
is then performed in Table II. Since the parameter
K, which represents the number of snapshots, is
usually the largest variable, the K2 terms tend to
dominate the overall burden for each algorithm. In
such a case, as the number of samples K gets larger,
the DD-DOA algorithm represents computational
savings on the order of (M +P)=2P in comparison
with TLS-ESPRIT.

B. Computer Simulations

1) Comparison to ESPRIT: Some experiments are
included to compare the performance of DD-DOA
algorithm with the standard TLS version of the
ESPRIT algorithm. A signal from each source was
randomly generated from a Gaussian distribution
and simulations were performed for M = 2 sources
located at angles μ1 =¡8± and μ2 = 9

±. Algorithm
performance was assessed according to the total MSE
», defined as

» =
1

M

M¡1X
i=0

E[j¢μij2] (44)

where the statistical mean was estimated by averaging

the squared error over 500 independent Monte

Carlo measurements of the squared error. The total

MSE was determined for distinct values of the

signal-to-noise ratio (SNRs) measured at the receiver

input over 6000 snapshots. The simulated MSE

measurements also aim to validate the theoretical

MSE analysis presented in Section IV. Theoretical

as well as simulated curves are presented in Fig. 2

for M = 2 sources and P = 14 sensors. The results

for P = 14 receiving sensors for both algorithms are

shown in Fig. 2, which indicates a higher » for the

DD-DOA algorithm, mainly due to the estimation of

the imaginary part of Á̂i from its real part. Neverthless,

for such a scenario, the simulated DD-DOA requires
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Fig. 2. Total MSE comparison of theoretical (as determined in (30)) and simulated DOA estimates with M = 2 sources for ESPRIT

(with P = 14 sensors), DD-DOA (with P = 14 and P = 26) and ML (with M = 2 and P = 14) algorithms.

around 42% less FLOPs than ESPRIT. Practical

perfomance achieved by the DD-DOA algorithm

corroborates theoretical analyses represented by

(30) and (43), also shown in Fig. 2 for P = 14.

As mentioned in Section VA, when using M = 2

sources, the computational complexity associated to

the ESPRIT algorithm with P = 14 receiving sensors

is about the same as of the DD-DOA algorithm with

P = 26 receiving sensors. Therefore, the total MSE for

the DD-DOA with P = 26 receiving sensors is also

shown in Fig. 2, indicating a superior performance of

this algorithm, for the same computational burden, as

compared with the ESPRIT algorithm.

Another comparison performed in Fig. 2 is related

to the ML estimator, defined by [1] as

ÃML = argmin
A

½
det[PARzPA+

1

N
tr(P?ARz)P

?
A ]

¾
(45)

where PA denotes the projection matrix onto the
columns of the extended array manifold Aext, that is,

PA =Aext(A
H
extAext)A

H
ext, (46)

where

Aext =

·
A

A©

¸
: (47)

Besides that, Rz = (1=
p
K)ZZH is the estimated

correlation for z(k). The ML estimator presents a
lower MSE than both the proposed DD-DOA and

the standard ESPRIT algorithms for the whole range

of simulated MSEs. On the other hand, ML requires

much more complex operations than both DD-DOA

and ESPRIT algorithms. At around ¡5 dB the
performance of all the algorithms becomes severely

degraded, especially ML and DD-DOA with 14

sensors.

2) Cramer-Rao Lower Bound: The Cramer-Rao

lower bound (CRLB) represents the theoretical limit

for the variance of an unbiased estimator. In order

to assess the MSE performance of the proposed

estimator in comparison to the CRLB, a simplified

expression for the CRLB for M = 1 transmitting

source was used [1]

CRLB(μ, μ̂) =
6

P3K(SNR)
(48)

where a large number K of data snapshots is assumed.

Using a simulation scenario comprised of M = 1

source, P = 8 receiving sensors, and K = 18000

snapshots, the resulting MSE resulting from (48) and

the simulated MSE for the DD-DOA algorithm is

seen in Fig. 3 for distinct SNR values, reaching the

MSE threshold region near the lower values of SNR.

This figure shows that the DD-DOA performance is

around twice the CRLB value for SNR values above

the threshold region, which is similar to the results

achieved by the ESPRIT and the CB-DOA algorithms

included in [4].

Performance of the ML estimator is also shown

for one source in Fig. 3, presenting smaller MSE in
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Fig. 3. CRLB and total MSE for both ML and DD-DOA, for M = 1 source, P = 8 receiving sensors, and K = 18000 data snapshots.

comparison with the proposed DD-DOA algorithms.

Neverthless, regarding computational complexity,

both DD-DOA and ESPRIT algorithms are much less

computationally complex than the solution search for

the ML estimator.

VI. CONCLUSIONS

In this article, the parametric DD algorithm for

DOA estimation is presented as a low computational

complexity alternative to the SVD-based version

of ESPRIT. Both theoretical analysis and computer

simulations indicate that the proposed DD-DOA

algorithm presents lower MSE for a similar

computational complexity as compared with the

standard ESPRIT algorithm or lower computational

complexity for a similar MSE performance.
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