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matrix representation of a 
general single-input single-
output (SISO) digital filter 
structure is addressed, 
propos ing  a  s ing le 

matrix that stores the complete descrip-
tion of the filter in a very compact and 
functional format. The proposed matrix 
contains the structural information cor-
responding to the block diagram (BD) 
connections and, at the same time, it 
can be seen as a valid computational 
algorithm to implement the filter in the 
time domain. With this matrix, the gap 
between the signal flow graph (SFG) 
and a bit-true implementation of the fil-
ter can be considerably reduced. 
Finally, simple methods to derive the 
matrix representation from/onto the 
block diagram and the state-space (SS) 
mapping are also described and illus-
trated with some examples. 

RELEVANCE 
New digital filter structures are contin-
uously proposed, presenting strategies 
to improve the behavior of the systems 
under, for instance, finite word length 
conditions [1]–[4]. In this context, and 
considering the increasing interest in 
mapping applications onto field-pro-
grammable gate arrays and other signal 
processors, it is very important to have 
a compact mathematical representa-
tion of the system that specifies the 
exact order in which the computations 
must be performed, allowing for the 
simulation of different alternatives and 
the selection of the best-suited realiza-
tion for one’s particular purposes. To 
reduce the time required to implement 
the filter, it is convenient to comple-

ment the information of classical BDs 
or SFGs with a mathematical descrip-
tion, in terms of matrices, which is 
closer to a valid ready-to-use computa-
tional algorithm. 

Different representations can be 
found in the associated literature for 
describing, in matrix form, the equa-
tions corresponding to a general BD 
with N  nodes. In here, a new matricial 
representation is proposed with the fol-
lowing interesting characteristics: it is 
very compact; it preserves all informa-
tion from the original filter structure; 
it can be readily transformed onto the 
BD, SFG, or the SS descriptions; and it 
can be easily mapped on a computable 
algorithm implementing the desired 
digital filter. 

PROBLEM STATEMENT 
Among the currently known digital filter 
descriptions, one of the most compact 
and interesting [5], proposed by 
Crochiere and Oppenheim, has the gen-
eral form 

 y 3n 45 x 3n 41 Fc
Ty 3n 41 Fd

Ty 3n2 14,
 (1)

where 
 ■ y 3n 4 is an N 3 1 column vector of 

the node signal values at instant n 
 ■ x 3n 4 is an N 3 1 column vector of 

the input signal values at instant n 
 ■ F c

 T is an N 3 N  matrix of coeffi-
cient branches 

 ■ Fd
T is an N 3 N  matrix of coeffi-

cient-delay branches.
Alternative descriptions can be found 
in [6] and [7]. In model (1), the con-
stant matrices Fc

T and Fd
T do not com-

pletely describe the system. To obtain a 
general model, completely character-
ized by constant matrices, the input 

vector x 3n 4  can be written as Ex 3n 4, 
where for an N2node SISO network, E 
is a constant N 3 1 column matrix 
indicating the node where the input 
x 3n 4 is applied, and a possible scaling 
factor kx. For simplicity, we shall 
employ the following notation for the 
general description based only on three 
constant matrices: 

w 3n 45Ex 3n 41 Fw 3n 41Gw 3n2 1 4,
 (2)

where F and G are equivalent to Fc
T 

and Fd
T, respectively, in (1). The vector 

w 3n 4  contains the node signal values. 
By convention, and without loss of 
generality, we assume that the last ele-
ment of w 3n 4 corresponds to the filter 
output y 3n 4. 

Let us consider as an example the fil-
ter of Figure 1 (which corresponds with 
Figure 2 of [8]), where the nodes in the 
BD have been previously labeled to 
obtain a valid and computable set of 
equations. 

We can describe this structure by 
means of the following system of equa-
tions: 

S : i 

w1 3n45w5 3n2 14
w2 3n45w3 3n2 14
w3 3n45w7 3n2 1 4
w4 3n45w8 3n2 1 4
w5 3n45 x 3n4
w6 3n45w3 3n4 # m21w4 3n4 # m1

w7 3n45w4 3n41w6 3n4
w8 3n45w1 3n42w3 3n41w5 3n42w6 3n4
y 3n45w2 3n41w3 3n4

.

 (3)

and the corresponding matrix represen-
tation, according to model (2), becomes 
(4) as seen in the box on the next page. 
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Taking the z-transform of (2), we get 

W 1z 2 5EX 1z 2 1 FW 1z 2 1GW 1z 2z21.

 (5)

Therefore, the response of the different 
nodes considered in w 3n 4 to the input 
x 3n 4 can be expressed, in the z-domain, as 
W 1z 2 5 T 1z 2X 1z 2 , with the so-called 
transfer-function matrix given by 

T 1z 2 5 E t1 1z 2
t2 1z 2
(

tN21 1z 2
tN 1z 2

U 5 3I2F2z21G421E,

 (6)

where ti 1z 2  denotes the transfer function 
from the input to the ith system node. 
From the assumption that the last model 
node corresponds to the system output, 
the filter transfer function is given by 

 H 1z 2 5 tN 1z 2 5 Y 1z 2
X 1z 2 . (7)

SOLUTION 
Typically, matrices E, F, and G in model 
(2) are quite sparse. Hence, they can be 
represented by more compact forms, 
thus avoiding unnecessary space for 
zero-valued elements. In addition, we 
can also take advantage of this sparsity 
to minimize the amount of computa-
tion needed to solve the associated 
 equations. 

For example, the sparse function of 
MATLAB generates the following storage 
organization: (row, column) entry. 
Using this notation, matrices E, F, and G 
corresponding to the filter depicted in 
Figure 1 can be compactly expressed as 
shown in Table 1. 

Looking at this sparse representa-
tion of matrices, it is clear that we can 
compress and summarize the complete 
filter model by combining the three 
constant matrices, with slight changes 
in the row orders and a zero intro-
duced in E, to form one single parti-
tioned matrix, which we shall call M, as 
follows:

x [n ] y [n ]

z –1

m1

m2

–1

–1

1 2

34
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+ + ++z –1 z –1
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[FIG1] Modified CGIC lowpass filter from [8]. 

 I 

w1 3n 4
w2 3n 4
w3 3n 4
w4 3n 4
w5 3n 4
w6 3n 4
w7 3n 4
w8 3n 4
y 3n 4

Y5 I 

0
0
0
0
1
0
0
0
0

Y x 3n 41 I0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 m2 m1 0 0 0 0 0
0 0 0 1 0 1 0 0 0
1 0 21 0 1 21 0 0 0
0 1 1 0 0 0 0 0 0

Y Iw1 3n4
w2 3n4
w3 3n4
w4 3n4
w5 3n4
w6 3n4
w7 3n4
w8 3n4
y 3n4

Y1 I0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Y I w1 3n2 14
w2 3n2 14
w3 3n2 14
w4 3n2 14
w5 3n2 14
w6 3n2 14
w7 3n2 14
w8 3n2 14
y 3n2 14

Y . (4)

[FIG2] Graphical representations of (a) 
delay element corresponding to each 
row of Ĝ. (b) Input branch of Ê. (c) 
Adder element corresponding to 
several rows of F̂ with the same first 
element. (d) Output branch 
corresponding to last row of F̂.
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[TABLE 1] MATLAB COMPACT 
REPRESENTATION OF SPARSE 
MATRICES E, F, AND G IN (4).

E F G

(5,1) 1 ( 8,1)  1 (2,3) 1
(9,2)  1 (1,5) 1
(6,3) m2 (3,7) 1
(8,3) 21 (4,8) 1
(9,3)  1
(6,4) m1

(7,4)  1
(8,5)  1
(7,6)  1
(8,6) 21

 M5 £ Ĝ
Ê
F̂
§ , (8)

where we use the modified notation Ĝ and 
F̂ to indicate that the rows of G and F 
have been sorted in increasing order of 
their first elements. In addition, Ê indi-
cates a change to zero of the second entry 
of E. In short, we have that 

 ■ Ĝ is an m 3 3 matrix, m being the 
number of delays, of rows of the form 3, r 1 4, denoting a delay block from 
node r to node ,, which corresponds 
to the operation w, 3n 45wr 3n2 1 4 
and the circuit element depicted in 
Figure 2(a).

 ■ Ê is a 1 3 3 vector corresponding to 
the input branch, with the second entry 
always set to zero to allow us to identify 
the input node. By convention, and 
without loss of generality, we may con-
sider that the input comes from node 0 
to node 1m1 1 2  with a scaling factor 
of kx, such that wm115 x 3n 4 # kx, as 
indicated in Figure 2(b). 

 ■ F̂ is a three-column matrix with the 
information of all adder-multiplier 
branches properly ordered. Repeated 
entries s in the first column, with 
nodes p, q, and r in the second column 
and respective gains kp, kq, and kr for 
different rows, correspond to the rela-
tionship ws 3n 45wp 3n 4 # kp1wq 3n 4 #
kq1wr 3n 4 # kr, as illustrated in Fig -
ure 2(c). If an element in the first col-
umn of F̂ appears only once, no 
addition is performed and a single mul-
tiplication gives the value at the corre-
sponding output node. Once again, by 
convention and without loss of gener-
ality, the last row corresponds to the 
filter output, whose graphical represen-
tation is depicted in Figure 2(d).
The first column of M is an ordered list 

of natural numbers, where the numbers 
greater than 1m1 1 2  can be repeated. 
The zero entry in the second column of M 
corresponds to the input signal and allows 
us to identify and separate, in a simple 
manner, the information corresponding to 
Ĝ, Ê, and F̂. The last entry, N, of the first 
column identifies the output node of the 
filter. In other words, the general matrix M 
is in the form 

M5   

1 # 1
2 # 1
3 # 1

( ( (
m # 1

 m1 1 0 kx

 m1 2 # #
m1 2 # #

# # #
# # #

m1 s # #
m1 s # #

# # #
# # #

N # ky

Delays

 Input

 

Adders and
Multipliers

Output.

 (9)

Using this newly proposed notation, 
all three matrices E, F, and G (usually 
large and sparse) in model (2) are 
replaced by a single and compact matrix 
M containing the same information. In 
our particular example, for the filter 
depicted in Figure 1, we have 

 Ĝ5 ≥ 1 5 1
2 3 1
3 7 1
4 8 1

¥ , Ê5 35 0 1 4,

 F̂5 I 

6 3 m2

6 4 m1

7 4 1
7 6 1
8 1 1
8 3 21
8 5 1
8 6 21
9 2 1
9 3 1

Y . (10)

NODE ORDERING 
Now we describe a simple procedure to 
obtain the matrix M from the block dia-
gram, guaranteeing the computability of 
the resulting system of equations. 

Different algorithms can be found 
for developing a correct node-ordering 
sequence, leading to a computable sys-
tem of difference equations. In [5], a 
formal procedure based on the node 
precedence relations of the digital net-
work is explained. Another approach, 
based on a three-step algorithm appears 
in [7]. Usually, the difference equations 
characterizing the filter can be put in a 
computable order by simple inspection, 
guaranteeing that the signal at a partic-
ular node does not depend on the signal 
of a node whose output is yet to be 
determined. 

To organize the node-labeling process 
in a simple and efficient way to obtain 
matrix M, we propose the following strat-
egy for numbering the N nodes of a gen-
eral network containing m unit delay 
blocks: 

i) The first nodes 11, 2, m 2  will be the 
output of the m delay elements. When 
several delays are connected in series 
or the output of one delay block is con-
nected to the input of another one, we 
shall enumerate the corresponding 
nodes in increasing order beginning at 
the outermost output. As examples, see 
nodes 2 and 1 in Figure 3, or nodes 3 
and 2 in Figure 1, respectively. 
ii) The input signal, x 3n 4, is connected 
from node zero to node 1m1 1 2 . 
iii) We shall enumerate the rest of the 
nodes taking into account the fact that 
a new node can only be labeled if it 
depends on the signals previously 
determined. In general, these nodes 
will correspond to the output of the 
adders. The output of the filter, y 3n 4, 
will be the last node enumerated.

To illustrate the proposed process, we 
have labeled the nodes of the birecipro-
cal-lattice wave digital filter [9] present-
ed in Figure 3, where m5 3. Initially, 
and by simple inspection, we can apply 
steps i) and ii) to number nodes 
0, 1, c, 1m1 1 2 . As step iii) indicates, 
we continue enumerating the output of 
the adders, starting by the adders whose 
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inputs have already been labeled, and, 
finally, the last node is assigned to the 
output. 

Once the nodes have been properly 
labeled, matrix M can be determined, as 
described above, following the established 
node order. In this case, for the digital fil-
ter in Figure 3, we get 

 M5 £ 1 2 3 4  5 5 6 6 7 7 8 8 9
2 7  4 3 0 3 4 1 5 1 5 6 3 6 8
1 1 1 1 21 121

3 21 1 1 1 1 1
2

§ T

.

 (11)

Computability for the compact model can 
be checked by simple inspection of the 
submatrices Ĝ and F̂ of matrix M. Taking 
into account the fact that delay registers 
are updated with values calculated in the 
previous iteration (or initial conditions), 
the first entry of any row of matrix Ĝ must 
be smaller than the second element of the 
same row. On the other hand, since a node 
can only be computed if all the required 

data are available, the first entry of any 
row of matrix F̂ must be greater than the 
second element of the same row. 

Matrix M in (11) corresponds to the 
sparse model (12) shown in the box at the 
bottom of the page. In this sparse repre-
sentation, computability requires matrix F 
to be a lower-triangular matrix. 

REVERSE MODELING 
AND SET OF EQUATIONS 
Starting with the model matrix M, one 
can readily obtain the BD or the SFG of 
the associated digital filter using the 
graphical representations seen in 
Figure 2. For that purpose, we must first 
identify the corresponding Ĝ, Ê, and F̂ 
submatrices by locating the null entry in 
the second column of M. Hence, each row 
in Ĝ represents a delay element, whereas 
all rows with identical entry in the first 
column of F̂ define a multiply-and-add 
element; finally, the input and output 

br anches are respectively characterized by 
Ê and the last row of F̂. 

Following this strategy for matrix M 
determined by (10), one can readily 
obtain the digital filter represented in 
Figure 1. Alternatively, for the compact 
model 

M5 £ 1 2  3 4 4 5 5 6 7 7 8 8
2 7 3 0 3 1 3 2 4 5 3 6 1 6
1 1 1 1 1 1 2b3 b2 1 1 1 21

§ T

,

 (13)

the SFG [10] shown in Figure 4 results, 
where the node numbers have been 
assigned as specified by the contents of M. 

In addition, the proposed model also 
allows us to obtain, in a simple and direct 
manner, the corresponding set of differ-
ence equations without the necessity of 
determining any graphical representa-
tion for the associated filter. In fact, fol-
lowing the same reasoning as above, the 

[FIG3] Example of node ordering result for wave digital filter [9]. 
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w1 3n 4
w2 3n 4
w3 3n 4
w4 3n 4
w5 3n 4
w6 3n 4
w7 3n 4
w8 3n 4
y 3n 4

Y5 I 

0
0
0
1
0
0
0
0
0

Y x 3n 41 I 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 21 0 0 0 0 0
21 0 0 0 21

3 0 0 0 0
 0 0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 1

2 0

 Y I w1 3n4
w2 3n4
w3 3n4
w4 3n4
w5 3n4
w6 3n4
w7 3n4
w8 3n4
y 3n4

Y1 I0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Y I w1 3n2 14
w2 3n2 14
w3 3n2 14
w4 3n2 14
w5 3n2 14
w6 3n2 14
w7 3n2 14
w8 3n2 14
y 3n2 14

Y . (12)
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model matrix M in (13) can be easily 
mapped onto the set of equations 

S : h 

w1 3n45w2 3n2 14
w2 3n45w7 3n2 14
w3 3n45 x 3n4
w4 3n45w1 3n41w3 3n4
w5 3n45w2 3n41w4 3n4 # 12b3 2
w6 3n45w5 3n4 # b2

w7 3n45w3 3n41w6 3n4
y 3n45w1 3n42w6 3n4

.

 (14)

In the Appendix, a generalization of 
the classical filter  function of 
MATLAB is presented. In this new func-
tion, the information of the filter struc-
ture is specified by the user incorporating 
the matrix M as the first parameter to be 
introduced. The main advantage of this 
generalization lies in the flexibility 
afforded when finite word-length effects 
are studied; these effects can be easily 
simulated using the quantize function. 
Taking into account that the different 
arithmetical operations to be performed 
are univocally specified in matrix M, the 
exact order in which the quantization 
errors appear, are propagated and finally 
accumulated in a certain register, can be 
analyzed. This framework facilitates the 
comparison of different structures. 

STATE-SPACE MAPPING 
Now we focus our attention on the rela-
tionship between the proposed model 
and the SS representation [6], [7]. 

It must be mentioned that the com-
pact matrix M retains all information 
regarding the original system architec-

ture, allowing us to transform this 
model to/from any alternative represen-
tations such as the BD, SFG, set of differ-
ence equations, or the sparse matrix 
model, as discussed above. Meanwhile, 
the SS description is a distinct compact 
representation of a given system, includ-
ing the input-output relationship as well 
as its internal operation, that does now 
allow a reverse mapping onto, for 
instance, the original SFG. 

Despite this major difference, the 
proposed model can be readily mapped 
onto the SS description through the fol-
lowing algorithm: 

i) Associate each of the m delay output 
nodes, corresponding to the first-col-
umn entry in each row of Ĝ, to a  system 
state uj 3n1 1 4, for j5 1, 2, c, m.
ii) Identify the input x 3n 4 and output 
y 3n 4 nodes from Ê and the last row of 
F̂, respectively. 

[FIG4] SFG corresponding to the compact model provided in (13).
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127
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APPENDIX
function [y,cf]5filt_M(M,x,ci) 
% [y,cf]5filt_M(M,x,ci) filters data in vector x with the 
% filter described by matrix M. 
% INPUT PARAMETERS 
% M S Matrix M. 
% x S Input data. 
% ci S Initial conditions of the delay blocks. 
% OUTPUT PARAMETERS 
% y S Output data. 
% cf S Final state of the delay blocks. 
L5max(M(:,1)); 
w5zeros(L,1); 
m5find(M(:,2)550)21; % number of delay blocks 
w([M(1:m,2)])5ci; % initial conditions 
for n51:length(x) 
 for i51:m 
  w(i)5M(i,3)*w([M(i,2)]); % updating delay blocks 
 end 
 w(m11)5M(m+1,3)*x(n); % input 
 w(m12:end)50; 
 for i5m12:size(M,1) % rest of nodes 
  r5w(M(i,2))*M(i,3); % multiply 
  w(M(i,1))5w(M(i,1))1r; % addition 
 end 
 y(n)5w(end); % output (last node) 
end 
cf5w([M(1:m,2)]); % final conditions of delay blocks
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iii) Solve partially the set S of differ-
ence of equations corresponding to 
matrix M, writing each state uj 3n1 1 4 
as a function of uj 3n 4, x 3n 4 and y 3n 4. 
By doing so, one must eliminate 
dependence to any variable wi 3n 4 not 
associated to a system state. 
iv) Write the difference equations 
found in Step iii) in the form 

 U : eu 3n1 145 Au 3n41Bx 3n4
y 3n45 Cu 3n41Dx 3n4 , (15)

where 
 ■ u 3n45 C u1 3n4 u2 3n4 c um 3n4 DT is 

the state vector at time n. 
 ■ A is the m 3 m system matrix, B 

is an m 3 1 column vector, C is a 
1 3 m row vector, and D is a scalar.

Following this approach, we can readily 
obtain the SS description for each of the 
digital filters depicted in Figure 1: 

A5 ≥0 0 0 0
0 0 1 0
0 0 m2 11m1

1 0 2m221 2m1

¥ , B5 ≥1
0
0
1

¥ ,

CT5 ≥ 0
1
1
0

¥ , D5 0; (16)

Figure 3: 

 A5 £ 0 1 0
21

3 0 0
0 0 0

§ , B5 £ 0
22

3

1
§ ,

 CT5 £22
3

0
1
2

§ , D5
1
6

; (17)

and Figure 4: 

A5 c  0 1
2b2 b3 b2

d , B5 c 0
12b2 b3

d ,
 CT5 c  11 b2b3

2 b2
d , D5 b2b3. (18)

CONCLUSIONS
A new compact model based on a single 
matrix M that describes the input-output 
relationship, as well as all internal infor-
mation, of a general digital filter has been 
presented, and its application widely 
illustrated. This matrix M complements 
the block diagram representation, pre-
venting possible errors during the signal-
flow graph analysis and, at the same time, 
saving all internal data in a very compact 
manner. Moreover, matrix M can be 
interpreted as a simple alternative for the 
computable set of difference equations 
that describes the digital-filter evolution 
in time, shortening considerably the time 
required to implement the system. 
Finally, a simple node-ordering sequence 
oriented to facilitate the construction of 
matrix M has also been proposed and 
relationship to the SS representation was 
explicited, emphasizing the positive 
aspects of the proposed model. 
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evaluates their discusses existing metrics, 
including perceptually based ones, comput-
ed either on 3-D data or on 2-D projections, 
and evaluates their correlation perfor-
mance with existing subjective studies.

Study Group 12 (SG12) of the Telecom-
munication Standardization Section of 
the International Telecommunication 
Union (ITU-T) has been involved for 
many years in standardizing methods 

for multimedia quality assessment, both 
subjective and objective. “Multimedia 
Quality Assessment Standards in ITU-T 
SG12,” by Coverdale et al., gives an 
overview of existing and emerging SG12 
standards, with a special focus on mod-
els that predict quality on the basis of 
parameters and bit stream information 
available during network planning and 
monitoring phases.

We hope that this special issue has 
reached its objective of providing research-
ers and professionals in the field of multi-
media signal processing with timely 
articles addressing not only the latest 
advances in the evaluation and assessment 
of multimedia quality, but also trends and 
challenges, which in turn provides a solid 
basis for further progress in this exciting 
and dynamic field. Enjoy reading! [SP]
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