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An algorithm for blind estimation of reverberation time (RT) in speech signals is proposed.

Analysis is restricted to the free-decaying regions of the signal, where the reverberation effect

dominates, yielding a more accurate RT estimate at a reduced computational cost. A spectral

decomposition is performed on the reverberant signal and partial RT estimates are determined in all

signal subbands, providing more data to the statistical-analysis stage of the algorithm, which yields

the final RT estimate. Algorithm performance is assessed using two distinct speech databases,

achieving 91% and 97% correlation with the RTs measured by a standard nonblind method, indicat-

ing that the proposed method blindly estimates the RT in a reliable and consistent manner.
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I. INTRODUCTION

Reverberation is an acoustical effect occurring when

several copies of a sound signal, with different delays and

decreasing intensity levels, are perceived altogether. These

copies are commonly due to signal reflections in an

enclosure, which can vary in size, for instance, from our ear

internal chamber (an important factor in hearing-aid

devices1) to a large medieval cathedral.

Heavy amounts of reverberation can hinder speech intel-

ligibility, possibly affecting the perceptual quality of a

speech signal. The T60 reverberation time (RT) attempts to

quantify the reverberation effect by specifying the time inter-

val for a sound level to decay 60 dB after ceasing its stimu-

lus.2 A reliable RT estimation may be used to assess the

acoustic characteristics of a room or to design a proper dere-

verberation scheme for a particular audio system.

The reverberation effect is often modeled by the convo-

lution of the original anechoic source s(n) with a length-N
room impulse response (RIR) h(n), generating the reverber-

ating sound sr(n), as given by3

srðnÞ ¼
XN�1

k¼0

hðkÞsðn� kÞ: (1)

This paper addresses the problem of estimating the T60 pa-

rameter from a single reverberant speech signal, sr(n), which

is referred to as a blind or no-reference approach. Initial work

on this particular subject includes Refs. 4 and 5, where the

authors model the decaying process by an exponential func-

tion whose time constant is estimated using the entire rever-

berant signal. Later, Vieira6 restricted the reverberation

modeling process to the so-called free-decay regions (FDRs),

which are the signal portions where the sound energy

decreases consistently in several consecutive blocks. By

doing so, one can achieve a better model fitting, thus improv-

ing the accuracy of the T60 estimate. A modified energy-

decay model,7 which also considers an additive noise compo-

nent, was incorporated into the algorithm by Vieira in Ref. 8,

making the RT estimate more robust to measurement noise.

Other work in blind RT estimation also includes Ref. 9,

which uses a pitch-based RT model that restricts the analysis

to a small T60 range; Ref. 10, which requires a quadratic

mapping function highly dependent on the algorithm’s

implementation; and Ref. 11, which incorporates a noise-

reduction stage to the algorithm described in Ref. 4, but still

employs the entire signal, thus presenting a high-variance

estimation process.

Although the FDR constraint improves upon the result-

ing RT estimate, it forces one to consider very long signals

(more than 40 s, for instance, as in Refs. 6 and 8, alternating

sound activity and pauses, to generate reliable statistics

about the RT process. The proposed algorithm, which is also

focused on the FDRs, mitigates the requirement of very long

signals by performing a spectral decomposition on the

reverberant signal, following the approach used in Refs. 12

and 13. The RT model can then be applied to each of the sig-

nal subbands, yielding a large number of partial RT esti-

mates, even for a relatively short speech signal, making the

final algorithm suitable for on-line applications.
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The proposed RT estimation algorithm is presented in

Sec. II. Section III discusses some system design issues and

evaluates the system performance using two distinct speech

databases.

II. PROPOSED ALGORITHM

The proposed algorithm is comprised of four steps,

which are detailed in Secs. II A–II D:

(1) Time-frequency representation of reverberant signal

sr(n);

(2) Localization of FDRs in each subband;

(3) RT estimation for all detected subband FDRs;

(4) Statistical analysis of subband RT estimates to generate

the final T60 estimate.

A. Time-frequency representation

In this initial stage, the reverberant speech signal, sr(n),

is divided into frames using a length-M window function

w(n), and a discrete Fourier transform (DFT), F �f g, is

applied to each frame, generating the time-frequency repre-

sentation Sr(k, l) such that

Srðk; lÞ ¼ FfwðnÞsrðnÞg; (2)

for k ¼ 0; 1;…, K � 1ð Þ; l ¼ 0; 1;…, L� 1ð Þ, and

n ¼ l M � Vð Þ, l M � Vð Þ þ 1;…, l M � Vð Þ þM � 1, where

K is the DFT length, L is the total number of speech frames,

and V is the number of overlapping samples of two consecu-

tive frames.

Since most of the speech energy lies within the analog

frequency range 0� f� 4 kHz, we restrict all subsequent anal-

yses to the values of k such that 0 � Fsk=K � 4 kHz, thus

achieving a more reliable RT estimate, where Fs� 8 kHz is

the associated sampling frequency.

B. Subband FDR detection

As mentioned in Sec. I, the FDRs are characterized by a

consistent energy drop in consecutive signal frames. In the

proposed algorithm, however, this search must be performed

for each individual subband, as these spectral components

present a distinct energy pattern.14 By defining the energy of

the kth subband of the lth signal frame as

Eðk; lÞ ¼ Srðk; lÞj j2; (3)

the FDR search is performed across the frame index

l¼ 0,1,…, (L–1), for each frequency bin k.
Extending Vieira’s criterion6,8 to the transform domain,

a subband FDR may be characterized by a decrease in the

value of E(k, l) for a minimum of 500 ms along l within sub-

band k. Using M samples/frame with V overlapping samples/

frame, this 500-ms interval translates into consecutive

Llim ¼
0:500 Fs

M � V
(4)

subband frames with decreasing energy. When using the val-

ues of M¼ 0.05 Fs and V¼M/4, as determined in Sec. III B,

leads to Llim � 13. In the proposed algorithm, however, if no

FDR satisfies this criterion in a given subband, this threshold

number Llim is reduced iteratively down to as low as 3 con-

secutive frame-energy decreases. This lower limit 3 for Llim

was determined empirically and guaranteed at least one FDR

for each subband in all signals considered in this work;

accepting less than 3 consecutive decays, however, would

identify many false FDRs along a real speech signal. This

small modification, of decreasing Llim in case no FDR is

found within a given subband, guarantees a minimum

amount of meaningful data for the following stages of the

algorithm.

The FDR detection process in a speech signal compris-

ing two consecutive sentences is depicted in Fig. 1, where

the horizontal dark lines in the upper plot indicate the result-

ing FDRs in each band. From this figure one can easily

observe the distinct FDR pattern in each subband, with these

FIG. 1. Characterization of subband FDRs: (a) Spectrogram showing all

subband FDRs (using M¼ 0.05 Fs and V¼M/4) as dark thin lines; (b) three

subband signals (identified by horizontal white lines in upper plot), with

center frequencies at 1750, 2330, and 3340 Hz, respectively, showing

corresponding FDRs within vertical dashed lines; (c) two-sentence speech

signal.
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FDRs concentrating in the beginning of the silence intervals,

where the fullband reverberation process dominates.

C. Subband RT estimation

Standard algorithms estimate T60 as the time interval

required by some linear fitting of the energy decay function

(EDF)

cðnÞ ¼ 10 log10

XN�1

�¼n

h2ð�Þ

XN�1

�¼0

h2ð�Þ

0
BBBB@

1
CCCCA

dB; (5)

for n¼ 0,1,…, (N � 1), to drop 60 dB.2,7,15 The key factor

on most RT estimation algorithms is to find the time interval

n1� n� n2 that yields a reliable linear EDF approximation.

The value of n1 is commonly taken as the point where

c(n1)¼�5 dB,16 whereas n2 is chosen in such a way that the

resulting fitting yields the minimum mean-squared error

(MSE). In general, the algorithms described in Refs. 7 and

15 tend to be very reliable in the presence of noise. How-

ever, these algorithms also demand a large number of EDF

points to generate a reliable RT estimate, making them

unpractical to our frame-based FDR processing.

Therefore, we employ here an extension of Schroeder’s

original algorithm2 to subband signals, allowing one to base

all subsequent processing on the subband-frame energy func-

tion E(k,l) defined in Eq. (3). In this sense, the frame-based

subband EDF (SEDF) is defined as

�cðk; lÞ ¼ 10 log10

X�L�1

k¼n

Eðk; kÞ

X�L�1

k¼0

Eðk; kÞ

0
BBBBB@

1
CCCCCA

dB; (6)

for l¼ 0,1, …, ( �L� 1), where �L is the number of frames

within a subband FDR. The RT estimate is defined as the

amount of time required by a linear fitting of the SEDF, per-

formed within the interval l1� l� l2, to drop 60 dB, with the

extremes l1 and l2 chosen in a similar fashion as before.

When using real speech signals, one may not observe a

consistent 60-dB decay in all SEDFs. In such cases, the linear

fitting in Schroeder’s algorithm considers only a reduced

attenuation interval, corresponding to a range that is smaller

than 60 dB, and the T60 RT value needs to be extrapolated.

When dealing with frames instead of samples, the time resolu-

tion of l1 and l2 drops accordingly, increasing the variance of

the RT estimate in a significant manner, particularly when l2 is

close to l1. To minimize this effect, if a best linear fitting is

such that ð�cðk; l1Þ � �cðk; l2ÞÞ< 10 dB, we perform a new fit-

ting using, whenever possible, l2 such that �cðk; l2Þ¼�65,

�45, �25, or �15 dB, in this particular order of preference.

Starting at �cðk; l1Þ¼�5 dB, these noise-floor levels for

�cðk; l2Þ lead to the values of T60, T40, T20, and T10, respec-

tively, as defined in Ref. 16, which, by assuming a linear decay

energy, can be readily converted into the desired RT scale.

D. Statistical analysis of subband RTs

Assuming that a total of Rk FDRs were found in the kth

subband, each partial RT estimate can be denoted by

T̂60 r; kð Þ, for r¼ 1,2, … , Rk. The final stage in the proposed

algorithm is to sort out all these T̂60 r; kð Þ estimates to gener-

ate a final RT estimate T̂60.

Reference 4 employs several strategies to remove spuri-

ous partial estimates, which is not necessary in our case,

since we restrict the analysis to the signal FDRs. In his algo-

rithms,6,8 Vieira defines T̂60 as the peak of a T̂60 r; kð Þ histo-

gram, which, however, is highly dependent on the chosen

histogram resolution.

In the proposed scheme, we first determine a subband

estimate �T60 as the median value of all subband medians
�T60 kð Þ, thus avoiding biased/noisy extreme values. In fact,

the median operator eliminates small (which do not affect

the fullband dynamics significantly) and large (which may

carry large estimation error) partial estimates, yielding a sub-

band estimate that seems to represent the entire RT process

in a reliable manner by presenting a large statistical correla-

tion with the true RT value. However, when generating the
�T60 estimate, the median operator compresses the associated

dynamic range, which must be compensated in the next stage

of the algorithm to obtain the correct fullband RT.

The relationship between the subband ð �T60Þ and full-

band ðT̂60Þ RT estimates is quite difficult to model and con-

stitutes an open problem in the associated literature.10,13,17

Our subband RT estimates, for instance, although highly cor-

related to the standard T60 metric, vary within a different

dynamic range due to the median operator employed in its

derivation, thus requiring an additional mapping function,

which in this work is described by

T̂60 ¼ a �T60 þ b; (7)

with a and b chosen in a system training stage. For the

values of a¼ 3.4 and b¼�1170 ms, as given in Sec. III C

below, when the subband RT estimates vary, for instance,

within the range 380� �T60� 640, the associated fullband

estimates will vary within 100� T̂60� 1000, representing a

simple scale expansion of the RT dynamic range. It is impor-

tant to stress that this mapping adjusts the subband measure
�T60 to the fullband signal RT without affecting the linear cor-

relation with the theoretical RT process.

III. PERFORMANCE ASSESSMENT

A. Speech databases

Two databases of reverberant speech signals were

employed to assess the performance of the proposed algo-

rithm. The theoretical RT for each database was obtained

using the non-blind algorithm described in Ref. 15.

(1) Database A: This database was developed using three

different forms for imposing the reverberation effect:

(a) Artificial reverberation: This method employed six

artificially generated RIRs using the method of

images, with RTs in the range of {200, 300, 400,

500, 600, 700} ms, emulating a source-microphone
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distance dSM¼ 1.8 m in a room of dimensions

length�width� height¼ 4� 3� 3 m3, as detailed

in Ref. 18.

(b) Natural reverberation: This method employed RIRs

obtained from the direct recordings in four distinct

rooms with different RT characteristics and several

source-microphone distances d for each room, as

detailed in Table I.19

(c) Real reverberation: In this method, the degraded sig-

nals were directly recorded in seven distinct rooms,

as summarized in Table II.

It must be made clear that “Natural reverberation”

indicates convolution of measured RIRs (Ref. 19)

and an anechoic signal, whereas “Real reverber-

ation” refers to recording of signals in real rooms.

Database A considered 4 anechoic speech signals (2

from a male speaker and 2 from a female speaker),

resulting in 24 artificially degraded, 68 naturally

degraded, and 108 signals degraded with the real

reverberation approach, all sampled at Fs¼ 48 kHz.

(2) Database B: This corresponds to the MARDY database,20

which includes 16 reverberant signals, recorded directly

in an auditorium and their 16 dereverberated versions

using the delay-and-sum algorithm, making a total of 32

speech signals with Fs¼ 16 kHz. The database considers

2 different speakers (1 male and 1 female), 4 values for

the source-microphone distance d¼ 1, 2, 3, 4 m, and 2

types (reflective and absorbent) of wall panels, with RTs

around 447 and 291 ms, respectively.

B. Algorithm adjustment

Database A was divided into two complementary data-

bases, A1 and A2, of the same size and covering all reverber-

ation effects present in the complete database. Database A1

was then employed to perform some parameter adjustment

in the proposed algorithm, whereas Databases A2 and B

were used to validate the overall algorithm performance.

The parameters considered in this analysis are the frame

duration (W¼M/Fs), overlap percentage (v¼V/M� 100%)

in consecutive frames, and number �K of DFT bins within the

[(0, 4)] kHz band. Performance was assessed by the statisti-

cal correlation between estimated RTs using the proposed

algorithm and the algorithm described in Ref. 15, as pro-

vided in Table III for v¼ 25% and �K¼ 1024 bins. Other val-

ues of v¼ {0, 50, 75} and �K¼ {512, 2048} were also

considered in additional experiments, without any improve-

ment in system performance. Based on the results summar-

ized in Table III, the block length was chosen as W¼ 50 ms,

which yielded a 92% correlation score for Database A1.

C. Validation stage

The algorithm performance for Database A2 is also

shown in Table III, where one observes a 91% correlation

score achieved by the adjusted algorithm with nontraining

data.

TABLE I. Room characteristics for natural reverberation effect in

Database A.

Room type Dimensions [m�m�m] ~T60 [ms] d [m]

Booth 3.0� 1.8� 2.2 120 0.5, 1, 1.5

Office 5.0� 6.4� 2.9 430 1, 2, 3

Meeting 8.0� 5.0� 3.1 230 1.45, 1.7, 1.9, 2.25, 2.8

Lecture 10.8� 10.9� 3.15 780 2.25, 4, 5.6, 7.1, 8.7, 10.2

TABLE II. Room characteristics for real reverberation effect in Database A.

Room type Dimensions [m�m�m] ~T60 [ms] d [m]

Booth 2.1� 1.8� 2.4 140 0.5, 1, 1.5

Office1 7.4� 5.0� 2.7 390 1, 2, 3, 4

Lecture1 15.0� 10.0� 4.0 570 1, 2, 3, 4

Meeting1 10.0� 4.8� 3.2 650 1, 2, 3, 4

Lecture2 16.5� 8.2� 3.5 700 1, 2, 3, 4

Meeting2 9.0� 7.3� 3.5 890 1, 2, 3, 4

Office2 7.4� 4.8� 4.3 920 1, 2, 3, 4

TABLE III. Statistical correlation between estimated and theoretical RTs

for Database A with distinct values of frame size W for v¼ 25% of overlap

percentage and �K ¼ 1024-length DFT.

W [ms] Database A1 Database A2

30 86.4 84.4

35 88.7 88.1

40 89.3 88.2

45 92.0 90.1

50 92.1 91.0

55 91.1 89.4

60 89.6 88.8

65 91.5 90.7

70 89.9 89.3

75 89.8 86.7

80 88.0 85.0

85 86.6 85.4

90 85.2 85.3

95 84.6 81.2

100 84.2 84.0

FIG. 2. Estimated RT values using proposed blind (dashed line) and refer-

ence non-blind (solid line) methods for all 204 signals in Database A.
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Using the training Database A1, the mapping parameters

in Eq. (7) were set to a¼ 3.4 and b¼�1170 ms, in order to

minimize the MSE between the estimated RTs using the pro-

posed blind method and the reference non-blind method

described in Ref. 15, without affecting the statistical correla-

tion of these two processes. Using this setup, the RT esti-

mates for the entire Database A are depicted in Fig. 2 along

with the non-blind RT values, illustrating the overall ability

of the proposed algorithm to provide a reliable estimate for a

wide RT range.

The RT results for the entire Database B using the pro-

posed algorithm with the same setup as before are shown in

Fig. 3, where the statistical correlation in this case achieved

the 97% level. The significant increase on this factor can be

credited to the reduced reverberation scope covered by Data-

base B in comparison to the additional aspects (three differ-

ent reverberation setups, wider RT, and RSV ranges, etc.)

considered by Database A.

D. Comparison to other approaches

Table IV shows the statistical correlation q and the

standard deviation r between the theoretical and estimated

T60 for both Databases A and B using the algorithms

described in Refs. 4 and 8. Table IV also includes results

provided by several speech-quality evaluation algorithms,

which, in some cases, are closely related to the RT measure.

This last group of algorithms include, for instance, the rever-

beration decay time (RDT),12 the speech-to-reverberation

modulation energy ratio (SRMR),13 and the ITU-T W-PESQ

(Ref. 21) and P.563 (Ref. 22) recommendations, all provided

by their respective authors for this research. From Table IV,

one concludes that the proposed algorithm achieved the

highest correlation level and the lowest standard deviation,

for both training and testing databases, successfully predict-

ing the RT value in each case.

IV. CONCLUSION

This paper dealt with the RT blind estimation for

degraded speech signals. The proposed technique includes

four frame-based simple stages, greatly reducing the overall

complexity of the resulting approach. Performance of the

proposed approach was assessed for two independent data-

bases of reverberant speech, yielding high correlation scores

and low standard deviation with respect to estimates pro-

vided by a standard non-blind method. Results indicate that

the proposed technique can be successfully used to monitor

the reverberation effect in practical single-end communica-

tions systems.
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