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I. INTRODUCTION

In the uplink connection of a wireless

communication system, the use of an antenna

array in the receiver provides some advantages in

comparison to the traditional single-antenna receiver,

such as increasing channel capacity and spectrum

efficiency [1]. In wireless communications, systems

providing source localization may be used to spatially

separate information of the desired users from

interference.

If the source positions are approximately co-planar

in the far-field of the receiving array, the medium is

isotropic, and narrowband signals are transmitted,

the source localization problem simplifies into the

determination of the angle μ of arrival, as illustrated in

Fig. 1, commonly referred to as a direction-of-arrival

(DOA) estimation [2].

Fig. 1. Angle μ of arrival estimated by DOA estimation problem.

The first algorithms for this purpose estimated

the entire received waveforms to extract the desired

DOAs. In order to reduce the overall computational

complexity of the estimation process, transmission

was then remodeled and the DOA estimation was

performed as a parametric problem, such as in

the classic MUSIC (multiple signal classification)

algorithm [3]. The original version of MUSIC,

known as spectral MUSIC, requires an exhaustive

search for the DOA estimation, which was very

computationally intensive. In order to further reduce

the algorithmic computational complexity, the

ESPRIT (estimation of parameters via rotational

invariance techniques) algorithm imposed some

constraints on the receiving array geometry, thus

allowing one to exploit redundancies in the resulting

system representation [4]. The topic of reducing data

dimensionality using subspace methods received

renewed interest, as can be illustrated by a recent

thematic issue of the IEEE Signal Processing Magazine

on subspace-based reduced-rank algorithms [5].

This article presents a new DOA estimating

algorithm developed with the covariance-based (CB)

approach, which operates onto subpartitions of the

data autocorrelation matrix, allied to the beamspace

method, which projects received data into a subspace

of reduced dimensions. This combination is based on

a new formulation for the real-only-operation scheme,

which reduces the complexity of arithmetic operations

by avoiding data representation in the complex

domain. The result is an entirely new algorithm with

reduced computational complexity and equivalent

estimation performance as compared with its ESPRIT
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counterpart. Such characteristics are validated by both

theoretical analysis and simulation results.

This paper is organized as follows. In Section II

we present a detailed model for the DOA estimation

problem, establishing the notation used throughout the

remaining sections. Section III reviews the conception

of the elementspace CB-DOA scheme, the beamspace

projection, and discusses a new formulation for the

real-only-operation approach. Insights are provided

for each of these methods expliciting the algorithm

simplifications achieved by each proposal. Section IV

combines concepts from the three techniques seen

in Section III to inspire a lower complexity scheme

for DOA estimation. Theoretical mean-squared

error (MSE) analyses and associated computational

burden for the proposed algorithm are evaluated in

Sections V and VI, respectively, in comparison to the

corresponding ESPRIT version. Finally, Section VII

includes simulations of the CB family of algorithms in

different scenarios illustrating the MSE performance

achieved by the proposed method.

II. STANDARD DOA ESTIMATION BASED ON ESPRIT

In this section the DOA estimation process is

presented. In Section IIA, the environment for the

DOA estimation is described, comprising M sources

and N sensors with the constraints on the geometry

of the array. Then, in Section IIB, standard ESPRIT

algorithm for the DOA estimation is reviewed.

A. System Modeling

Consider a communication scenario with M

transmitting sources and N sensors in the receiving

array. By representing the mth transmitted signal

belonging to the mth source as sm(k) and the ith

sensor signal as xi(k), the transmission model may be

written as

xi(k) =

M¡1X
m=0

sm(k)ai(μm)+ ni(k) (1)

for 0· i < N, where ni(k) represents an additive white
Gaussian noise (AWGN) realization for each receiving

sensor and ai(μm) denotes the gain of the ith antenna

in the direction of the mth source.

By defining the data structures

s(k) = [s0(k) s1(k) ¢ ¢ ¢sM¡1(k)]T (2)

x(k) = [x0(k) x1(k) ¢ ¢ ¢xN¡1(k)]T (3)

n(k) = [n0(k) n1(k) ¢ ¢ ¢nN¡1(k)]T (4)

A=

266664
a0(μ0) a0(μ1) ¢ ¢ ¢ a0(μM¡1)

a1(μ0) a1(μ1) ¢ ¢ ¢ a1(μM¡1)

...
...

. . .
...

aN¡1(μ0) aN¡1(μ1) ¢ ¢ ¢ aN¡1(μM¡1)

377775
(5)

Fig. 2. Doublet division of receiving array with constant sensor

displacement.

where matrix A is commonly referred to as the array

manifold matrix, (1) may be rewritten as

x(k) =As(k) +n(k): (6)

The receiving array may be divided into subarrays

with a constant displacement vector ±, one subarray
comprising the initial points of the displacement

vectors and the other containing the corresponding

terminal points, as represented in Fig. 2. Any antenna

may belong to two different doublets, since it may

be the initial point of one displacement vector and

also the terminal point of another one, generating

overlapping subarrays.

The system model for the two receiving subarrays

of length P then becomes

x0,i(k) =

M¡1X
m=0

sm(k)ai(μm)+ n0,i(k) (7)

x1,i(k) =

M¡1X
m=0

sm(k)e
(j!±=c)sinμmai(μm) +n1,i(k) (8)

for 0· i < P, where ! denotes the signal carrier
angular frequency and c stands for the speed of

light.

B. ESPRIT Algorithm

By performing a generalized

eigenvalue-eigenvector decomposition (GEVD) [7]

on the pair of covariance matrices Rx = E[x(k)x
H(k)]

and Rn = E[n(k)n
H(k)], one gets

GEVD(Rx,Rn) =U¤U
H (9)

with ¤= diag(¸0,¸1, : : : ,¸N¡1) representing a diagonal
matrix containing the generalized eigenvalue diagonal

matrix. The generalized eigenvectors ei associated to

the M largest generalized eigenvalues of Rx may be

then grouped to form the N £M matrix Us

Us =Rn[e0 e1 ¢ ¢ ¢eM¡1] (10)

whose column subspace is the so-called signal

subspace. Hence, one can show that there is a

full-rank matrix T such that [4]

Us =AT (11)

which presents an invariance in the signal

subspace [4]

JP,N0 Usª = JP,N1 Us (12)
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where ª is a full-rank matrix and

Ja,b0 = [Ia 0a£(b¡a)] (13)

Ja,b1 = [0a£(b¡a) Ia] (14)

are selection matrices. Finally,

the eigenvalue/eigenvector decomposition (EVD) of

ª yields

ª = T©T¡1 (15)

where

©= diag(Á0,Á1, : : : ,ÁM¡1) (16)

for Ám = e
(j!±=c)sinμm and considering that operator

diag(¢) denotes a diagonal matrix whose entries
are specified by the input parameters. The ESPRIT

algorithm solves (12), using, for instance, a total

least-squares (TLS) technique. TLS is used to

determine ª and then obtain the diagonal parameter

matrix © through (15). The resulting DOA estimates
are given by

μ̂m = arcsin

μ
c

j!±
ln(Ám)

¶
for 0·m<M

(17)

where ln(¢) denotes the natural logarithm function.

III. COVARIANCE-BASED DOA TECHNIQUES

In this section we revisit two CB-DOA estimation

techniques: the elementspace CB-DOA approach

presented in [6] and the discrete Fourier transform

(DFT)-based beamspace CB-DOA [2, 11]. Besides

that, we present an alternative formulation for the real

CB-DOA. With this new formulation, the concepts

underlying these three techniques inspire, as presented

later in Section IV, the creation of a single algorithm

that represents a low-complexity alternative to the

ESPRIT algorithm.

A. Elementspace CB-DOA Algorithm

The received data autocovariance matrix Rx
employed by the ESPRIT algorithm can be partitioned

into four smaller submatrices. Data in those four

submatrices present some redundancy. Therefore, we

use two smaller covariance structures

Rx00 = J
P,N
0 Rx(J

P,N
0 )T =A0RsA

H
0 +Rn00 (18)

Rx01 = J
P,N
0 Rx(J

P,N
1 )T =A0Rs©A

H
0 +Rn01: (19)

Since JP,N0 x(k) represents data belonging to the

first subarray, whereas JP,N1 x(k) contains data from

the other subarray, (18) and (19), respectively,

represent the autocovariance of the first subarray

and a crosscovariance between the subarrays. By

performing the GEVD on the pair (Rx00,Rn00), one
may write [7]

GEVD(Rx00,Rn00) =U¤U
H: (20)

The signal subspace can be estimated from the

M largest generalized eigenvalues of ¤ and their

associated generalized eigenvectors, respectively

comprising matrices ¤s and Us. The CB-DOA
algorithm proceeds by applying a similarity

transformation F= (¤
1=2
s )¡1UHs on the matrix pencil

(Rx01¡Rn01) such that [6, 9]
ª = F(Rx10¡Rn10)F¡1

= FA0TR
1=2
s ©(R1=2s )HTHAH0 F

¡1 (21)

where T is a full-rank matrix representing a rotational

incertainty in the estimation of the column subspace.

Therefore, as in the ESPRIT algorithm, the EVD of ª
provides an estimate of ©, which leads to the desired
DOA estimates through (17). The elementspace

CB-DOA algorithm represents a low-complexity

alternative to ESPRIT, since it is based on matrices

of reduced dimensions.

B. Beamspace CB-DOA Algorithm

Beamspace processing is a well-known technique

[2, 10] which projects the received data on a subspace

of reduced dimensions. Such projections, however,

may affect the rotational invariance property of

the signal subspace, generated by the geometric

constraints depicted in Fig. 2, of the elementspace

versions of either the ESPRIT or CB-DOA algorithms.

Additional processing must then be performed on

the receiving data to ensure proper algorithmic

convergence.

By choosing the projection matrix W as the DFT

matrix, the ith column is represented by

wi = e
(2¼jm=N)((N¡1)=2)[1 e¡2¼jm=N ¢ ¢ ¢e¡2¼jm(N¡1)=N]T:

(22)

The received data x(k), as modeled in (6), can be

projected onto the DFT beamspace through the

operation

xb(k) =

·
xb,0(k)

xb,1(k)

¸
=WH

L,bx(k) for 0· b < B

(23)

where each WL,b contains any L out of the N

columns of W. One may interpret the L columns

of W as preselecting a subset of possible arriving

directions, leading to a simplified DOA search in an

L-dimensional angle subspace with L·N.
If the first L rows and the last L rows of WL,b span

the same subspace, there must be an L£L full-rank
matrix B such that

JL,N0 WL,b = J
L,N
1 WL,bB (24)

with JL,N0 and JL,N1 as defined in (13) and (14). Using

the DFT beamspace projection, a redundancy in the
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Fig. 3. Representation of a CH receiving array, with identical

colors indicating the same directional gain.

signal subspace may be found by defining an L£L
full-rank matrix Kb satisfying [11]

KbW
H
L,bUs =KbB

HWH
L,bUsª

H (25)

where Us =AT spans the signal subspace of Rx,b and

ªH = T©HT¡1, as before. Equation (25) represents an
invariance equation in the beamspace, which leads to

the beamspace CB-DOA algorithm described in [11].

C. New Version for Real CB-DOA Algorithm

Some data projections may reduce the complexity

of the resulting DOA algorithm by avoiding complex

arithmetic operations at the price of more severe

constraints in the antenna array geometry. A receiving

array, which is symmetric with respect to antenna

positioning and corresponding directional gains, as

depicted in Fig. 3, is referred to as a centro-Hermitian

(CH) array. This array configuration leads to an array

manifold such that

¦NA
¤¦M =A (26)

where ¦N denotes an N £N permutation matrix

with ones in its antidiagonal and zeros elsewhere

and the superscript asterisk stands for the complex

conjugate operation. Therefore, a CH array yields a

system modeling with an array manifold possessing

CH property which allows a subspace projection in

which only real operations are required for estimating

©, as described in [12].
In this subsection we introduce a new real

CB-DOA algorithm which is compatible with the

beamspace decomposition, allowing one to combine

the two schemes, as explored in Section IV. This

new real algorithm is based on a uniform linear

array (ULA), that is, an array receiving sensors

which is uniformly spaced in a line. In such a case,

each column ai in the array manifold matrix A

becomes [13]

ai =
©
exp
£¡(j!±=c)((N ¡ 1)=2)sinμi¤ ¢ ¢ ¢exp£¡(j!±=c)sinμi¤

1 ¢ ¢ ¢exp
£
(j!±=c)((N ¡ 1)=2)sinμi

¤ªT
(27)

where the amount of sensors N is assumed to be odd.

We also consider that the two receiving subarrays

present maximal overlap, that is, the first sensor only

belongs to the first subarray, the last sensor only

belongs to the second subarray and all the other

sensors take part in both subarrays. Under these

conditions, the receiver subarrays become

x0(k) = J
N,1
0 x(k) (28)

x1(k) = J
N,1
1 x(k): (29)

Consider QR,a, for odd-valued a, such that

QR,a =
1p
2

264 I(a¡1)=2 0 jI(a¡1)=2

0T(a¡1)=2£1
p
2 0T(a¡1)=2£1

¦(a¡1)=2 0 ¡j¦(a¡1)=2

375 : (30)
By grouping K data snapshots in a columnwise

manner, we can define the auxiliary matrix

X= [x(0) x(1) ¢ ¢ ¢x(K ¡ 1)] (31)

and the projection QR,a can be applied to X in a
similar way as in the beamspace CB-DOA algorithm,

leading to

Xr = [xr(0) xr(1) ¢ ¢ ¢xr(K ¡ 1)] =QR,aX: (32)

Consider matrix XRI which uses the real and
imaginary parts of Xr, denoted by <(Xr) and =(Xr),
respectively, as indicated by

XRI = [<(Xr) =(Xr)]
·
(<(XTr ))
(=(XTr ))

¸
: (33)

By applying the selection matrices

K0 =Q
H
R,N¡1(J0,N¡1 +¦N¡1J0,N¡1¦N)QR,N (34)

K1 =Q
H
R,N¡1(J0,N¡1¡¦N¡1J0,N¡1¦N)QR,N (35)

for subarray separation, the following new invariance

equation arises

K0Q
H
R,NA− =K1Q

H
R,NA (36)

where

− = diag

μ
tan

! sinμ0
2c

, tan
! sinμ1
2c

, : : : , tan
! sinμM¡1

2c

¶
:

(37)

IV. DFT-BEAMSPACE REAL CB-DOA ALGORITHM

The CB approach, beamspace projection, and

real-only-operation techniques inspire a new algorithm

with significant reduction both on the amount and

on the size of all data structures employed by the

resulting DOA estimating algorithm. In such context,

consider the ULA receiver which leads to the array

manifold matrix A whose columns ai are given by

(27) [13], where the amount of sensors N is assumed

to be odd.

Consider also the data matrix X comprising K data

snapshots in a columnwise manner, as in (31), which

can be projected onto the DFT beamspace by applying

the projection matrix WL,b defined in (23), resulting in

Yr =W
H
L,bX: (38)
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Hence, an auxiliary autocovariance structure YRI can

be defined as

YRI = [<(Yr) =(Yr)]
·
(<(YTr ))
(=(YTr ))

¸
(39)

where <(Yr) and =(Yr) denote the real and imaginary
parts of Yr, respectively. This auxiliary structure leads

to the following invariance equation [13]:

¡0W
H
L,bA− = ¡1W

H
L,bA (40)

where

¡0 =

26666666666664

1 c
³ ¼
N

´
0 ¢ ¢ ¢ 0 0

0 c
³ ¼
N

´
c

μ
2¼

N

¶
¢ ¢ ¢ 0 0

...
...

...
. . .

...
...

0 0 0 ¢ ¢ ¢ c
³
(N ¡ 2) ¼

N

´
c
³
(N ¡ 1) ¼

N

´
(¡1)N 0 0 ¢ ¢ ¢ 0 c

³
(N ¡ 1) ¼

N

´

37777777777775
(41)

¡1 =

26666666666664

0 s
³ ¼
N

´
0 ¢ ¢ ¢ 0 0

0 s
³ ¼
N

´
s

μ
2¼

N

¶
¢ ¢ ¢ 0 0

...
...

...
. . .

...
...

0 0 0 ¢ ¢ ¢ s
³
(N ¡ 2) ¼

N

´
s
³
(N ¡ 1) ¼

N

´
0 0 0 ¢ ¢ ¢ 0 s

³
(N ¡ 1) ¼

N

´

37777777777775
(42)

where c(¢) and s(¢), respectively, stand for the cosine
and sine functions.

Consider now ¡0,L and ¡1,L containing only the
selected L out of N columns of ¡0 and ¡1. These new
matrices play a similar role to the selection matrices

in each of the previous CB-DOA algorithms, leading

to an implementation of the so-called DFT-beamspace

real CB-DOA algorithm as follows. Consider first the

transformed autocovariance matrix

R00 = ¡0,LYRI¡
T
0,L: (43)

An EVD is performed on (R00¡¾2nIL), that is
EVD(R00¡¾2nIL) =U§UH: (44)

The M largest eigenvalues of R00 are grouped in §s
and their associated eigenvectors in the columns of

Us, allowing us to define F= (§
1=2
s )¡1UHs , as before.

Applying F to both sides of (¡1,LYRI¡
T
0,L¡¾2nIL)

leads to

¨ = F(¡1,LYRI¡
T
0,L¡¾2nIL)FH

= F¡0,LW
H
L,bAT(S−S

H)THAHWL,b¡
H
0,LF

H

(45)

Fig. 4. Block diagram for proposed DFT-beamspace real

CB-DOA algorithm.

where T is a full-rank matrix representing a rotational
incertainty in the signal subspace estimation. Therefore,

the EVD of ¨ provides matrix − as in (37):

− = diag

μ
tan

! sinμ0
2c

, tan
! sinμ1
2c

, : : : , tan
! sinμM¡1

2c

¶
(46)

and subsequently the DOA estimates μ̂m, as

summarized in Fig. 4.

V. MSE ANALYSIS

In this section an MSE analysis for the

elementspace CB-DOA algorithm is proposed in

Section VA. In Section VB, this analysis is extended

to the DFT-beamspace real CB-DOA algorithm,

whose performance is also assessed by the associated

Cramer-Rao lower bound (CRLB), as provided in

Section VC.

A. MSE Analytic Expression for CB-DOA Methods

Consider the MSE on the DOA estimation

defined as

MSE(μ̂m,μm) = E[j¢μmj2] = E[jμm¡ μ̂mj2] (47)

where notation ¢x designates an estimate error for

variable x. As demonstrated in [14], the estimation
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MSE for μm and Ám are related by

E[j¢μmj2] =
Ã

1

! cos μ̂m

!2
E[j¢Ámj2]

2
: (48)

Using this relationship, we derive an MSE expression

for μm using some MSE expression for Ám.

For that purpose, consider the auxiliary matrices

Us0 = J
P,N
0 Us and Us1 = J

P,N
1 Us. From (12), matrix ª

provides a rotational invariance property for UX of the

form Us0ª =Us1. Therefore, one may write that

(Us0 +¢Us0)(ª +¢ª ) =Us1 +¢Us1 (49)

in such a way that, by considering ¢Us0¢ª ¼ 0, one
gets

¢ª =U+s0(¢Us1¡¢Us0ª ) (50)

where the superscript + denotes the pseudoinverse

operation.

By representing the eigenvalue Ám and its

corresponding eigenvector rm extracted from matrix

¢ª , a first-order approximation for the expression of
¢Ám is given by

¢Ám = r
H
m(¢ª )rm: (51)

Hence, from (53), (54), and (50), as well as the

definition of eigenvalue/eigenvector, one has that

¢Ám = r
H
mU

+
s0(¢Us1¡Ám¢Us0)rm

= rHmU
+
s0Dm¢UXrm (52)

with Dm = (J
P,N
1 ¡ÁmJP,N0 ) and UX such that

Us0 = J
P,N
0 UX (53)

Us1 = J
P,N
1 UX: (54)

Therefore, we may write that

E[j¢Ámj2] = rHmU+s0

0@ MX
j=1

jrj j2
1ADHmR¢uDm(U+s0)Hrm

(55)
where R¢u = E[¢um¢u

H
n ] is given by

R¢u =
Ãm
N

X
k=1
k 6=m

¸m
(¸k ¡¸m)2

uku
H
k ±(m¡n) (56)

in which ¸2m represents the mth generalized eigenvalue

of Rx00, as defined in (20) and ±(¢) denotes the
Kronecker’s impulse.

The substitution of (55) and (56) into (48)

provides an expression for estimating the MSE for μm,

E[j¢μmj2] =
Ã

1

! cos μ̂m

!2μ
Ãm
2N

¶
rHmU

+
s0

0@ MX
j=1

jrj j2
1ADHm

£U±Dm(U+s0)Hrm (57)

where

U± =

0B@X
k=1
k 6=m

¸m
(¸k ¡¸m)2

uku
H
k ±(m¡ n)

1CA : (58)

B. Extension to DFT-Beamspace Real CB-DOA

In [14] one verifies that both the elementspace

and beamspace versions of ESPRIT present similar

MSE performance when referring to (57), with

the only difference being the definition of Dm =

(JP,N1 ¡Á¤mJP,N0 ). The same extension can therefore

be inferred to the CB-DOA framework, allowing us

to associate the above MSE analysis to any CB-DOA

variation seen before. For the DFT-beamspace real

CB-DOA algorithm, however, since the rotation

invariance is represented by (40), then (53) and

(54) should be modified by replacing JP,N0 and JP,N1
with ¨0W

H
L,b and ¨1W

H
L,b, respectively. Then, for

this particular algorithm, we have the same MSE

expression almost as before with

Dm =¨1W
H
L,b¡Á¨0WH

L,b: (59)

Since ¨0, ¨1, and W
H
L,b have unit norm, these

matrices do not affect the MSE final expression given

in (57).

C. Cramer-Rao Lower Bound

The CRLB is a theoretical MSE limit on the

unbiased estimation of a given parameter. When

using a receiving ULA and a large amount of data is

available, the CRLB for each μm can be approximated

by [3]

CRLB(μi, μ̂i)

=
¾2n
2N¾2s

(<((dHi WH(I¡WA(AHA)¡1AHWH)Wdi)))
¡1

(60)

where ¾2s is the mean power for the transmitted signal

and

di =
d

d!i
ai (61)

represents the derivative of each steering array vector

ai. For the DFT-beamspace real CB-DOA algorithm,
each !i is related to Ái according to (37), while (60)

represents a simplification for the original formulation,

but YRI is considered an identity matrix.

VI. COMPUTATIONAL COMPLEXITY

This section compares the computational

complexity of the proposed DFT-beamspace real

CB-DOA algorithm to an ESPRIT counterpart

introduced in [13], with both algorithms as

summarized in Table I.
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TABLE I

Short Descriptions of DFT-Beamspace Real Versions of Both

ESPRIT and CB-DOA Algorithms

DFT-Beamspace Unitary DFT-Beamspace Real

ESPRIT CB-DOA

Yr =W
H
L,b
X Yr =W

H
L,b
X

YRI = YRI =

[<(Yr) =(Yr)]
·
(<(Yr))T
(=(Yr))T

¸
[<(Yr) =(Yr)]

·
(<(Yr))T
(=(Yr))T

¸
[§s,Us] = [§s,Us] =

EVD(YRI ¡¾2nIL) EVD(¡0,L(YRI ¡¾2nIL)¡T0,L)
E0 = ¡0,LUs F= (§

1=2
s )¡1UHs

E1 = ¡1,LUs R10 = ¡1,LYRI¡
T
0,L

Ea =

·
ET
0

ET
1

¸
[E0 E1]

[E,¤] = EVD(Ea)

E01 = J
M,2M
0

E(JM,2M
0

)T

E11 = J1,MEJ
T
1,M

¨ =¡E01E¡111 ¨ = F(R10¡¾2nIM )FH

[−] = EVD(¨ ) [−] = EVD(¨ )

£̂ = arcsin

³
2c

!
arctan−

´
£̂ = arcsin

³
2c

!
arctan−

´
From Table I a summary of all operations

required for both algorithms can be determined, as

presented in Table II, along with the corresponding

computational complexity, as provided in [7]. In this

table, multiplications involving the banded matrices

¡0,L and ¡1,L present lower complexity, since these
matrices have only 2 out of L non-zero entries per

row.

If only the dominant terms in Table II are

considered for a simplified analysis, an approximate

expression for the reduction in the computational

complexity Compl(¢) for the two algorithms is
given by

Compl(CB-DOA)

Compl(ESPRIT)
=

LN2 +L2N +25M3

LN2 +2L2N +25:6M3
: (62)

TABLE II

Number of Matrix Operations Required by DFT-Beamspace Unitary/Real Versions of ESPRIT and CB-DOA Algorithms

Matrix Operation [7] DFT-Beamspace Unitary ESPRIT DFT-Beamspace Real CB-DOA

# Flops # Flops

EVD 1 25M3 1 25M3

Hermitian EVD 2 L2 +4M2 1 (L¡ 1)2

Inversion 1 (2=3)M3 – –

Diag. Inversion – – 1 M

Multiplication 8 LN2 +M3 + 4M2(L¡ 1)+2L2N 6 LN2 +L2N +M(L¡ 1)2 +M2(L¡ 1)
Banded Multiplication 2 4(L¡ 1)M 4 4L(L¡ 1)+4L2

Dominant LN2 +2L2N+ LN2 +L2N+

Terms 25:6M3 25M3

For the simplest case of M = 1 and N = L= 2,

the reduction in complexity is always greater

than 20%. Larger numbers of receiving antennas

N and/or beamspace dimension L reduce the

computational complexity even further, as verified

in the communications scenarios considered in the

following section.

VII. SIMULATIONS

In this section some simulations are provided

in order to evaluate the MSE performance for the

DFT-beamspace real versions of both the ESPRIT

and CB-DOA algorithms. In each situation the MSE

is averaged over 200 Monte Carlo runs of 9000 data

snapshots each, for a wide range of signal-to-noise

ratios (SNRs). For comparison purposes, in each

case we also include the CRLB, the theoretical

MSE derived in Section V, and the MSE for the

maximum likelihood (ML) estimator characterized

by [2]

μML = argmin
μ

½
det

·
PARXPA+

1

N
tr(P?ARX)P

?
A

¸¾
(63)

where PA =Aext(A
H
extAext)A

H
ext is the projection matrix

onto the columns of the extended array manifold

matrix

Aext =

·
A

A©

¸
: (64)

Since some of the structures are used with

beamspace projections, we may also utilize the

beamspace ML estimator given by [2]

μbeamML = argmin
μ

½
det

·
PBRXPB +

1

N
tr(P?BRX)P

?
A

¸¾
(65)

where PB =W
H
L,bPAWL,b corresponds to a new

projection matrix.

The first scenario comprises M = 1 source at 7±,
N = 13 receiving antennas, and a beamspace with
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Fig. 5. Simulated MSE as function of SNR, for M = 1 source, N = 13 antennas, beamspace with dimension L= 9.

Fig. 6. Simulated MSE as function of SNR, for M = 2 sources, N = 15 antennas, beamspace with dimension L= 12.

dimension L= 9. According to the analysis presented

in Section VI, in this setup, the DFT-beamspace

real CB-DOA requires at least 20% less flops than

its ESPRIT counterpart, while presenting similar

MSE results, as verified in Fig. 5. From this figure,

one also observes how the theoretical MSE analysis

complies reasonably well with the simulated CB-DOA

algorithm, whereas the CRLB and ML estimator,

respectively, provide theoretical and practical

top-notch performances, in spite of the prohibitive

computational cost.

In Fig. 6 simulations are performed for M = 2

sources, located at angles 2± and 7±, and N = 15
receiving antennas, and beamspace of size L= 12.

Once again, the DFT-beamspace real CB-DOA

algorithm presents a similar MSE performance

to the DFT-beamspace unitary ESPRIT, while

demanding around 30% less flops, as predicted in

Section VI. In this scenario the theoretical MSE

analysis models accurately the CB-DOA algorithm,

whose performance approaches the ML algorithm, due

to the larger values of N and L.
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Qualitative results depicted in Figs. 5 and 6 were

verified for several communications setups, with

distinct values of L, M, or N. Higher values of L

and N lead to greater reduction in the computational

complexity when using the CB-DOA framework as

compared with the ESPRIT algorithm.

VIII. CONCLUSION

This article proposes a new CB-DOA algorithm,

simultaneously incorporating beamspace and

real-only-operation projections, which significantly

reduce the overall computational complexity in

comparison to the similar ESPRIT scheme. In

comparison to previous CB-DOA algorithms, the

so-called DFT-beamspace real CB-DOA requires less

data elements than the real CB-DOA scheme and

processes smaller data structures than the beamspace

CB-DOA algorithm.

In comparison to DFT-beamspace unitary ESPRIT,

the proposed algorithm presents a similar MSE

performance and reduced computational complexity,

as verified by theoretical and simulation experiments.

Simplification starts at the 20% level and increases

even further for larger numbers of receiving antennas

or beamspace dimensions. Other contributions of this

article include MSE analysis for the CB-DOA family

of algorithms and a new version for the real CB-DOA

algorithm, whose formulation made it possible to

derive the proposed DFT-beamspace real CB-DOA

algorithm.
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