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Frequency-estimation algorithms devised for complex sinusoids, including the maximum-likelihood (ML) 
approach, when operating on real sinusoidal signals, suffer from spectral interference due to the 
superposition of the aliasing components at negative and positive frequencies. This paper introduces 
a frequency estimation ML-like algorithm, based on a spectral-matching approach, that avoids such 
superposition effect by incorporating it in the signal/spectrum model. As a result, the proposed method is 
able to generate a more precise frequency estimate in comparison to previous approaches at a comparable 
computational cost, as endorsed by provided computational analyses and simulation results.
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1. Introduction

Frequency estimation is a standard problem in the signal pro-
cessing field with a plethora of applications ranging from radar 
and satellite/mobile communications to general audio or speech 
processing and metrology [1–5]. The theoretical basis for the opti-
mal frequency estimation, based on the maximum-likelihood (ML) 
criterion, of a discrete-time complex sinusoid embedded in noise 
was established in [6]. Later on, a series of algorithms based on 
the interpolation of the signal spectrum was devised to reduce 
the associated computational cost [7–15]. Generally speaking, all 
interpolation methods are computationally simple, requiring just 
a few operations in addition to the initial discrete Fourier trans-
form (DFT) computation, and provide a very good ML approxima-
tion. They all, however, were initially devised for noisy complex-
sinusoid signals, and, therefore, when dealing with real sinusoids, 
suffer from spectral superposition of the positive and negative fre-
quency complex sinusoids, which introduces estimation bias and 
increases estimation variance.
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To overcome such issues, a new frequency-estimation algorithm 
is considered based on a matched-spectrum concept, which corre-
lates the measured DFT with the theoretical spectrum of a sam-
pled sinusoid. The result is a new estimation method which yields 
very precise frequency estimates, particularly for high signal-to-
noise ratios (SNR), at a reduced (comparable to the spectrum-
interpolation algorithms) computational cost, as verified by com-
puter simulations. In addition, both its estimation accuracy and 
robustness to noise can be scaled at the expense of increased com-
putational complexity.

To introduce the proposed matched-spectrum (MS) method, 
this paper is organized as follows. Sections 2 and 3 revisit the ML 
and interpolation methods for frequency estimation, respectively. 
The proposed MS algorithm is introduced in Section 4, whereas 
Section 5 discusses some practical considerations on its implemen-
tation and performance. Section 6 includes some computational 
experiments illustrating the interesting results achieved by the 
proposed algorithm in comparison to previous schemes. Finally, 
Section 7 concludes the paper summarizing its technical contri-
butions.

2. Maximum-likelihood estimation

Assume a complex sinusoid s(n) = ã exp j(ω̃n + θ̃ ), of ampli-
tude ã, frequency ω̃, and phase θ̃ , is immersed in additive white 
Gaussian noise v(n) = vR(n) + jv I(n), whose imaginary part v I(n)

is the Hilbert transform of its real part vR(n). Assume also that 
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Fig. 1. ML frequency estimation ωML using the absolute value of the DFT: starting at 
the peak position ωk̄ of |Z(e jωk )|, estimate refinement is performed by numerical 
optimization of periodogram function, as given in Eq. (3).

v(n) has zero mean and variance σ 2
v . The corresponding sample 

vector z = [z(0)z(1) . . . z(N − 1)]T, where z(n) = s(n) + v(n), has 
the joint distribution

fz(p) =
(

1√
2πσ 2

v

)N

e
− 1

2σ2
v

∑N−1
n=0 [(x(n)−μp(n))2+(y(n)−νp(n))2]

, (1)

where p = [a, ω, θ]T is the parameter vector, x(n) and y(n) are the 
real and imaginary parts of z(n), respectively, and

μp(n) = ã cos(ω̃n + θ̃ ), νp(n) = ã sin(ω̃n + θ̃ ). (2)

The maximum-likelihood (ML) parameter estimator pML =
[aML, ωML, θML]T of p, given the observations z, is the value of p
that maximizes fz(p) given in Eq. (1). After some algebraic devel-
opment, one has that [6]:

• ωML is the value of ω that maximizes the periodogram

∣∣A(ω)
∣∣ =

∣∣∣∣∣ 1

N

N−1∑
n=0

z(n)e− jωn

∣∣∣∣∣. (3)

• θML is the argument of A(ωML).
• aML = |A(ωML)|.

These results suggest a simple strategy for estimating the ML pa-
rameters:

1. Determine the discrete Fourier transform (DFT), Z(e jωk ), of the 
sequence z and determine the (discrete) frequency value ωk̄
associated with the maximum of its absolute value [16].

2. Starting at ωk̄ , use some numerical optimization algorithm to 
maximize |A(ω)| in Eq. (3) to determine ωML [6], as illustrated 
in Fig. 1.

3. Once ωML is estimated, compute θML = arg{A(ωML)} and aML =
|A(ωML)|, as indicated above.

3. Fine adjustment by interpolation

Obtaining the ML estimate by optimizing the periodogram, be-
sides being a cumbersome procedure due to the nature of the 
function evaluated at each iteration, may also not always con-
verge to the desired solution, as analyzed in [17]. An alternative 
approach, which is quite simple and robust, is based on the inter-
polation of the DFT mainlobe points, which enables us to estimate 
the frequency deviation δ such that ωML = ωk̄ + δ, as indicated in 
Fig. 2.

Among the several interpolation-based approaches found in the 
literature [7–15], one of the most successful employs [13]

δ̂ =
√

1 + 8γ 2 − 1
, (4)
Δ 4γ
Fig. 2. ML frequency estimation ωML using the absolute value of the DFT: starting 
at the peak position ωk̄ of |Z(e jωk )|, a frequency deviation δ is estimated by inter-
polation of side points at ωk̄−1 and ωk̄+1.

where Δ = 2π Fs
N is the DFT frequency resolution (with the sam-

pling frequency Fs in samples per second), as represented in Fig. 2, 
and

γ = R−1 − R1

2R0 + R−1 + R1
, (5)

with Rk , for k ∈ Z, being defined as

Rk = real
{

Z
(
e jωk̄+k

) × conj
{

Z
(
e jωk̄

)}}
, (6)

where conj{·} denotes the complex-conjugate operation. An exten-
sion of this interpolator which employs four neighboring points 
and the periodogram peak at ωk̄ is also presented in [13], with 
slightly superior computational complexity and estimation perfor-
mance.

All these complex-sinusoid based algorithms, including the re-
cent proposal given in [14], suffer from spectral leakage due to the 
spectral component centered at ω = −ω̃. This generates some bias 
on the final frequency estimate of real-sinusoid signals. The pro-
posed method attempts to prevent this issue using a model-based 
approach, as described in the following section.

4. Proposed method: matched spectrum

The proposed matched-spectrum (MS) scheme attempts to 
match the DFT of the observation data, as determined in the 
first stage of all previous algorithms, to the theoretical spectrum 
Sω̃,θ̃ (e jωk ) of a frequency-ω̃ and phase-θ̃ sinusoid sampled at the 
same DFT frequency values ωk . For that matter, one searches for 
the optimal values ω̃ of ω and θ̃ of θ that maximize the correla-
tion

R̃k0(ω, θ) =
∑k0

k=−k0
Z(e jωk̄+k ) × conj{Sω,θ (e jωk̄+k )}√∑k0

k=−k0
Sω,θ (e jωk̄+k ) × conj{Sω,θ (e jωk̄+k )}

, (7)

where k0 is the interval of interest around k̄. In practice, this cor-
relation function has the following interesting properties:

• In the noiseless case, it has a global maximum at ω = ω̃ and 
θ = θ̃ .

• When ω ≈ ω̃ and θ ≈ θ̃ , it does not present local minima, even 
in the presence of noise, as illustrated in Section 6, allowing 
a simple line-search procedure to determine ω̃ and θ̃ with a 
very high precision.

• Its value is readily approximated even for small values of k0, 
including the trivial case k0 = 1.

• For given values of ω and θ , its evaluation requires only 
2(2k0 + 1) complex multiplications and a single complex di-
vision (see detailed algorithm at the end of this section), in 
contrast to the periodogram function defined in Eq. (3), whose 
complexity is linear with the number of signal samples N .
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Fig. 3. Proposed frequency estimation with iterative refinement by matching theo-
retical spectrum (continuous lines) to practical data (scattered dots).

• Its maximization with respect to ω and θ works like a 
frequency-domain counterpart of the ML matched filter de-
tector used in communications systems, as illustrated in Fig. 3.

The complex-sinusoid s(n) = ã exp j(ω̃n + θ̃ ) considered up to 
this point is very important in the theoretical sense, as it enables 
a simpler analysis of the estimation problem, as provided above. 
Most practical applications, however, involve a real-sinusoid signal 
s(n) = ã cos(ω̃n + θ̃ ) in the presence of noise. In such cases, the sig-
nal theoretical spectrum, as required in Eq. (7), may be determined 
in a closed form to avoid extra DFT calculations such that [18]:

Sω̃,θ̃

(
e jωk

) = ã

2

[
e jθ̃ g(ωk − ω̃) + e− jθ̃ g(ωk + ω̃)

]
, (8)

with g(Ω) being the Fourier transform of the window used for the 
DFT calculation. When a rectangular window is used,

g(Ω) = e− jΩ(N−1)
2

(
sin ΩN

2

sin Ω
2

)
. (9)

A major difficulty of employing Eqs. (8) and (9) is that an es-
timate ω̂ of the true frequency ω̃ depends on the true phase 
component θ̃ , whose estimate θ̂ , on its own turn, is highly de-
pendent on the value of ω̃. This can be circumvented by noting 
that since the term (sin ΩN

2 )/(sin Ω
2 ) does not change sign around 

Ω = 0, the phase of g(ωk − ω̃) in Eq. (8) is continuous with ω̃. 
Therefore, an ingenious way of breaking down the ω̂ ↔ θ̂ interde-
pendency is to assume a first-order contribution from the phase of 
the e− jθ g(ωk + ω̃) term in Eq. (8), and estimate the overall phase 
component θ̃ by a linear interpolation of the DFT phase Z(e jωk )

around the corresponding peak at ωk̄ , where there is an abrupt 
phase change. In this case, two situations may arise, as illustrated 
in Fig. 4, depending on the abrupt phase-drop starting (Case (a)) 
or ending (Case (b)) at ωk̄ , such that

θ̂ = (θb − θa)ω̂ + (θaωb − θbωa)

ωb − ωa
, (10)

with{
Case (a): a ≡ k̄ and b ≡ k̄ + 1
Case (b): a ≡ k̄ − 1 and b ≡ k̄

(11)

Once ω̂ and θ̂ are determined by maximizing Eq. (7), the ampli-
tude estimate â can be determined by projecting the measured 
data onto the sinusoidal signal cos(ω̂n + θ̂ ).

It is important to note that, if the sinusoid was complex, the 
interpolation of Eq. (10) would be exact. This is so because the 
theoretical spectrum would be given only by the term centered 
around ω̃ on the right-hand side of Eq. (8). According to Eq. (9), 
this term has linear phase and is continuous as noted above.

Unfortunately, in the case of real sinusoids, the term centered 
around −ω̃ interferes with the phase, and Eq. (10) becomes no 
Fig. 4. Linear interpolation of DFT phase allows phase estimation with reduced com-
putational cost for the estimated frequency value ω̂: (a) if the abrupt phase-drop 
starts at ωk̄; (b) if the abrupt phase-drop ends at ωk̄.

longer exact. One can have an estimate of the kind of error com-
mitted when using this approximation by noting that the sum of 
two complex numbers in polar coordinates is given by:

ρejθ = ρ1ejθ1 + ρ2ejθ2 , (12)

where

ρ =
√

ρ2
1 + ρ2

2 + 2ρ1ρ2 cos(θ1 − θ2), (13)

tan θ = sin θ1 + ρ2
ρ1

sin θ2

cos θ1 + ρ2
ρ1

cos θ2
. (14)

Therefore, substituting tan θ by the value given by Eq. (14), one 
has that

tan(θ − θ1) = tan θ − tan θ1

1 + tan θ tan θ1
=

ρ2
ρ1

sin(θ2 − θ1)

1 + ρ2
ρ1

cos(θ2 − θ1)

≤
ρ2
ρ1

1 − ρ2
ρ1

, (15)

since sin x ≤ 1 and cos x ≥ −1.
Comparing Eq. (12) with Eqs. (8) and (9), one can see that ρ1

is |g(ωk − ω̃)|, θ1 is its associated (linear) phase, ρ2 is |g(ωk + ω̃)|
and θ2 is its associated phase, and θ is the overall phase. The er-
ror in the linear phase approximation is then given by (θ − θ1), 
that decreases with ρ2

ρ1
= |g(ωk + ω̃)|/|g(ωk − ω̃)|. Provided that 

|g(ωk − ω̃)| 	 |g(ωk + ω̃)|, then ρ2
ρ1

is small and the linear ap-
proximation for the phase in Eq. (10) is quite reasonable. If g(Ω)

is as in Eq. (9), the local maxima of its magnitude decrease with 
Ω . Since around ω̃, |g(ωk − ω̃)| ≈ N , the fraction ρ2

ρ1
is largest 

when |g(ωk + ω̃)| is smallest. For example, if Fs = 1000 samples/s, 
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ω̃ = 2π20 rad/s and N = 512 samples, then the value of ρ2
ρ1

is, for 
ωk−1 ≤ ω̃, ω ≤ ωk , such that

ρ2

ρ1
≈

| sin(N ω+ω̃
2 )

sin( ω+ω̃
2 )

|
N

≤ 1

N| sin(ω+ω̃
2 )| ≤ 1

N| sin( ω̃−Δ+ω̃
2 )|

≈ 0.018 rad ≈ 1◦. (16)

A summary of the proposed MS algorithm is provided below:

1. Determine the N-point DFT, Z(e jωk ), of the sequence z and 
find the position k̄ of its magnitude maximum;

2. Set the neighborhood size k0 ≥ 1 around the magnitude max-
imum and determine the adjacent frequency values ωk =
k 2π Fs

N = kΔ, with (k̄ − k0) ≤ k ≤ (k̄ + k0), where Fs is the sam-
pling frequency of z(n) in samples/s;

3. While the iteration counter is smaller than or equal to a given 
number Imax of iterations or the variation of ω̂ in two con-
secutive iterations is below a certain precision threshold, do:
(a) Estimate the phase component θ̂ using the frequency es-

timate ω̂ in Eq. (10), with θa and θb as defined in Eq. (11)
and provided by the DFT Z(e jωk );

(b) Determine the theoretical spectrum Sω̂,θ̂
(e jωk ), sampled 

at the (2k0 + 1) frequency points ωk specified in Step 2, 
using the given values of ω̂ and θ̂ in Eq. (8);

(c) Compute the correlation R̃k0 (ω, θ), as given in Eq. (7);
(d) Perform one step of a golden-section search to upgrade 

the value of ω̂ in order to maximize the correlation func-
tion evaluated in the previous step.

End.

5. Practical considerations

5.1. Algorithm initialization

An interpolation algorithm, such as the one in Section 3, may 
be used to provide the initial estimate for the proposed MS al-
gorithm, due to its extreme simplicity and high precision. This 
reduces the number of line-search iterations and the associated 
evaluations of the correlation function given in Eq. (7).

5.2. Computational complexity

Following the description provided in end of Section 4, the 
computational complexity associated with the proposed MS algo-
rithm includes:

• Step 1: An N-point DFT computation [18], which requires
(2 − 3N

2 + N
2 log2 N) complex multiplications and N log2 N com-

plex additions, followed by the computation of its magnitude, 
which involves additional (N + 2) real multiplications, ( N

2 + 1)

real additions, and ( N
2 + 1) squared roots. Locating the maxi-

mum of this magnitude spectrum requires also log2 N number 
comparisons;

• Step 2: Computing the frequency values ωk , for (2k0 + 1) dif-
ferent values of k, requires (2k0 + 1) real multiplications;

• Step 3: For each of the Imax golden-section iterations:
(a) 4 real multiplications and 4 real additions are employed to 

determine the value of θ̂ with Eq. (10);
(b) 8 real multiplications, 8 sine/cosine computations, 2 real 

divisions, and 1 complex addition are used when imple-
menting Eqs. (8) and (9) to determine each of the (2k0 +1)

spectrum estimates Sω̂,θ̂
(e jωk );

(c) 2(2k0 + 1) complex multiplications, 4k0 complex additions, 
1 squared root, and 1 complex division are required for 
determining R̃k (ω, θ) in Eq. (7).
0
Fig. 5. Example of correlation function employed by the proposed algorithm. Its 
smooth profile, even for a low SNR = 5 dB, allows a simple line-search procedure 
to locate its maximum (indicated by dashed line) in a robust manner.

It is interesting to notice that Step 1 above is common to all 
other DFT-based algorithms such as the ML and interpolation-
based ones. For the remaining stages, disregarding the com-
plex/real nature of the operations, the MS algorithm requires, for 
instance, (2k0 + 1)(14Imax + 1) multiplications. The most impor-
tant aspect of this result is that the computational complexity of 
the optimization procedure of the MS algorithm is linear with k0
and Imax, whereas evaluating the ML objective function defined in 
Eq. (3) for Imax iterations is linear with N and Imax, with k0 � N
by several orders of magnitude. In addition, for large values of N , 
the additional MS operations required in Steps 2 and 3 above tend 
to be dominated by the initial DFT computation, which is also re-
quired by all algorithms considered here.

Therefore, in this entire process, two main factors affect the 
trade-off between the algorithm precision and computational com-
plexity:

• The larger k0, the larger is the complexity, and the more robust 
is the algorithm to noise, since the correlation in Eq. (7) is 
averaged over more points.

• The more iterations used in the line-search procedure to find 
the value ω̂ that maximizes the correlation, the more accurate 
are the estimations of ω̃ and θ̃ . For example, in the present 
case, where the golden-section search is used, each extra iter-
ation increases the frequency accuracy by φ ≈ 1.62.

5.3. Multiple sinusoids

The case of multiple sinusoids in the presence of noise can 
be dealt with an iterative approach as suggested in [19]. In that 
scheme, once a spectrum peak is identified, it is readily removed 
from the complete spectrum, allowing a more precise characteri-
zation of the remaining peaks. Once a new peak is identified and 
removed, however, all previous peaks are recalculated taking that 
new component into consideration. This process continues until all 
peaks have been properly identified.

To provide the reader with an idea of the behavior of the MS 
algorithm for two sinusoids, we have included in Section 6 an ex-
periment with the estimation of the frequency of one sinusoid in 
the presence of an interference sinusoid whose frequency varies 
within a large range.

6. Experimental results

Experiment 1. We consider N = 512 samples of the signal s(n) =
cos(ω̃nTs + θ̃ ), with θ̃ = 25◦ , sampling frequency Fs = 1/Ts =
1000 samples/s, and distinct SNR levels.

For illustrative purposes, Fig. 5 depicts a typical profile of the 
correlation function defined in Eq. (7) during an execution of the 
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Fig. 6. Frequency MSE over 100 realizations within the frequency range 20 ≤ f̃ ≤
60 Hz, in steps of 0.1 Hz, as a function of the SNR: ML (‘◦’), Interpolation [13] (‘�’), 
and proposed MS (k0 = 1, ‘∇ ’) schemes.

Table 1
Frequency MSE [dB], for the entire frequency range 20 ≤ f̃ ≤ 60 Hz, as a function 
of the SNR for the ML, interpolation [13] (IM), and proposed MS (for k0 = 1, 3, 5) 
methods.

SNR 
[dB]

ML IM MS

k0 = 1 k0 = 3 k0 = 5

−9.9 43.0 45.0 43.0 43.0 43.0
−8.0 3.8 4.2 4.2 3.9 3.9
−5.5 −5.0 −3.8 −4.0 −4.8 −4.9
−1.9 −8.2 −7.2 −7.3 −8.0 −8.2

4.1 −14.2 −13.2 −13.5 −14.3 −14.5
10.1 −19.2 −19.0 −19.6 −20.3 −20.5
18.1 −23.3 −24.9 −27.3 −28.2 −28.4
24.1 −24.4 −27.5 −33.3 −34.2 −34.3
30.1 −24.8 −28.5 −39.3 −40.1 −40.3
38.1 −24.8 −28.8 −47.5 −48.2 −48.4
44.1 −24.9 −28.9 −53.5 −54.2 −54.3

proposed algorithm. The smooth profile of such a function enables 
a simple and robust algorithm to search for its desired peak in the 
proposed estimation algorithm.

The mean squared-error (MSE) of the estimated frequency ω̂ =
2π f̂ with respect to the correct frequency ω̃ = 2π f̃ is depicted 
in Fig. 6 for the ML, interpolation [13], and proposed MS (with 
k0 = 1) algorithms. In this case, the MSE is determined over Nr =
100 realizations averaged across the frequency range 20 ≤ f̃ ≤
60 Hz, in steps of 0.1 Hz, (totaling Nq = 401 distinct frequency 
values f̃ (q)), such that

MSE [dB] = 10 log10

[
1

Nq

1

Nr

Nq∑
q=1

Nr∑
r=1

(
f̂ (q) − f̃ (q)

)2

]
, (17)

with f̃ (q) = [20 + (q − 1)0.1] Hz.
In this plot, one readily identifies the following MSE patterns 

within three distinct SNR regions:

• Low SNR (≤−5 dB): In this range, the excessive noise causes 
a break-down behavior on all three algorithms, where the es-
timated frequency is quite distinct from the real one.

• Average SNR (−5 < SNR < 12 dB): Here all resulting MSE de-
cay linearly with the SNR level with a small (≈1 dB) advantage 
for the ML algorithm, as detailed in Table 1. Such advantage, 
however, virtually disappears when we increase the value of 
k0 in Eq. (7), even by a small amount, as also described in
Table 1.
Fig. 7. Estimated frequency MSE′ , over 100 realizations, as a function of the theoret-
ical frequency for SNR = 24 dB: ML (gray) and proposed MS (black) algorithms.

• High SNR (≥12 dB): In this SNR range, the ML and interpola-
tion algorithms present a saturation-like behavior, as the bias 
introduced by the aliasing components tend to dominate over 
the noise effect; meanwhile, the MS algorithm, by taking the 
alias into consideration in its model-based formulation, sus-
tains the linearly decaying MSE behavior, as desired.

As observed in this experiment, the proposed MS algorithm 
tends to provide a more precise frequency estimate for high SNR 
values, what makes the algorithm perfectly suited for applications 
such as power-line quality monitoring [1], metrology [2–4] and so 
on. For lower SNR values, however, the MS algorithm may still be 
considered due to its reduced computational complexity, particu-
larly when compared to the standard ML algorithm.

In Fig. 6, the algorithm performances are evaluated as a func-
tion of the SNR level, and the effect of the true-frequency ω̃ = 2π f̃
value is averaged over the entire interval 20 ≤ f̃ ≤ 60 Hz, generat-
ing a single MSE measure for each SNR value as defined in Eq. (17). 
The effect of the true ω̃ = 2π f̃ value on the MS and ML perfor-
mances, as assessed by the figure of merit

MSE′ [Hz2] = 1

Nr

Nr∑
r=1

( f̂ − f̃ )2, (18)

where 50 ≤ f̃ ≤ 450 Hz, averaged once again over Nr = 100 re-
alizations, is depicted in Fig. 7 for a given 24-dB SNR level. From 
this plot, one observes how the ML frequency-estimate error in-
creases when f̃ ≈ 0 and f̃ ≈ Fs/2, due to the aliasing effect of 
a nearby component e− jθ g(ωk + ω) in the real-sinusoid spec-
trum, as given in Eq. (8). This impulsive component does not af-
fect the proposed algorithm’s estimate as its effects are already 
taken into consideration on the original spectral model provided 
in Eq. (8), as explained above. This aliasing-free performance is 
the reason for the lower MSE provided by the MS algorithm, as 
seen in Fig. 6, particularly for higher SNR values. In the case of 
low SNR values, the estimate bias due to noise tends to dominate 
over this effect, leveling down the performances of the two algo-
rithms.

The influence of N in the algorithm performances, as eval-
uated by the MSE defined in Eq. (17), is shown in Fig. 8 for 
Nq = 1 ( f̃ = 50 Hz, θ̃ = 45◦ , Fs = 1000 samples/s, and an SNR 
of 24 dB) and Nr = 100 realizations. In these low-frequency and 
high-SNR conditions, the MS algorithm consistently outperforms 
the interpolation-based and ML algorithms, as seen above, and 
a larger value number of samples N increases the DFT spectral 
resolution and, consequently, the algorithms’ precisions accord-
ingly.
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Fig. 8. Influence of number of samples N on the frequency MSE, over 100 realiza-
tions, for f̃ = 50 Hz, θ̃ = 45◦ , Fs = 1000 samples/s, and an SNR of 24 dB: ML (‘◦’), 
Interpolation [13] (‘�’), and proposed MS (k0 = 1, ‘∇ ’) schemes.

Fig. 9. Estimated frequency error ( f̂1 − f̃1) in the presence of a second interfer-
ing sinusoidal component of frequency f̃2 for ML (‘◦’), Interpolation [13] (‘�’), and 
proposed MS (k0 = 1, ‘∇ ’) schemes: (a) f̃2 ≈ f̃1; (b) f̃2 	 f̃1.

Experiment 2. In this scenario, we investigate the algorithm per-
formances in the presence of multiple sinusoids. For that purpose, 
we consider N = 512 samples of the signal s(n) = ã1 cos(ω̃1nTs +
θ̃1) + ã2 cos(ω̃2nTs + θ̃2), with ã1 = 1, ω̃1 = 2π30 rad/s, θ̃1 =
25◦ , ã2 = 0.5, θ̃2 = 75◦ , sampled at a rate of Fs = 1/Ts =
1000 samples/s. The frequency estimate error ( f̂1 − f̃1) = (ω̂1 −
ω̃1)/2π of the ML, interpolation-based and MS (with k0 = 1) algo-
rithms, for different frequency values ω̃2 = 2π f̃2 of the interfering 
component, is shown in Figs. 9a (for f̃2 ≈ f̃1) and 9b (for f̃2 �≈ f̃1). 
From these plots, one observes the superior ML performance for 
f̃2 ≈ f̃1, when the phase interaction from the two sinusoids af-
fects the MS algorithm in a more significant way, whereas the 
MS algorithm prevails on the f̃2 �≈ f̃1 case, when the spectrum-
alias effect dominates the phase interaction, thus affecting the ML 
and interpolation-based performances. Increasing the value of k0
(Eq. (7)), however, even by a small amount such as k0 = 3 or 
k0 = 5, improves the MS performance in all cases, making it sim-
ilar to the MS performance when f̃2 ≈ f̃1 and even better than 
already was when f̃2 �≈ f̃1.

7. Conclusion

A matched-spectrum approach was introduced for the fre-
quency-estimation problem. The proposed approach can efficiently 
take into account the spectral superposition that happens in real 
sinusoids, resulting in a very precise estimation at a computational 
cost comparable to the spectrum-interpolation methods. Numerical 
examples illustrate how the proposed scheme yields better fre-
quency estimates, in comparison to both the standard maximum-
likelihood and interpolation methods, particularly for high SNR 
levels and when the frequency of interest is near 0 or half the 
sampling-frequency value. These characteristics indicate the algo-
rithm suitability for high-SNR applications, although low/medium 
SNR levels do not hinder the algorithm’s performance in terms of 
estimation accuracy. In addition, it is important to notice that the 
precision and robustness of the proposed algorithm are scalable, 
and can be traded-off for computational complexity, as discussed 
above.
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[1] M. Sedláček, J. Blaška, Low uncertainty power-line frequency estimation for dis-
torted and noisy harmonic signals, Measurement 35 (2004) 97–107.

[2] E. Aboutanios, Estimating the parameters of sinusoids and decaying sinusoids 
in noise, IEEE Instrum. Meas. Mag. (Apr. 2011) 8–14.
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