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Abstract Covariance-based DoA estimation (CB-DoA) algorithms represent lower
computational complexity alternatives to the traditional ESPRIT approach. This paper
investigates CB-DoA using Krylov-subspace techniques (including Arnoldi’s and
Lanczos’ updates) with respect to the resulting computational cost and estimation
error performance. The proposed modifications also allow an automatic estimation of
the number of sources. Computational analyses performed for the resulting CB-DoA
algorithm indicate cost savings above 60% in comparison with the standard CB-DoA
implementation,which already represents a 20% improvement upon its ESPRIT coun-
terpart, at an equivalent mean squared error level, as verified in numerical simulations.

Keywords Direction of arrival · Eigendecomposition · Antenna array

1 Introduction

Antenna arrays have brought advantages over single-antenna communication sce-
narios, such as increase in channel capacity or more effective noise mitigation [7],
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providing either higher data rates for multiplexing transmission or better interference
mitigation for diversity transmission.

In antenna-array scenarios, the spatial diversity provides to the receiver the capacity
of finding the location of a given source. When the assumptions of coplanar transmit-
ting sources and receiving array, isotropic propagation medium, and a receiving array
in the far-field of the sources are valid, the source-localization problem can be mapped
onto finding the direction of arrival (DoA).

For DoA finding, the ESPRIT algorithm (estimation of parameters via rotational
invariance techniques) [13] has become one of the standard DoA algorithms. ESPRIT
has been tested in wireless communication scenarios [1], due to its intrinsic reduced
computational cost in comparison with previous algorithms, such as MUSIC [14],
without degradation of its high resolution. The lower computational cost provided by
ESPRIT results from taking advantage of the invariance constraints imposed upon the
receiving array geometry, which must present uniformly spaced pairs (doublets) of
sensors [13].

Covariance-based DoA (CB-DoA) estimation is derived for the same geometric
constraints as ESPRIT, achieving equivalent performance in terms of mean squared
error (MSE), with a reduced computational cost, as detailed in [4].

Krylov-subspace techniques are applied to several signal processing scenarios,
especially for large and sparse systems, in order to decrease the overall computational
complexity [3].

This article investigates the effect of incorporating Krylov-subspace techniques
on the standard CB-DoA framework, which substitutes the traditional eigen-
value/eigenvector decomposition (EVD). Some of the alternatives to the traditional
EVD implementations give rise to a regular structure in the eigenvector matrix whose
columns span aKrylov subspace [18]. A popular iterative Krylov-subspacemethod for
performing the eigendecomposition of Hermitian matrices is the Lanczos method [8].
The application of Lanczos iterations to perform ESPRIT’s first EVD led to the so-
called fast subspace decomposition (FSD)-ESPRIT algorithm [11], with reduced com-
putational burden and a reliable strategy for automatically estimating the number of
sources. For non-Hermitian matrices, the Arnoldi’s iterations [2,8,15,18] are an alter-
native to the standard EVD. Other schemes, such as [9,15], also apply additional
Krylov-subspace techniques to decrease the complexity of the DoA estimation algo-
rithm. Recent works on applications of Krylov-subspace algorithms on signal process-
ing and communication scenarios include [3,16].

For this article, the ESPRIT algorithm has been chosen as a performance bench-
mark, since it allows the same degree of freedom on the design of the receiving array
geometry as that of the CB-DoA algorithm. Algorithms such as Root-MUSIC, Uni-
tary ESPRIT [10], or Real CB-DoA [5] are left out of the scope of this work, due to
their additional restrictions and requirements in the array geometry when compared
to the proposed algorithm. The computational complexity of the resulting CB-DoA
algorithm is compared to that of the original CB-DoA algorithm as well as that of
the FSD-ESPRIT [11]. When the simplified CB-DoA algorithm is compared to other
algorithms that use different basis for performing the EVD of the covariance matrix,
such as the one in [9], the proposed simplified CB-DoA algorithm uses smaller struc-
tures and takes advantage of the structure of tridiagonal and Hessenberg matrices to
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improve computational complexity. The algorithm proposed here presents an MSE
equivalent to the FSD-ESPRIT algorithm with a significant reduction in complexity.

In addition to presenting the new algorithm, this paper also stresses important dif-
ferences among the standard and simplified CB-DoA algorithms as well as different
ESPRIT versions. The paper is organized as follows: In Sect. 2, the basic setup and
notation for the DoA problem are presented and the standard CB-DoA algorithm is
described. All modifications included by the proposed CB-DoA algorithm based on
Krylov-space techniques are then considered in Sect. 3. An analysis on the reduc-
tion of computational operations achieved by the proposed techniques is provided in
Sect. 4, whereas Sect. 5 considers theMSE performance of the standard and simplified
CB-DoA algorithms and their ESPRIT counterparts. Section 6 summarizes the main
contributions of this article.

2 CB-DoA Estimation

2.1 Antenna-Array Scenario

Consider an environment with M sources and N receiving sensors and define sm(k)
as the kth sample of the mth source signal, xi (k) as the signal at the i th receiving
antenna, and ai (θm) as the i th antenna gain in the direction θm of the mth source. In
the digital domain, one may then write that

xi (k) =
M−1∑

m=0

sm(k)ai (θm) + ni (k), (1)

for i ∈ 0, 1, . . . , N − 1, where ni (k) is an additive white Gaussian noise (AWGN)
acquired at the i th antenna.

By arranging all data in a matrix form,

s(k) = [
s0(k) s1(k) . . . sM−1(k)

]T
, (2)

x(k) = [
x0(k) x1(k) . . . xN−1(k)

]T
, (3)

n(k) = [
n0(k) n1(k) . . . nN−1(k)

]T
, (4)

A =

⎡

⎢⎢⎢⎣

a0(θ0) a0(θ1) · · · a0(θM−1)

a1(θ0) a1(θ1) · · · a1(θM−1)
...

...
. . .

...

aN−1(θ0) aN−1(θ1) · · · aN−1(θM−1)

⎤

⎥⎥⎥⎦ , (5)

where A contains the directional gains of each of the antennas in the receiving array.
Equation (1) can be rewritten as

x(k) = As(k) + n(k). (6)



2366 Circuits Syst Signal Process (2015) 34:2363–2379

If the receiving sensors satisfy the translational invariance constraints [6,13], they
can be divided in two sub-arrays, comprised of P antenna doublets, and displaced by
δ: one sub-array containing the initial points and the other containing the final points
in each antenna pair. Hence, the received signal may be redefined as xb,i (k), referring
to the bth sub-array, b = 0, 1, and the i th doublet, such that

x0,i (k) =
M−1∑

m=0

sm(k)ai (θm) + n0,i (k), (7)

x1,i (k) =
M−1∑

m=0

sm(k)φmai (θm) + n1,i (k), (8)

for 0 ≤ i < P , with

φm = e
jωδ
c sin θm , (9)

where ω represents the carrier angular frequency, c is the speed of light, and δ is the
distance between the antennas belonging to a doublet pair [13].

2.2 The Standard CB-DoA Algorithm

Consider that the transmitted signals have zero mean, then a covariance model for the
received signal x(k) can be expressed by

Rx = E[x(k)xH (k)] = ARsAH + Rn, (10)

where Rs = E[s(k)sH (k)] represents the covariance matrix for the transmitted signal
and Rn is the noise covariance matrix. If all the source and noise components are
uncorrelated and if noise is spatially independent and identically distributed, then Rs

is diagonal and Rn = σ 2I. Hence, one may consider the matrices

R00 = JP,N
0 Rx (J

P,N
0 )T

= JP,N
0 ARsAH (JP,N

0 )T + σ 2I, (11)

R01 = JP,N
0 Rx (J

P,N
1 )T

= JP,N
0 ARs�

HAH (JP,N
0 )T + σ 2I, (12)

where JP,N
0 and JP,N

1 represent two auxiliary matrices which select the first and last
P rows, respectively, of an N × 1 vector, and � is a diagonal matrix comprised of
φ0, φ1, . . . , φM−1.

By performing an EVD on R00, such that EVD(R00) = U�2UH , one determines
the diagonal matrix �2 containing all eigenvalues of R00 with the corresponding
eigenvectors placed on the columns of U. The smallest (P − M) eigenvalues of R00
should be equal to the noise variance σ 2. The remaining M largest eigenvalues form
the M × M diagonal matrix �s , and the corresponding eigenvectors, associated with
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the signal subspace [13], can be arranged in a columnwise manner on matrix Us ,
allowing one to define the auxiliary matrix F = UH

s �−1
s .

By applying F on both sides of the matrix pencil (R01 − σ̂ 2I), where σ̂ 2 is the
smallest eigenvalue of �, one gets

� = F(R01 − σ̂ 2I)FH , (13)

such that [17]
EVD(�) = B�̂B−1, (14)

which yields the DoA estimates θm from the DoA mapping given by Eq. (9).
The CB-DoA algorithm requires 1 Hermitian and 1 non-Hermitian EVD. In com-

parison, the total least squares (TLS) version of ESPRIT requires 2 non-Hermitian
EVDs (an O(25n3) operation according to Golub and van Loan [8]) and 1 Hermitian
EVD (an O(n2) operation [8]). Despite being less complex than the TLS-ESPRIT,
the CB-DoA still requires 2 EVD operations, whose complexity may be significantly
reduced when computed through Krylov-subspace techniques, as investigated below.

3 The Simplified CB-DoA Algorithm

In this section, some fundamental principles underlying a Krylov subspace are
described. Techniques using Krylov subspaces are used here for transforming Her-
mitian covariance matrices into tridiagonal ones and non-Hermitian cross-covariance
matrices into Hessenberg ones, which allow computing EVDs with smaller cost and
subsequently the CB-DoA algorithm with lower complexity.

Consider a subspace S and a linear transformation L : S → S. When a
vector b0 is repeatedly left-multiplied by L, the resulting sequence of vectors
{b0,Lb0,L2b0, · · · } ∈ S spans a Krylov subspace. The matrix whose columns are
formed by this sequence of vectors is known as the Krylov matrix.

In [8], it is shown that the QR decomposition of a Krylov matrix K = QRK also
leads to the decomposition K = QHQT , where H is an upper Hessenberg matrix. By
exploiting these relationships, one is able to obtain EVDs with a smaller cost, for a
given matrix, as discussed below.

3.1 Lanczos’ Updates

In this subsection, the Lanczos’ updates are used for transforming theHermitianmatrix
R00 in an Hermitian tridiagonal matrix, in order to decrease the burden of computing
its eigendecomposition.

As presented in [12], when the Krylov matrixK is Hermitian, thenH is tridiagonal
and also Hermitian. Consider now the Hermitian tridiagonal matrix T generated by
the QR decomposition of the Hermitian matrix R00 = QTQH , where Q is a unitary
matrix,
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Table 1 Lanczos’ update
operations while (βk �= 0)

qk+1 = rk/βk ;
k = k + 1;
αk = qHk R00qk ;
rk = (A − αkI)qk − βk−1qk−1;
βk = ‖rk‖2;

end

T =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

α1 β∗
1 0 . . . 0 0

β1 α2 β∗
2 . . . 0 0

0 β2 α3 . . . 0 0
...

...
. . .

. . .
. . .

...

0 0 0 . . . αN−1 β∗
N−1

0 0 0 . . . βN−1 αN

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

Since R00Q = QT, and by considering qi as the i th column of Q, then

R00qi = β∗
i−1qi−1 + αiqi + βiqi+1, (16)

which is the basis for the Lanczos’ updates.
In fact, by pre-multiplying (16) by qH

i and by considering the orthonormality of
qi , then α = qH

i R00qi . The iterations are performed until the criterion ri = [(R00 −
αi I)qi − βi−1qi−1] ≈ 0 is matched. While the stop criterion is not reached, βi is
updated as ‖ri‖2 and qi+1 = ri/βi . After all the αi and βi are found, matrix T is
then determined from the Hermitian version of the Lanczos’ updates, as summarized
in Table 1.

3.2 Bisection Method

Upon determining the tridiagonal matrix T, a low complexity algorithm may be
employed to find its eigenvalues. Consider Tr as the r × r leading principal sub-
matrix generated from T, i.e., by removing the last (N −r) rows and columns from T.
Let pr (x) = det(Tr − xI) be an auxiliary polynomial. Whenever x is an eigenvalue
of Tr , then pr (x) = 0 and it can be shown that [8]

pr (x) = (αr − x)pr−1(x) − β2
r−1 pr−2(x), (17)

with αr and βr as defined in Eq. (15).
The bisection method performs an eigenvalue search based on the idea represented

in Fig. 1. Consider that two points y and z are chosen such that pr (y)pr (z) < 0.
This relation indicates that there is a point between y and z which is a root for the
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Fig. 1 Bisection method for
finding eigenvalues

y zx

Iteration

i

p (x) >0p (y) > 0r p (z) < 0rr
i

z i+1y

polynomial pr and also an eigenvalue of Tr . Then, a point x is chosen midway from
y to z, and the polynomial value at x is analyzed.

Whenever pr (x)pr (y) > 0, then we set y = x in the next iteration, and the process
is repeated until the distance between y and z is smaller than a predetermined value.

By using the Gershgorin theorem of sensitivity, it can be proved that, for the i th
largest eigenvalue λi [8],

min
1≤ j≤N

[α j − |β j | − |β j−1|] ≤ λi ≤ max
1≤ j≤N

[α j + |β j | + |β j−1|]. (18)

Hence, the bisection iterations can be used for finding each eigenvalue, where y and
z are initially chosen as min

1≤ j≤N
[α j − |β j | − |β j−1|] and max

1≤ j≤N
[α j + |β j | + |β j−1|],

respectively.
At each iteration, the middle point x = (y+ z)/2 is calculated. If pr (x) ≥ (N −k),

i.e., if the number of sign inversions is greater than (N − k), then the operation is
repeated with x in the role of z, that is, the segment from x to y is considered. When
pr (x) < (N − k), then x is used in the role of y and the segment between z and x is
employed.

Finally, the eigenvectors ofR00 are found by using the inverse power iterations [8].
The characteristic equation R00vi = λi Ivi of eigendecomposition is used. When
(R00 − λi I)−1 is right-multiplied by a vector, it generates a vector in the direction of
the eigenvector vi , associated with λi [8]. This multiplication is iteratively performed
on the vectors which progressively converge to vi .

3.3 Arnoldi’s Updates

In this subsection, the non-Hermitian matrix R01 is transformed into a Hessenberg
matrix in order to perform a lower-complexity eigendecomposition. Another decom-
position R01 = Qn+1HnQH

n is performed on R01, where Qn represents an N × n
matrix obtained by extracting the first n columns ofQ andHn is a Hessenberg matrix
containing the first (n + 1) rows and n columns of H such that

Hn =

⎡

⎢⎢⎢⎢⎢⎣

h11 h12 . . . h1n
h21 h22 . . . h2n
0 h32 . . . h3n
...

. . .
. . .

...

0 0 . . . hn+1,n

⎤

⎥⎥⎥⎥⎥⎦
. (19)



2370 Circuits Syst Signal Process (2015) 34:2363–2379

Table 2 Arnoldi’s update
operations while (βk �= 0)

qk+1 = rk/hk+1,k ;
k = k + 1;
rk = R01qk ;
for i = 1 : k,

hi,k = qHi rk ;
rk = rk − hi,kqi ;

end

hk+1,k = ‖rk‖2;
end

If qi denotes the i th column of Q, then the following equations arise:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R01q1 = h11q1 + h21q2
R01q2 = h12q1 + h22q2 + h32q3

...

R01qn = h1nq1 + . . . + hnnqn + hn+1,nqn+1

. (20)

By exploiting the mutual orthogonality among the qn vectors, a Gram-Schmidt-like
algorithm, known as Arnoldi’s updates, can be used to solve (20), yielding the hi j
entries of matrix Hn [18]. Arnoldi’s updates transform any matrix R01 into a Hessen-
berg matrix H, as given in Eq. (19), through the steps summarized in Table 2.

3.4 Eigendecomposition of a Hessenberg Matrix

In this subsection, we address two techniques for exploiting the Hessenberg structure
of a matrix, in order to obtain its eigenvalues in a simplified manner.

After processing matrix R01 through the Arnoldi’s updates, a Hessenberg matrix is
generated. A Schur decomposition can then be performed on the Hessenberg matrix,
which generates an upper triangular matrix TS , with the eigenvalues of the original
matrix R01 in its main diagonal [8].

Alternatively, a QZ method may be performed for finding the eigenvalues of R01.
This approach leads to a generalized Schur decomposition (GSD) [8], which states
that if A and B are n × n complex matrices, then a pair of unitary matrices Q and
Z generate QHAZ = T and QHBZ = S, where T and S are both upper triangular.
In our modeling, B is an identity matrix, which simplifies the problem to an EVD
of A. However, since A = � is still non-Hermitian and tridiagonal, a Hessenberg-
triangular reduction (HTR) [8] operation must be performed instead of a simple QR
decomposition. TheHTR is an iterative processwhose steps transformA progressively
in a Hessenberg form, while B is transformed into an upper triangular matrix. That is
the principle of the QZ method, which computes matrices Q and Z reducing the pair
(A,B) to a pair of upper Hessenberg-upper triangular matrices. It is implemented by
using a QR function and Givens rotations, as well as a QZ step inside a loop [8].
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3.5 Detection of the Number of Sources

In the traditional ESPRIT and CB-DoA algorithms, the number of sources is estimated
in separate stages, using, for example, the Akaike’s information criterion (AIC) [19],
which estimates the number of sources M̂ as the value of k which minimizes:

AIC(k) = −2 log

⎛

⎝
∏N

i=k+1 λ
1

N−k
i

1
N−k

∑N
i=k+1 λi

⎞

⎠ + 2k(2N − k). (21)

The simplified CB-DoA algorithm, however, employs the FSD algorithm [11],
which estimates M̂ as the value of k that minimizes

FSDM (k) = log

⎡

⎢⎢⎣

√
1

N−k

(
‖R00‖2 − ∑k

i=1 λ2i

)

1
N−k

(
Tr(R00) − ∑k

i=1 λi

)

⎤

⎥⎥⎦ , (22)

where Tr(X) denotes the trace of X. As discussed in [11], the FSD estimation is more
robust and less computationally complex than the AIC.

4 Computational Complexity Analysis

Ablock diagramdescribing the general structure of the standard and the simplifiedCB-
DoA algorithms is depicted in Fig. 2. In addition, the simplified CB-DoA algorithm
is summarized in Table 3.

The computational costs of all operations required by the standard and simplified
versions of the CB-DoA algorithm are indicated in Table 4.

AlthoughHuandKailath [11] state that the computational complexity for estimating
the number of sources is O(n2), it considers the method as computed simultaneously
with the eigenvalues of the Lanczos loop. We have computed it after the loop, using
‖R00‖ = λ1, where λ1 is its largest eigenvalue, as well as Tr(R00) equal to the
sum of the eigenvalues, previously computed inside the Lanczos loop. By using such
methods for computing ‖R00‖ and Tr(R00), the complexity of FSD-based evaluation
of the number of sources reduces to O(n).

The FSD algorithm reduces the computational burden on both the EVD of R00 and
the estimation of the number of sources. From Table 4, the reduction factor γ in the
computational complexity for both versions of the CB-DoA algorithm is given by

γ =
(
1 −

4M3

3 + M2 + 2P2 + M logM + 3M2P + 2P + M

25M3 + P3 + 3M2P + 2P + M3

)
100%. (23)

For instance, when M = 1 and P = 2, the reduction factor is γ ≈ 13%. By
increasing P , the reduction factor also increases, approaching γ = (1 − 1/P)100%
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(In the Standard CB−DoA, substitute by Power Iterations)

00R
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(b)

Fig. 2 Block diagrams for the a CB-DoA and b simplified CB-DoA algorithms. Gray blocks only appear
in the simplified version, as the CB-DoA employs basic power iterations

in the limiting case of M 
 P . Such behavior is illustrated in Fig. 3 when M = 2
and 3 ≤ P ≤ 14.

In Fig. 4, both 2 ≤ M ≤ 6 and 3 ≤ P ≤ 14 are varied for the computation of the
reduction factor.
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Table 3 Summary of
operations for the simplified
CB-DoA algorithm

[L,T] = Lanczos(R00)

M̂ = FSDM (R00)

σ̂ 2
N = Bisection(L,T, M̂)

Us = InversePower(L,T, M̂)

F = �−1
s UH

s

Ra = R̂01 − σ̂ 2I

R1 = FRaFH

[B,H] = Arnoldi(R1)

[�H ] = Schur(H) or [�H ] = QZ(H)

Table 4 Computational
complexity of all operations
required by the standard (bold),
the simplified (italics) CB-DoA,
and by both algorithms (bold
italics) [8]

Operation (type) Complexity Flops

EVD (non-Hermit.) O(25n3) 25M3

EVD Arnoldi + Schur or QZ O(4n3/3 + n2) 4M3/3 + M2

EVD (Hermit.) O(n3) P3

EVD Lanczos O(2n2 + n log n) 2P2 + M logM

Inversion (diag.) O(n) P

Multiplication O(n3) 3 × (3M2P)

Subtraction (diag.) O(n) P

Source # (AIC) O(n3) M3

Source # (FSD) O(n2) M2

2 4 6 8 10 12 14
66

68

70

72

74

76

78

80

82

γ

Fig. 3 Reduction factor γ for a fixed number of sources M = 2 and a varying sub-array dimension
3 ≤ P ≤ 14
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Fig. 4 Reduction factor γ for a varying number of sources 2 ≤ M ≤ 6 and a varying sub-array dimension
3 ≤ P ≤ 14

The associated computational complexity for the FSD-ESPRIT [11] algorithm,
which incorporatesKrylov-space techniques, is (13P3/3+5M3/3+MN 2+2MNP+
N 2 + M). When considering the simplest (M = 2, N = 4, P = 3) DoA scenario, the
simplified CB-DoA represents a 69% computational saving against the FSD-ESPRIT
algorithm. Even larger savings are achieved with the simplified CD-DoA algorithm in
more practical cases when larger values of N and P are employed.

5 Simulations

In this section, we verify that the reduction in the computational complexity, as quan-
tified in Sect. 4, does not imply performance degradation on the CB-DoA algorithm
in terms of MSE. Our first DoA estimation scenario consists of M = 2 sources (both
transmitting with the same power), positioned at θ1 = 2◦ and θ2 = 7◦, and the receiv-
ing array as shown in Fig. 5. When all N = 12 receiving antennas are grouped into
P = 6 doublets, according to Fig. 3, simplified CB-DoA (with either Schur decompo-
sition or the QZ iterations) presents a computational reduction factor of γ = 66.4%
in comparison with the FSD-ESPRIT. If only the N = 8 black and gray antennas in
Fig. 5 are employed with P = 4, one gets a constant-displacement scenario suited for
the CB-DoA approach. Those geometrical constraints are less restrictive than either
the uniform linear array imposed by Root-MUSIC or the centro-Hermitian config-
uration required by real-only transform algorithms, such as Unitary ESPRIT [10].
This (M = 2, N = 8, P = 4) case corresponds to a computational reduction factor
of γ = 68.8% for the simplified CB-DoA algorithm against its standard version,
as estimated by Eq. (23), and an 80.4% computation saving in comparison with the
FSD-ESPRIT.

In each run, 8,000 random values are transmitted, generated by a normalized
Gaussian distribution. The resulting average MSE, over 400 Monte Carlo runs, as
determined by
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Fig. 6 MSE performance of standard and simplified CB-DoA algorithms as well as the FSD-ESPRIT with
bisection, for the (M = 2, N = 8, P = 4) scenario, and λ = 0.2 m
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Fig. 7 MSE performance of standard and simplified CB-DoA algorithms as well as the FSD-ESPRIT with
bisection, for the (M = 2, N = 12, P = 6) scenario, and λ = 0.2 m

MSE = 1

800

400∑

q=1

2∑

m=1

|θm,q − θ̂m,q |2, (24)

is depicted in Fig. 6 for P = 4 antennas in each sub-array and in Fig. 7 for P = 6
antennas in each sub-array. In these sets of simulations, the standard and simplified
CB-DoA versions were simulated as well as the FSD-ESPRIT algorithm using the
bisection approach and the classical TLS-ESPRIT, for several levels of signal-to-
noise ratio (SNR). In Figs. 6 and 7, transmission is performed at frequency 1.5 GHz,
corresponding to λ = 0.2 m, which is a common wireless personal communication
scenario.

In Fig. 8, transmission is performed for P = 4 antennas in each sub-array at a
frequency 12 GHz (i.e., λ = 0.025 m), corresponding to a Ku-band satellite scenario.
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Fig. 8 MSE performance of standard and simplified CB-DoA algorithms as well as the FSD-ESPRIT with
bisection, for the (M = 2, N = 8, P = 4) scenario, and λ = 0.025 m
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Fig. 9 MSE performance of standard and simplified CB-DoA algorithms as well as the FSD-ESPRIT with
bisection, for the (M = 2, N = 12, P = 6) scenario, and λ = 0.025 m

In Fig. 9, transmission is also performed at a frequency 12 GHz, for P = 6 antennas
in each sub-array.

From these sets of simulations, one readily observes a similarMSE performance for
all the algorithms for the whole SNR range and all (M , N , P , λ) scenarios considered
here.

Simulations have also been performed using both AIC and FSD methods for esti-
mating the number of sources in conjunction with the CB-DoA algorithm. Results
indicate a similar performance of both criteria for the entire 5 ≤ SNR [dB] ≤ 50
range, which agrees to the FSD analysis presented in [11], with bothmethods correctly
identifying M = 2 sources in all cases of SNR ≥ 15 dB.
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6 Conclusion

A novel version for the CB-DoA estimation algorithm was considered using Krylov-
subspace techniques, improving the computational complexity without increasing
estimation error. In this proposal, the standard eigendecomposition operations were
replaced by alternative algorithms for Hermitian (Lanczos’ updates followed by bisec-
tion and inverse power) as well as non-Hermitian (Arnoldi’s updates and Schur/QZ
decomposition) matrices. The novel CB-DoA version also uses an alternative method
for estimating the number of sources. Complexity analyses were performed indi-
cating a reduction of at least 60% on the computational burden of the simplified
CB-DoA algorithm in comparison with the FSD-ESPRIT (which also incorporates
similar Krylov-space techniques) and advantages over the standard CB-DoA algo-
rithm. Numerical simulations validate the computational analysis and indicate similar
MSE performances for the simplified CB-DoA as well as the standard CB-DoA and
the FSD-ESPRIT algorithms in all the scenarios tested.
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