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Abstract 

Similarity-based modeling (SBM) is a technique whereby the normal operation of a system is modeled 
in order to detect faults by analyzing their similarity to the normal system states. First proposed around 
two decades ago, SBM has been successfully used for fault detection in varied systems. In spite of this 
success, there is not much study performed in the literature regarding its design, that encompasses both 
similarity metrics and model training. This work aims at contributing with an in-depth study of SBM for 
fault detection considering these two design aspects. This is done in the context of proposing a novel 
system to identify rotating-machinery faults based on SBM, that is employed either as a standalone 
classifier or to generate features for a random forest classifier. New approaches for training the model 
and new similarity metrics are investigated. Experimental results are shown for the recently developed 
Machinery Fault Database (MaFaulDa) that has an extensive set of sequences and fault types, and for 
the Case Western Reserve University (CWRU) bearing database. Results for both databases indicate that 
the proposed techniques increase the generalization power of the similarity model and of the associated 
classifier, achieving accuracies of 98.5% on MaFaulDa and 98.9% on CWRU database. 
© 2017 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

Maintenance of critical equipment to ensure high levels of reliability, availability, and per- 
formance is one of the major concerns on today’s industrial sector [1] . Unexpected failures can
lead to substantial losses, either from the maintenance procedure itself or from the resulting
production halts [2] . To achieve an effective and cost-efficient procedure, new maintenance 
strategies are being devised based on real-time and continuous monitoring, allowing one to 

detect and classify operational anomalies at an early stage, thus limiting additional system 

degradation [2] . Applications of such techniques include, for instance, flight paths [3] , natu-
ral gas and nuclear power plants [4–7] , wind turbines [8] , and bearing or rotating-machine
faults [9–14] . Among these equipments, rotating machines are some of the most important,
being a key element used in a variety of applications, including airplanes, automobiles, power 
turbines, oil and gas refineries, and so on [12,15] . 

There are many approaches for detecting faults in rotating machines. Most of them consist
of extracting features from the vibration signal to assess the machine current condition, in a
supervised or automatic manner. Different features are needed to extract useful information 

relevant to detect faults from the original sources over multiple conditions. These features 
can be classified considering their domain (time, spatial, time-frequency, frequency) or its 
computation method (e.g. transform coefficients or aggregated statistics) [16–19] . 

An illustrative example is the approach in Yang et al. [20] . There, a system is presented
which uses an adaptive resonance theory Kohonen neural network (ART-KNN) for fault di- 
agnosis, having as inputs features derived from the discrete Wavelet transform coefficients. 
Unfortunately, the fault database used is not publicly available, making its comparison with 

other approaches impractical. 
A methodology for detecting broken and half broken bars using spectral information over 

a FPGA is presented in [21] . This methodology is latter extended in [22] and in [23] , adding
the discrete wavelet transform (DWT) coefficients as features, and combining it with discrete 
frequency transform coefficients. These works also treat the detection of other faults and 

failures. The broken bar detection problem is also approached by the authors of [24] using
motor current signature analysis and mathematical morphology. 

The authors of [25] focus on the feature extraction procedure proposing a novel feature
extraction scheme which utilizes the generalized S transform and 2D non-negative matrix 

factorization to detect possible faults. Three classifiers were used to assess the system: k -
nearest neighbors ( k NN), naive Bayes, and support vector machines (SVM), all achieving 

good results. A similar approach is presented in [26] using multiscale permutation entropy for
feature extraction and an SVM classifier for fault diagnosis. The work of Rauber et. al. [18]
also studies the effect of the features in the system performance. It tests multiple features of
different types, such as complex envelope spectrum, statistical time- and frequency-domain 

parameters, as well as wavelet packet analysis, together with a feature selection algorithm. A
fault classification database was used as testbed, and three different classifiers ( k NN, feedfor-
ward artificial neural networks (ANN), and SVMs) were used during the assessment, achieving 

good performance. 
This work proposes an automatic fault detector and classifier that uses similarity-based 

modeling (SBM) to identify rotating-machine failures such as imbalanced load, (horizontal or 
vertical) shaft misalignment, and bearing defects (in rolling elements or inner/outer tracks). 
The similarity model can be used either as an auxiliary model to generate features for the
classifier (a random forest classifier in this case) or as a standalone classifier. In this context,
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ew approaches for training the similarity model and new similarity metrics are investigated.
wo databases were employed to evaluate the performance of the proposed techniques. The
rst one is the machinery fault database (MaFaulDa) [27] , a relatively new, large database
f problematic scenarios of rotating-machine operations [13,14] . Performance evaluation on
his database included continuous monitoring of six vibration sensors, one microphone, and
ne tachometer [14] . The second database is the Case Western Reserve University (CWRU)
earing database [28] . This database has become a standard reference in the bearing diagnostics
eld [19,29] and is used as testbed for comparison between the proposed methodology against
ther algorithms [18,25,26,30] . Results indicate that the proposed methodology is capable of
orrectly diagnosing the machine operating states, achieving an accuracy of 98.5% on the
aFaulDa dataset and 98.9% on the CWRU database. 
This paper is organized as follows: Section 2 presents the original SBM technique [3,5,7,9–

1] , devised for detecting unusual patterns in some system or machine operation. Section 3 de-
cribes the proposed modifications to the standard SBM technique that allow the detection and
lassification of different types of anomalous machine operations in an efficient and robust
anner. Section 4 details the MaFaulDa database, used to design and evaluate the system’s

erformance and the CWRU database, used for comparison. The methodology of performance
ssessment is described in Section 5 . This section also describes the designed system, includ-
ng the preprocessing and validation procedures. Section 6 discusses the experimental results
btained during the processes of training and selection of the best model, as well the assess-
ent results. Comparisons to other works are also included in this section. Finally, conclusions

nd discussions emphasizing the main contributions of this paper are provided in Section 7 . 

. Similarity-based modeling (SBM) 

The SBM is a simple and yet powerful nonparametric modeling technique that puts together
n ensemble of previous state vectors in a single matrix D to represent the normal behavior
f a given system, process, or machine. The SBM then evaluates the similarity of the current
tate vector with all vectors within D to assess the normality or not of the current system
peration. This technique was first proposed in [4] , and since then has been used in a variety of
ndustrial applications, such as fault diagnosis in a machinery fault simulator [9,11] , modeling
irplanes flight paths [3] , and anomaly detection in power plants [7] . In this work the SBM
echnique is adapted to monitor and classify the current operation of a given rotating machine.

In the original SBM framework, a system state at time n is represented by a vec-
or x n = [ x n (1) , x n (2) , . . . , x n (M) ] T comprising M measurements or features from multiple
ources, such as sensors or signals. Given a set of L historical data x n , with n = n 1 , n 2 , . . . , n L ,

orresponding to the normal behavior of a given system, one can then represent this opera-
ional mode by the L ×M “memory” matrix D which stacks the x n in a line-by-line manner,
s given by Singer et al. [4] 

 = 

[
x n 1 x n 2 · · · x n L 

]T 
. (1)

sing this matrix, one may evaluate if a new input state x corresponds to the system normal
peration by attempting to describe this state as a linear combination of the previously selected
epresentative states contained in D , that is 

ˆ 
 n = D 

T w n . (2)
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By defining the estimation error and estimation error function respectively as 

e n = x n − ˆ x n , (3) 

e n = 

∥∥x n − ˆ x n 

∥∥2 
2 , (4) 

the optimal linear estimate of x n becomes 

ˆ x n = D 

T w 

o 
n = D 

T 

(
DD 

T 

)−1 

Dx n , (5) 

where w 

o 
n is the optimal estimator. 

However, in [4] , the authors argue that this result has numerous limitations, such as an
inability to accommodate random uncertainties and non-random defects, the need of a very 

large number L of archetypical states that define D , and the requirement that DD 

T must be
nonsingular. 

The SBM was proposed as an alternative approach that copes with all these issues by
substituting the dot product implicit in Eq. (2) by a similarity operation s(x i , x j ) = x i ◦ x j .
This operation provides a similarity score 0 ≤ s ≤1 between two vectors x i and x j , such that
non-similar vectors yield s ≈0 and very similar vectors correspond to s ≈1. An example of
similarity function considered in the original SBM formulation is given by Wegerich et al.
[9] 

s(x i , x j ) = 

1 

1 + 

∥∥x i − x j 

∥∥
2 

. (6) 

The incorporation of distinct similarity operations into the SBM formulation is one of the
contributions of the present work, as detailed in Section 3.2 . 

Following the linear approach and using the similarity operation, the current state vector 
x n in the SBM algorithm can be estimated as 

ˆ x n = D 

T w n 

‖ w n ‖ 1 
, (7) 

with 

w n = 

(
D ◦ D 

T 

)−1 (
D ◦ x n 

)
= G 

−1 a n . (8) 

that is, G = D ◦ D 

T and a n = D ◦ x n . The vector a n evaluates the similarity between the
current state and the representative states in matrix D and matrix G transforms the similarity
vector a n in a set of weights for each state in D . When G = I, the model is called auto-
associative kernel regression (AAKR) [6] , a particular case of SBM, equivalent to assuming
no similarity between the state samples within D . We mean by no similarity s(x i , x j ) = 1 if
i = j and zero otherwise. In this case, if x n belongs to D , one then gets ˆ x n = x n l such that
the vector w n becomes all null with the exception of an ‘1’ entry at its n l th position. 

A key aspect within the SBM formulation is the strategy for composing matrix D . Using
all L historical samples for the normal behavior would incur in high computational expenses 
and very redundant data. Choosing an inadequate vector set when opting for a smaller L leads
to performance impairments. The best possible set, therefore, would have the minimal number 
of vectors still yielding the same performance level as the complete set. In [5] , a strategy is
proposed for selecting a proper reduced set of historical samples. It comprises two selection
steps: 
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1. One chooses as representatives the samples with index in the set J = 

{ j 1 , j 2 , . . . , j K } ,
K ≤2 M , built such that 

j ∈ J if ∃ m : x j (m) = min 

n 

{
x n (m ) 

}
∨ x j (m ) = max 

n 

{
x n (m) 

}
; (9)

2. The other samples are sorted by their � 2 norm in decreasing order and decimated by a
factor of t . The ones that remain after the decimation complement the set of representative
samples. 

The first step inserts in D all vector states which present the minimum and maximum value
f each vector component. The second step decimates the remaining vectors using the � 2 norm
s ordering criterion. However, this second step may lead to not so good choices, because
ectors with similar (even identical) norm values can be completely different [8] . Also, given
 small decimation factor t and the number of samples L , the number of chosen samples
s L̄ = K + 


 (L − K ) /t � , which may be not much lower than L . Additional strategies for
omposing the matrix D are proposed in Section 3.3 in an attempt to overcome these issues.

. Proposed SBM enhancements 

This section presents the proposed enhancements to the SBM formulation, which include:
 generalization of the SBM framework that allows it to operate in a multiclass (more than
wo classes) scenario; introduction of alternative similarity operations; and the development
f a new strategy to compose the matrix D . 

.1. Multiclass SBM 

SBM was originally devised to detect abnormal operating conditions, which are associated
ith a low similarity level between a current state vector x n and its SBM estimate ˆ x n given

n Eq. (7) . 
Such framework can be extended, however, to detect and classify several types of system

perational modes by defining a distinct model-matrix D c for each operational class c . In the
roposed multiclass SBM formulation, given a new input state x n , a different estimate can be
etermined for each class 

ˆ 
 n,c = D 

T 
c 

w n,c ∥∥w n,c 

∥∥
1 

, (10)

here 

 n,c = 

(
D c ◦ D 

T 
c 

)−1 (
D c ◦ x n,c 

)
= G 

−1 
c a n,c . (11)

he current state x n is then associated to the class c ∗n which maximizes the similarity, 

 

∗
n = argmax c 

{
s n,c 

}
= argmax c 

{
s 
(
x n , ̂  x n,c 

)}
. (12)

.2. Alternative similarity functions 

A distance metric is a function which maps a pair of elements in a set to a non-negative
eal number and satisfies a set of conditions. A classic example of distance metric is the
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family of the p -distance metrics [31] , defined as 

d i j = 

∥∥x i − x j 

∥∥
p = 

( 

M ∑ 

m=1 

∣∣x im 

− x jm 

∣∣p 

) 

1 
p 

. (13) 

The above equation is also know as � p norm. It is typically used with either p = 2, the � 2 
norm or Euclidean distance, or p = 1 , the � 1 norm or Manhattan distance. 

In this work, five distinct similarity functions are employed, which can be separated in two
main families: the multiquadric set and the exponential set. The multiquadric kernels include 
three of the selected functions which are based on the inverse multiquadric function , defined
as [32] 

f 
(
d i j 

) = 

1 (
r 2 + d 

2 
i j 

)α . (14) 

The first similarity function is a direct application of the above equation. By making 

α = 1 / 2, r 2 = 1 /γ 2 , and s IMK 

(
d i j 

) = f 
(
d i j 

)
/γ , one gets 

s IMK 

(
d i j 

) = 

1 √ 

1 + γ 2 d 

2 
i j 

, (15) 

which is the inverse multiquadric kernel (IMK) similarity function. 
The second similarity function, the Cauchy kernel [33] , is a direct variation of the IMK

function, and can be defined as 

s CCK 

(
d i j 

) = s 2 IMK 

(
d i j 

) = 

1 

1 + γ 2 d 

2 
i j 

. (16) 

The third and last multiquadric function is a modified version of the original SBM function,
so-called Wegerich similarity function , shown in Eq. (6) , and defined as 

s WSF 
(
d i j 

) = 

1 

1 + γ d i j 
. (17) 

The last two functions are representatives of the exponential set. The exponential or Lapla-
cian kernel is defined as 

s EXP 
(
d i j 

) = e −γ d i j , (18) 

and the radial basis function kernel as 

s RBF 
(
d i j 

) = e −γ d 2 i j . (19) 

Each one of these functions were employed and evaluated during the validation procedure, 
to select the combination of parameter γ and similarity function that would provide the system
with best performance. 

3.3. Improved training method 

In addition to the original strategy proposed in [5] to determine the model-matrix, described 

in the end of Section 2 , an alternative approach is proposed here in an attempt to reach the
best compromise between the associated computational complexity and the resulting system 

fault-classification ability. 
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In the proposed approach, one selects the state vectors x n , c to form a model-matrix D c

teratively. In each iteration a new vector is added to D c taking into account the similarity
etween the currently selected state vectors and the remaining vectors available for class
 . More specifically, given a vector set X c , the iterative procedure starts by selecting its
eometric median 

 c = argmin z∈X c 
∑ 

x i ∈X c 
‖ x i − z ‖ 2 (20)

s the first representative state. Since there is no closed form to compute this median, it
ncreases in complexity as the number of samples in X c increase. In order to reduce the
verall complexity, in this work we approximated the vector median using the algorithm
escribed in [34] . The subsequent states that will compose D c are selected according to the
ollowing strategy: each new sample x n , c is compared against the current selected elements
n D c . If the similarity between the x n , c and any element of D c is below a threshold τ , this
ample is selected as an element of D c , otherwise the sample is discarded. More formally,
 n , c is included in D c if 

 n,c ◦ x i < τ, ∀ x i ∈ D c . (21)

The effects in the SBM fault detection performance caused by the improvements proposed
n this section are analyzed in the remaining of this paper. 

. Databases used 

Two databases were used to evaluate the contributions of this paper. The first one, named
achinery fault database (MaFaulDa) [14,27] is a comprehensive database including multiple

ypes of faults covering different severities and rotation frequencies. This database was exten-
ively used to validate the proposed approach and to search for the models with the best set
f parameters based on their performance. The second database is the Case Western Reserve
niversity bearing database [28] , the standard reference in bearing faults [19,29] . It is used to

ssess the proposed approach against other ones found in the literature. A brief description
f each database is presented below. 

.1. MaFaulDa database 

This database is composed of multivariate time-series acquired by sensors on a Spec-
raQuest’s machinery fault simulator (MFS) alignment-balance-vibration trainer (ABVT) [35] .
his equipment emulates the dynamic of motors with two shaft-supporting bearings and al-

ows the study of multiple faults, such as imbalanced mass, axis misalignment, and bearing
roblems. The experimental setup used in this work is illustrated on Fig. 1 . 

The system was monitored by two distinct sets (one for each bearing) of three accelerom-
ters (on the axial, radial, and tangential directions), a tachometer (for measuring the system
otation frequency), and a microphone (for capturing the sound during the system operation).
uring the signal acquisition procedure, a variety of faults were imposed on the MFS. These

aults are described below: 

• Normal operation : this class represents the system operating under normal condition with-
out any fault. It includes a set of 49 distinct scenarios, each with a fixed rotating speed
within the range from 737 rpm to 3686 rpm with steps of approximately 60 rpm. 
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Fig. 1. Experimental setup used to produce the MaFaulDa database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Imbalance : to simulate different degrees of imbalanced operation, distinct load values of 
6 g, 10 g, 15 g, 20 g, 25 g, 30 g, and 35 g were coupled to the rotor. For each load value
below 30 g, the rotation frequency assumed in the same 49 values employed in the normal-
operation case. For loads equal to or above 30 g, however, the resulting vibration makes
impracticable for the system to achieve rotation frequencies above 3300 rpm, limiting the 
number of distinct rotation frequencies to only 44 in these cases. As such, the database
includes a total of 333 different imbalance-operation scenarios. 
• Horizontal parallel misalignment : this type of fault was induced into the MFS by shifting

the motor shaft horizontally of 0.5 mm, 1.0 mm, 1.5 mm, and 2.0 mm. Using the same range
for the rotation frequency as in the normal operation for each horizontal shift, a total of
197 different scenarios were considered for this class. 
• Vertical parallel misalignment : this fault was induced into the MFS by shifting the motor

shaft vertically of 0.51 mm, 0.63 mm, 1.27 mm, 1.4 mm, 1.78 mm, and 1.9 mm. Using the
same range for the rotation frequency as in the normal operation for each vertical shift, a
total of 301 different scenarios were considered for this fault class. 
• Bearing faults : as one of the most complex elements of the machine, the rolling bearings

are the most susceptible elements to fault occurrence. The ABVT manufacturer provided 

three defective bearings, each one with a distinct defective element (outer track, rolling 

elements, and inner track), that were placed one at a time in two different positions in
the MFS experimental stand: between the rotor and the motor (underhang position), or 
in the external position, having the rotor between the bearing and the motor (overhang 

position). Bearing faults are practically imperceptible when there is no imbalance. So, the 
three masses of 6 g, 10 g, and 20 g were added to induce a detectable effect, with different
rotation frequencies as before, leading to a total of 558 underhang scenarios and 513 

overhang scenarios. 
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Fig. 2. Block diagram of the proposed system, composed by a preprocessing module, followed by the SBM and, 
possibly, by a classifier. 
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Considering all operating conditions described above, the MaFaulDa database comprises a
otal of 1951 different scenarios, each one described by 8 signals acquired at 50 kHz over a
ime interval of 5 s. The whole database is available for download at [27] . 

.2. CWRU bearing database 

The data from this database was acquired from the bearing center of the Case Western
eserve University (CWRU) [28] . It consists of 161 scenarios grouped in four categories, as
escribed in [29] . Each scenario can be composed of acceleration signals in three directions:
n the drive-end bearing, which occurs in all scenarios; on the fan-end bearing housing, which
ccurs in most of the scenarios; and on the motor supporting base plate, which occurs in some
cenarios. The sample rates used were 12 kHz for some scenarios and 48 kHz for others. The
ibration signals were obtained from different states of the bearings: normal condition, inner
ace fault, ball fault, and outer race fault. A more complete description of this database is
ound in [28] . 

The CWRU bearing database was selected for two main reasons. The first one is its public
vailability. The second one is its wide use in the literature for reporting results of automatic
earing fault detection methods, which allows comparison of the performance of proposed
ethod against the one of other works. In this paper only scenarios containing both the fan-

earing and the drive-end signals were used, reducing the total number of valid scenarios to
53. 

. Experimental methodology 

This section describes the experimental methodology employed to evaluate the modi-
ed SBM performance in detecting and classifying the ABVT’s faulty scenarios within the
atabases described in Section 4 . 

The proposed system follows a modular architecture similar to the ones described in [2,36]
or a condition-based maintenance system. It comprises three blocks (see Fig. 2 ): the prepro-
essing module converts the original data to a feature space which is more descriptive for the
iven application; the SBM model acts as a state-monitoring module, returning the similarity
etween the current input data and the previously modeled conditions; and the classifier or
iagnostic module uses the information from previous blocks to identify the current input
mong the pre-specified set of classes. In such a framework the SBM can act in a stand
lone manner or can be combined to a specific classifier ( random forest [37] , for instance, as
mployed here). In this paper, both strategies are considered. 

The preprocessing block has the objective of reducing the original data to a set of more
nformative, relevant, and less redundant set of values. This is often important for reducing
he system burden of learning and generalizing on the original data [38] . 
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Given the distinct nature of each of the databases employed in this work, the preprocessing
block should be different for each database, although its purpose is the same for both. The
two preprocessing blocks are described as follows: 

(i) MaFaulDa : three types of features were extracted from the original multivariate time- 
series: the rotation frequency , 21 additional spectral features , and 24 other statistical
features . 
The rotation frequency f r was determined directly from the discrete Fourier transform 

(DFT) of the tachometer signal, as detailed in [13,15] . This procedure is very similar to
the one presented in [21] for half-broken bars on induction motors. 
The other spectral features correspond to the magnitudes of the spectrum of the signals
other than the tachometer at frequencies f r , 2 f r , and 3 f r . 
The additional statistical features include, for each of the eight measured signals in each 

operational scenario, the statistical mean, the entropy, and the kurtosis. The variance 
feature is not employed as the signals are normalized to unit variance to reduce the
effect of energy variations caused by changes in the acquisition setup. 

(ii) CWRU : the statistical features presented in [18] , together with the mean, variance and
entropy were extracted from each signal, totaling 36 features. 

The extracted features are then input to the subsequent stages in order to perform fault
detection and classification. The two databases are treated independently for performance 
assessment of the proposed methods. The whole MaFaulDa database was randomly separated 

in two disjoint training and test sets, comprising respectively 90% and 10% of the given
scenarios. The random choice of each set was constrained so that both presented the same
fault proportion as the whole database. The best set of parameters was chosen using a k -fold
cross-validation procedure on the training samples, with k = 10. Then, the performance of
the best models are evaluated on the test set, producing the final results shown in Section 6 . 

As for the CWRU database, a process similar to cross dataset validation is applied. The
best setups found for the MaFaulDa are directly used on the CWRU database. As such,
this database is used to assess the generalization power of the classifiers obtained using the
proposed methodology. Results have been obtained using k -folds with k = 10. 

6. Experimental results and discussion 

6.1. Experiment description 

This subsection describes the experiments made during the validation procedure to select 
the best model for the proposed task considering all the following system variations: 

• Feature types: only spectral features, only statistical features, or both families of features, 
as discussed in Section 5 . 
• Use of full SBM formulation (as given in Eq. (8) ) or the AAKR scheme, which considers

G = I in this same equation. 
• Choice of similarity function, as presented in Section 3.2 , with distinct values of γ ∈ {0.01,

0.1, 0.5, 1, 10} and different � p norms ( p ∈ {1, 2}). 
• Classification procedure either solely based on the stand-alone SBM or combining it to a

specific classifier algorithm (e.g. random forest). 
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• SBM strategy for building model-matrix D : full matrix with all training feature vectors,
original SBM training method [5] (see Section 2 ), named “decimation method”, for deci-
mation factors s ∈ {2, 3, 5, 7, 11}, or proposed threshold-based method (see Section 3.3 )
for threshold values τ ∈ { 0. 05 , 0. 1 , . . . , 0. 95 } . 
Clearly the full combination of the options described above leads to a prohibitively large

umber of possible system configurations. Therefore, in this work we significantly reduce this
umber by presenting the validation results following a sequential order of decisions, where
ach new decision seeks an improvement on the resulting performance. These decisions can
e grouped in four main experiments: 

• Experiment 1 evaluates the influence of used feature types. 
• Experiment 2 compares the standard SBM model against the AAKR particularization. 
• Experiment 3 evaluates the different classification strategies, investigating whether one

should use the stand-alone SBM to accomplish this function or the SBM output should
be fed to a classification algorithm. In latter case, we also investigate the type of feature
(similarity value or estimation error vector ( Eq. 4) ) that the SBM module should deliver to
the subsequent classifier. 
• Experiment 4 selects the set of the remaining parameters (including procedure for building

the model-matrix D and choice of similarity function) that produces the best SBM model
overall. 

.2. Validation results 

This subsection presents the validation results using cross-validation for each of the exper-
ments. The experiments are presented in the aforementioned order, where the best configu-
ations found in one experiment are carried out to the next one. 

.2.1. Experiment 1 

This experiment assesses the influence of the feature types in the resulting validation
erformance of the classification system. To reduce the influence of other parameters during
his evaluation, a very simple system was used, which employed the SBM as a classifier
sing the AAKR particularization, and the RBF similarity function with � 2 norm. The kernel
idth γ assumed all values within the set {0.1, 0.5, 1.0}. All methods for building the
BM model-matrix D were assessed, with the decimation parameter fixed at t = 5 , and the

hreshold parameter fixed at τ = 0. 6 . 
Table 1 presents the obtained cross-validation results for each parameter combination in

xperiment 1. From this table, one can readily notice the superior performance achieved by
he use of all combined (spectral and statistical) 46 features, which is carried on to all
onfigurations considered in the subsequent experiments. 

.2.2. Experiment 2 

This experiment compares the AAKR particularization with the standard SBM model by
sing the same set of parameters as of Experiment 1. Results from this experiment are sum-
arized in Table 2 . 
From this table, one notices that the standard SBM outperformed its AAKR particulariza-

ion in all configurations considered here. Given these results, the standard SBM approach
as selected as the best performing option to be considered in the experiments that follow. 



1924 M.A. Marins et al. / Journal of the Franklin Institute 355 (2018) 1913–1930 

Table 1 
Experiment 1 cross-validation accuracy(%), using the AAKR particularization as a classifier with an � 2 -norm RBF 
similarity function. f r is the rotation frequency. 

SBM model-matrix building γ f r + spectral features f r + statistical features All features 

Full D 0.1 40.36 ±3.28 68.27 ±3.96 71.61 ±3.72 
0.5 50.76 ±3.18 76.55 ±3.36 81.00 ±3.07 
1.0 57.75 ±3.18 77.0 ±3.40 81.91 ±2.77 

Decimation [5] ( t = 5 ) 0.1 37.20 ±2.10 63.64 ±3.55 67.53 ±5.04 
0.5 46.60 ±2.48 66.19 ±4.56 72.45 ± 4.69 
1.0 49.01 ±3.21 63.97 ±3.88 69.50 ± 4.15 

Threshold( τ = 0. 6 ) 0.1 41.02 ±2.68 61.38 ±2.78 67.08 ±3.02 
0.5 50.36 ±2.55 76.01 ±3.28 80.81 ±2.47 
1.0 56.70 ±2.24 77.08 ±3.69 81.55 ±3.08 

Table 2 
Experiment 2 cross-validation accuracy(%), comparing the SBM and AAKR. 

SBM model-matrix building γ SBM AAKR 

Full D 0.1 84.80 ± 2.81 71.61 ±3.72 
0.5 83.66 ± 2.45 81.00 ±3.07 
1.0 82.50 ± 2.39 81.91 ±2.77 

Decimation [5] ( t = 5 ) 0.1 78.75 ±3.39 67.53 ±5.04 
0.5 72.80 ±3.26 72.45 ±4.69 
1.0 70.29 ±3.46 69.50 ±4.15 

Threshold ( τ = 0. 6 ) 0.1 74.00 ± 2.28 67.08 ±3.02 
0.5 82.77 ± 2.20 80.81 ±2.47 
1.0 83.01 ± 2.40 81.55 ±3.08 

 

 

 

 

 

 

 

 

6.2.3. Experiment 3 

This experiment evaluates the SBM method either as a stand-alone classifier or as an
auxiliary input to an off-the-shelf random forest (RF) classifier (see Fig. 2 ). To this end, we
have evaluated four different system configurations: (i) stand-alone SBM classifier; (ii) stand- 
alone RF classifier; (iii) combined SBM-RF classifier using the SBM similarities to each class
as a complementary feature; (iv) combined SBM-RF classifier using the SBM estimation error 
vector Eq. (3) as a complementary feature. In this experiment, the SBM model used the best
configurations found in the previous experiments, which include all 46 features previously 

considered and its standard SBM formulation. 
Table 3 presents the cross-validation results for all tested SBM-based configurations. As a 

basis for comparison, note that in our simulations the stand-alone RF configuration achieved 

an accuracy score of 92.70%. 
These results show that the combined SBM-RF schemes are more discriminative than the 

stand-alone SBM or RF models. We can see that the case where the original features are
extended by the similarities to each class estimated by the SBM produces consistently good 

results. However, the best results were obtained by extending the original features with the
SBM estimation error vector ( Eq. (3) ) instead of similarities. 

Table 3 also indicates that, when one uses the combined SBM-RF configuration with the
additional SBM estimation error features, the full model-matrix D is greatly outperformed by 

the ones built using the other two methods. Therefore, in Experiment 4, we consider only the
decimation [5] and threshold methods for building D . 
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Table 3 
Experiment 3 cross-validation accuracy(%), comparing different SBM-based classifier configurations. The accuracy 
score of a stand-alone RF configuration is 92.70%. 

Classifier 

SBM model- matrix building γ SBM RF + SBM estimation error RF + SBM similarities 

Full D 0.1 84.80 ±2.81 44.19 ±4.38 96. 32 ± 1.66 
0.5 83.66 ±2.45 39.66 ±3.31 93 . 88 ± 1.88 
1.0 82.50 ±2.39 41.97 ±3.50 93 . 24 ± 1.39 

Decimation [5] ( t = 5 ) 0.1 78.75 ±3.39 98.20 ± 1.11 96.43 ±0.89 
0.5 72.80 ±3.26 97.66 ± 0.91 94.98 ±1.25 
1.0 70.29 ±3.46 97.44 ± 0.96 94.77 ±1.21 

Threshold ( τ = 0. 6 ) 0.1 74.00 ±2.28 94.66 ±1.19 96.59 ± 1.70 
0.5 82.77 ±2.20 93.87 ±0.88 94.64 ± 1.87 
1.0 83.01 ±2.40 85.92 ±2.56 94.02 ± 1.28 

Table 4 
Experiment 4 cross-validation accuracy(%) for the best 10 SBM configurations. The parameter of the last column is 
t for the decimation method for building the model-matrix and τ for the proposed threshold method. 

Parameters 

SBM model-matrix building Similarity function Accuracy(%) Norm γ t or τ

Decimation [5] WSF 98. 91 ± 0.58 1 0.01 7 
RBF 98.02 ±0.82 2 0.1 11 
IMK 98.62 ±0.90 2 0.1 5 
CCK 98.56 ±0.79 1 1 7 
EXP 98.57 ±0.93 1 0.1 11 

Threshold WSF 98. 68 ± 0.89 1 0.01 0.9 
RBF 96.66 ±1.17 2 0.01 0.55 
IMK 98.56 ±1.37 2 0.1 0.8 
CCK 98. 72 ± 0.78 2 0.1 0.5 
EXP 98.33 ±1.14 1 0.1 0.5 
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.2.4. Experiment 4 

This last experiment performs a fine tuning of the SBM method by selecting the best
ossible procedure for building the model-matrix D together with the best similarity function,
ncluding all their parameters. 

Table 4 presents the 10 best configurations for this experiment, where the ‘Parameters’
olumn shows the chosen parameters for each of these scenarios. The similarity functions
sed are WSF ( Eq. (17) ), RBF ( Eq. (19) ), IMK ( Eq. (15) ), CCK ( Eq. (16) ), and EXP ( Eq.
18) ). 

All the 10 models discriminated in Table 4 present superior performance than the one
ound in previous works using the same database [13,14] , attesting the SBM capability to
uccessfully solve the fault-classification problem in rotating machines. 

The analysis of the validation results in Table 4 leads us to choose three models as the
est ones. They are: 

1. Model A: similarity function WSF, γ = 0. 01 , � 1 norm. Using the decimation method for
building D [5] , with t = 7 . 
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Table 5 
Average number of representative states for each combination of model-matrix building model and class (normal N , 
imbalanced I , horizontal misalignment H M 

, vertical misalignment V M 

, underhang faulty bearing U B , overhang faulty 
bearing O B ). 

Configuration N I H M 

V M 

U B O B 

Model A 33.1 87.6 65.7 80.1 131.2 118.2 
Model B 5.8 73.8 8 8 94.8 29.8 
Model C 5 73.5 4.9 5 74.5 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Model B: similarity function WSF, γ = 0. 01 , � 1 norm. Using the proposed threshold
method for building D , with τ = 0. 9 . 

3. Model C: similarity function CCK, γ = 0. 1 , � 2 norm. Using the proposed threshold method
for building D , with τ = 0. 5 . 

The complexity of a given SBM model is given by its number of representative states.
Therefore, in order to analyze the model complexities when using the three above models,
we present in Table 5 the average number of representative states, over the 10 validation
folds, for each combination of selected model and class (normal N , imbalanced I , horizontal
misalignment H M 

, vertical misalignment V M 

, underhang faulty bearing U B , overhang faulty
bearing O B ). 

From this table, one can readily draw two conclusions regarding the average number of
representatives in each case: first, considering each model-matrix building scheme, the table 
shows, as expected, that the proposed threshold method is more selective than the decimation 

method. This is an important result, as the proposed method requires less storage space and
processing time, making it well suited for deployment in a real-time. As an example, Model
B requires about 162 μs to process a sample, while Model A requires 350 μs 1 . However, in
the context of this work, this difference is irrelevant, as the preprocessing phase consumes 
156 ms to process a single sample. One should notice that the system is capable to work on
real-time, since each sample is 5 s long. Second, analyzing the size of the model-matrices for
each failure, we observe that the imbalance failure and the underhang bearing fault require
larger number of states, and are thus difficult to discriminate. 

6.3. Results on the testing sets 

In this subsection the performance of the proposed system on the testing set is analyzed.
For this study, the three models chosen in Section 6.2.4 will be considered: Model A, Model
B and Model C. It is important to notice that the original scheme leads to a simpler model-
matrix building stage but to a larger matrix which results in a more complex classification
procedure, as observed in Table 5 . 

As mentioned on Section 5 , the test dataset is composed by 10% of the available MaFaulDa
scenarios. Using the test dataset, Model A and Model B achieved an accuracy of 98.49% and
Model C achieved and accuracy of 97.47%, indicating that all three models are capable of
generalizing well for other samples. The confusion matrices for the first two models are shown
in Table 6 a and 6 b. 
1 All times were measured on an Intel(R) Core(TM) i7-4790K CPU @ 4.00 GHz machine. 
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Table 6 
Confusion matrices in test dataset. 

a) Model A b) Model B 

Class N I H M 

V M 

U B O B Class N I H M 

V M 

U B O B 

N 4 0 1 0 0 0 N 5 0 0 0 0 0 
I 0 34 0 0 0 0 I 0 34 0 0 0 0 
H M 

0 0 20 0 0 0 H M 

0 0 19 1 0 0 
V M 

0 0 0 31 0 0 V M 

0 0 0 31 0 0 
U B 0 1 0 0 55 0 U B 0 1 0 0 54 1 
O B 0 1 0 0 0 51 O B 0 0 0 0 0 52 

Table 7 
Accuracy results for the 10-class identification problem on the MaFaulDa database. 

Model Model-matrix Similarity γ t or τ p Acc. (%) 
building method function 

Model A Decimation WSF 0.01 7 2 98.48 
Model B Threshold WSF 0.01 0.9 1 98.48 
Model C Threshold CCK 0.1 0.5 2 97.48 
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Results in these tables are consistent with some already discussed aspects of the MaFaulDa
atabase. As stated in Section 4 , there are much less scenarios when the machinery operates
n normal conditions then there are faulty cases. This discrepancy makes the model-matrix
uilding more difficult for the normal class ( N ). Still analyzing the confusion matrices, it is
ossible to observe that sometimes bearing faults are misclassified as imbalance faults. We
rgue that this is somewhat expected, since the system needs to be unbalanced in order for
earing faults to be observed. 

Also in Section 4 , when the bearing faults are described, it was mentioned that each one
f the bearings (underhang and overhang) where substituted by one out of three defective
earings provided by the manufacturer. Taking this into consideration, the three best configu-
ations, Model A, Model B, and Model C, were also used to classify the signals in 10 classes.
hese classes were derived by further subdividing each bearing fault in 3 classes according

o the defective element (outer race, inner race, or rolling ball) employed. The results are
resented in Table 7 , where the good accuracy figures indicate that the proposed system is
lso robust when applied to more complex fault classification problems. 

.4. CWRU results and discussion 

This subsection presents the results on the CWRU bearing dataset. As described in Sec-
ion 5 , this dataset is used for assessing the performance of the three best models selected
n the MaFaulDa dataset, namely the Model A, Model B, and Model C schemes (see Sec-
ion 6.2.4 ). 

Using the same methodology as [18] , each CWRU signal was divided into 15 segments,
nd the extended dataset was subdivided into the training and testing sets following a 9/1
atio. The results presented in Table 8 are accuracy averages over 10 folds chosen randomly.
or each fold configuration, the model-matrix D is computed using the data in 9 folds and the
ccuracy result is measured in the remaining fold. From this table, one can observe that the
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Table 8 
Accuracy (%) results of SBM-based classifiers on the CWRU database. 

Model Mean 

Model A 98.95 ±0.72 
Model B 98.91 ±0.75 
Model C 98.91 ±0.95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SBM-based classifier has good generalization capability for all three configurations considered 

here. 

6.5. Comparison with previous works 

As mentioned in Section 1 , several other works in the literature addressed the same problem
that we have addressed in this paper, that is, the automatic detection and classification of
faults in rotating machines. Some of these works have used the MaFaulDa database. In [14]
the faults in the MaFaulDa database have been classified using perceptron neural networks 
with multiple layers, considering several subsets of the features investigated here. Six classes 
have been considered: normal, overhang and underhang faults, imbalance, horizontal and 

vertical misalignment. The accuracy obtained was 95.8%, inferior to the ones obtained with 

the proposed use of SBM and described in Table 7 , that reach, for one configuration, the
average figure of 98.48%. 

For the CWRU database, even though there are many works using such dataset [29] , its
very difficult to make a direct comparison, as most works do not present their results in a
quantitative manner, but only in a qualitative manner. As such, the comparison is restricted to
a small set of works. In [25] the k NN, naive Bayes, and SVM classifiers achieved accuracies
of 98.83%, 98% and 98.97%, respectively. The SVM classifier found in [26] obtained accu- 
racies above 98% for different rotation frequencies. The SVM and ELM classifiers using the
procedure described in [30] achieved accuracies of 82.4% and 97.5%, respectively. Lastly, the 
k NN, SVM, and ANN classifiers using the feature selection method proposed in [18] obtained
accuracies between 93% and 100%. From the above results and Table 8 , one can conclude
that the proposed SBM-based fault classifier achieves, for the CWRU database, competitive 
results to those. It is important to point out that, as demonstrated by the results over the
MaFaulDa database, the proposed system is able to detect and classify, with high accuracy, a
wide range of machine faults, including misalignment and unbalanced faults. 

7. Conclusion 

This paper addressed the automatic fault diagnosis in rotating machines. The use of sim-
ilarity based modeling (SBM) was investigated, either as a stand-alone classification method 

or in combination with an off-the-shelf classifier, in this case a random forest classifier. The
system is evaluated in two databases. One of them is a comprehensive database with multiple
faults referred to as MaFaulDa [27] . The other is the CWRU bearing database [28] , that is the
current standard database for bearing fault diagnosis. 

The extension of the SBM to a multiclass model is an important contribution of this
paper. Other contributions include the use of new similarity metrics and the development of
a novel method for building the SBM model-matrices. This work also presented an extensive 
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tudy of the evaluation of all the proposed modifications on the MaFaulDa database. These
ontributions achieved the goal of increasing the SBM performance in a fault classification
cenario while reducing its computational complexity. The usage of SBM either as a stand-
lone classifier or as a feature generator for off-the-shelf classifiers has also been investigated.
ur results have shown that the use of the proposed enhancements to the SBM consistently

ncreased the accuracy of a random forest classifier. 
The proposed system showed to be robust, reaching an accuracy of around 98.5% in the

aFaulDa database, higher than previous works along the same base. For the CWRU dataset
he proposed system yielded an accuracy level of 98.9%, which is as good as previous results
eported in the literature. It is worth emphasizing that the proposed class of methods is able
o detect and classify, with high accuracy, a wide range of faults, which indicates that the
roposed approach based on SBM is worth further investigation. 
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