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Abstract— This paper presents a family of algorithms based on
sparse decompositions that detect anomalies in video sequences
obtained from slow moving cameras. These algorithms start by
computing the union of subspaces that best represents all the
frames from a reference (anomaly free) video as a low-rank
projection plus a sparse residue. Then, they perform a low-rank
representation of a target (possibly anomalous) video by taking
advantage of both the union of subspaces and the sparse residue
computed from the reference video. Such algorithms provide
good detection results while at the same time obviating the need
for previous video synchronization. However, this is obtained
at the cost of a large computational complexity, which hinders
their applicability. Another contribution of this paper approaches
this problem by using intrinsic properties of the obtained data
representation in order to restrict the search space to the most
relevant subspaces, providing computational complexity gains of
up to two orders of magnitude. The developed algorithms are
shown to cope well with videos acquired in challenging scenarios,
as verified by the analysis of 59 videos from the VDAO database
that comprises videos with abandoned objects in a cluttered
industrial scenario.

Index Terms— Video anomaly detection, sparse representation,
object detection, moving camera, subspace recovery.

I. INTRODUCTION

THE amount of surveillance videos available in private
and public facilities has increased exponentially in the

past few years, and most probably will keep increasing as sur-
veillance equipment become more accessible and affordable.
A report from 2016 [1] estimates the worldwide market for
surveillance video equipment around US$43 billions by 2019.

The resulting huge amount of video data creates a problem,
as it is unfeasible to humans to watch and analyze properly
such content, that is generated on a 24/7 basis. A possible
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solution for this is the use of automatic surveillance systems
that aim at detecting threats, human anomalous activity, pres-
ence (or absence) of abandoned (removed) objects, and so
on [2]–[7]. Although many works have been developed in
this field, there are still many open problems and there is no
complete solution for the most general and complex scenarios,
such as visually complex or cluttered scenes and dynamic
background.

Even though many solutions have been presented for the
latter, almost all of them are unable to cope with videos
acquired by moving cameras. The use of such cameras tends
to increase due to the popularization of moving platforms
(e.g. robots, cars, and drones) that perform the surveillance of
large areas employing several sensors (e.g. for gases, radiation,
etc), that cannot be installed in fixed positions [8]–[11].

The work presented in this paper is focused on methods
based on sparse decompositions. Examples of such methods
that can cope with surveillance videos acquired from static
cameras are discussed in [12] and [13]. They compute low rank
representations of the data using subspace decompositions.
These approaches, however, besides being restricted to video
acquired with static cameras, are not suitable for real-world
applications due to the large computational effort required.

We propose to solve the problem of video surveillance
using moving cameras by representing the video data as a low
rank projection on a union of subspaces (UoS) plus a sparse
residue term. We take advantage of the intrinsic structure
of the used sparse decomposition in order to detect the
anomalies without requiring previous video synchronization.
The proposed algorithms project the frames from an anomaly-
free reference video in a UoS using a sparse decomposition
method and select the best subspaces to reconstruct a possibly
anomalous target video. The anomaly detection is performed
through the observation of the reconstruction residue, that is,
through the target-video part that was not correctly represented
by the reference video data [14]. These methods are robust to
videos with cluttered backgrounds, such as in industrial plants,
as demonstrated by the performed experiments. However, they
still suffer from being computationally demanding. To solve
this problem, we propose a novel approach that largely reduces
the amount of computation in comparison to previous works
based on this philosophy.

To properly introduce the proposed techniques, the remain-
der of this paper is organized as follows: Section II presents
some of the related work on moving-camera surveillance,
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whereas Section III provides a general framework of sparse
representation algorithms, introducing the main ideas in the
context of well known methods that solve similar sparse
representation problems. In Section IV, we describe the pro-
posed surveillance system based on a sparse representation
of both reference and target video sequences as well as a
detailed analysis of the corresponding computational complex-
ity. Section V is dedicated to the experimental results and com-
parison with the state-of-the-art methods both in terms of the
detection performance and computational complexity. Finally,
we present the paper conclusions in Section VI emphasizing
main contributions.

II. MOVING-CAMERA SURVEILLANCE SYSTEMS

The use of fixed cameras for video anomaly detection
usually yields good results as can be seen by the many
published works in this field [15]–[19]. In some applications,
however, the camera position might suffer small perturbations
due to uncontrolled (jitter, wind, vessel movement) or con-
trolled (PTZ, small translation) sources. In these scenarios
more powerful methods are required to perform the analysis
of the video stream. Often this problem is approached by
representing the surveillance videos as matrices and applying
sparse decomposition algorithms to it.

One of the most common applications of the latter methods
is to detect moving foreground objects. Some of the state-of-
the-art techniques designed to deal with this task are briefly
discussed here.

The transformed Grassmannian Robust Adaptive Subspace
Tracking Algorithmt (t-GRASTA) [20] obtains, from a set of
original images, two matrices (low-rank background model
and sparse foreground) and a geometric transformation (such
as a rotation). In order to do so, it uses an incremental gradient
descent (GD) constrained to the Grassmanian manifold of the
estimated subspaces.

The Grassmannian Online Subspace Updates with
Structured-sparsity (GOSUS) [21] performs the decomposition
using an online subspace learning algorithm. It applies a
structural restriction to the updates on a Grassmannian
manifold based on a group-norm.

The work presented in [22] proposes an online RPCA algo-
rithm that uses geometric transformations for image alignment.
Unlike most methods, in [22] these transformations are not
applied on the noisy input samples, but only on the recovered
samples.

Translational and rotational incremental principal compo-
nent pursuit (PCP) [23] is a method that aims to processes
one frame at a time, avoiding the need for batch processing
and yielding a lower memory footprint. It is also capable of
dealing with translational and rotational jitter which makes it
more robust than its predecessors.

Motion-Aware Graph Regularized RPCA [24] creates a
background model by using a modified version of RPCA to
generate a low-rank matrix from a set of matrices. In order to
do so, an optical flow algorithm is used to estimate the motion,
and intra-frame and inter-frame graphs are used to preserve
geometric information in the low-rank matrix estimation.

Fig. 1. Traditional framework of moving-camera abandoned object detection
including video time and geometric alignment before frame comparison.

The Spatiotemporal Robust Principal Component Analy-
sis (SRPCA) [25] proposes the use of a motion mask that
separates the pixels clearly belonging to the foreground. These
pixels are labeled as missing data while estimating a tempo-
rally smooth background model from the remaining data.

Comprehensive surveys about these low-rank decomposition
for forground/background separation methods can be found
in [26] and [27] and implementations of the algorithms for
several related methods can be found in [28].

In some even more challenging scenarios, the surveillance
equipment may be too expensive to be attached in a single
fixed position and overlook a single designated part of the
environment. In these cases, a possible solution is to attach
the equipment to a moving platform enabling one to span a
greater surveillance area.

In the cases above, most of the previously discussed meth-
ods will not be adequate to obtain the desired results. This is so
because, with a camera mounted on a moving platform, usually
there are complex, ever-changing backgrounds. These violate
an assumption that is common to most of the above methods,
the one of small background changes that can be modeled and
later subtracted from the videos. In addition, in some cases
the anomaly we are trying to detect is caused by the presence
of static foreground objects in the scene. This poses an even
greater limitation, since without the inputs of other previously
recorded videos, one can no longer estimate the background
behind the anomalies, thus degrading the performance of most
types of foreground/background separation methods.

As depicted in Fig. 1, moving-camera anomaly-detection
systems often consider an anomaly-free (as attested by a
system operator) reference video and compare it to a tar-
get video in search of anomalous situations. Such video-
comparison routine is often done on a frame-by-frame basis,
thus requiring frame synchronization and geometric alignment
of both video sequences. Post-processing is often carried out to
take advantage of particular characteristics of each application,
such as temporal and spatial consistency of the detection.

A notable attempt to solve the moving-camera anomaly-
detection problem was proposed in [29]. In this work a camera
mounted on a car searches for abandoned objects on streets.
To do so an algorithm similar to that in [30] was used to align
the reference and target videos using the GPS signal as an
external cue. The frames in this method were geometrically
registered using the Random Sampling Consensus (RanSaC)
algorithm [31] on Scale-Invariant Feature Transform (SIFT)
descriptors [32]. Also, to detect the abandoned objects, the reg-
istered frames were compared by computing the Normalized
Cross-Correlation (NCC) between the reference and target
frames. Despite the method’s good performance, the need for
an external signal to align reference and target videos limits
its usefulness.
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The algorithm developed in [33] is able to detect abandoned
objects in a heavily cluttered environment in real-time. Video
synchronization is performed without the use of any external
sensor other than the camera by taking advantage of the a pri-
ori knowledge of the camera’s linear back-and-forth trajectory.
The real-time applicability of this method makes it one of a
kind. However, similarly to the method presented in [29] the
algorithm’s efficiency is also dependent on the correct setup
of the NCC window size. Furthermore, the requirement of
a specific type of camera movement to perform the video
synchronization limits the algorithm applicability in the case
of a more general surveillance scenario.

In another recent approach [34] a camera mounted on a train
is used to detect the presence of objects across the train path.
The alignment and geometric registration techniques (referred
to as DeepFlow [35]) used on this method are based on
the matching of features extracted with a deep convolutional
neural network. This algorithm uses the location of the rails
to select the region-of-interest (ROI) in the frame where
the algorithm has to search for the anomalous entities, thus
avoiding excessive false detections. This method has good
performance in the scenario for which it was designed to
operate, but has high computational cost due to the DeepFlow-
based video alignment. It is also hard to generalize to other
surveillance configurations.

More recently, a two-stage dictionary learning approach [36]
has been proposed for the analysis of video sequences.
It dispenses with the need of motion estimation, track-
ing or background subtraction. The resulting system considers
as anomalies portions of video that are poorly represented by
the dictionary. Thanks to the use of a dictionary to represent
the target-video images, and unlike most of previous and
existing approaches, this algorithm requires neither temporal
nor geometric video alignment. The dictionary construction,
however, imposes a latency to the system that may not be
always tolerable.

In this paper, we describe a new approach for anom-
aly detection in moving-camera video signals based on
a sparse representation of both the reference and target
sequences [14], [37]. In the proposed system, the ref-
erence video is represented as the combination of a
low-rank projection onto a union of subspaces and a sparse
residue [13], [38], [39], which are then employed to represent
the target video. The residue of this last representation allows
one to identify video anomalies in the target video. This
scheme obviates the need of temporal alignment between the
two video sequences.

III. PRINCIPAL SUBSPACE ANALYSIS

When dealing with high-dimensional data one usually wants
to find a representation with a reduced dimensionality that
allows the data to be analyzed and stored using less resources.
A common assumption in those cases is that the data was
acquired from a real-world source (e.g. a sensor or a trans-
ducer). This implies that it is most likely subjected to noise
and other perturbations, which tend to be reduced in the
low-dimensional model. In this section we provide a unified

framework for some of the main methods used to project
high-dimensional data onto subspaces of low dimension,
which is known as subspace learning or principal subspace
analysis (PSA) [40].

Let X = [x1, x2, · · · , xn] be an m × n data matrix with
xi comprising m-dimensional observations. The projection
algorithms model the data as

X = L + E, (1)

where L is a low-rank matrix and E is a sparse residue matrix.
One of the most well-known and widely long used algo-

rithms for this type of analysis is the principal component
analysis (PCA) [41], which employs the singular value decom-
position (SVD) to find out the orthogonal basis that supports
the low-dimensional data subspace, while casting the remain-
ing noisy components to the residue matrix. This approach is
able to find the optimal subspace that minimizes the projection
error of the columns of X and may be expressed as

min
L,E

||E||F s.t.

{
X = L + E

rank(L) ≤ r ,
(2)

where ||.||F denotes the Frobenius [42] norm and r is the
maximum rank of matrix L. The PCA, however, is only able
to cope with small corruptions in the original data, since
large corruption levels modify the subspace support vectors
significantly, compromising the resulting data decomposition.
Also, the maximum rank of the L matrix must be known
a priori, thus requiring some previous knowledge about the
data.

The so-called robust PCA (RPCA) [12] is a refined version
of the PCA algorithm that is able to recover a low-rank
matrix L even when the original data matrix X includes
outliers (heavy tail noise). Note that formulation of RPCA
assumes the rank (r ) unknown, and hence an intrinsic property
of the underlying model to be unveiled. Mathematically the
formulation of RPCA may be written as

min
L,E

rank(L) + λ||E||0 s.t. X = L + E, (3)

where ||.||0 is the l0-norm (number of non-zero entries in the
matrix) and λ is a weighting parameter. Although this problem
formulation is very simple and effective, it is an intractable
NP-hard problem that cannot be solved effectively for large
data sizes. A relaxed version is often used [12],

min
L,E

||L||∗ + λ||E||1 s.t. X = L + E, (4)

where ||.||∗ is the nuclear norm (defined as ||A||∗ =
tr(

√
AHA), with AH denoting the conjugate transpose of A)

and ||A||1 is the sum of the absolute values of all the entries
of A.

Both PCA and RPCA are able to project the data onto a
single subspace. When the data matrix is better interpreted by
the projection onto a union of subspaces of lower dimensions,
one may consider the Robust Subspace Recovery (RoSuRe)
algorithm proposed in [13] and [39]. In this formulation, one
considers the UoS S = ∪J

j=1S( j ) with L being a matrix whose
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columns are uniformly sampled from S. We group all the
samples from the same subspace S( j ) into matrix L( j ) so that

L = [
L(1) L(2) · · · L(J )

]
. (5)

With sufficient sampling density, every column l( j )
k of L( j )

can be represented by a linear combination of the other
columns l( j )

i , i �= k from the same subspace. In this case, one
can say that the set of columns of L( j ) is self-representative,
and it is possible to state that

L( j ) = L( j )W( j ), (6)

where W( j )
k,k = 0.

As a result, from Eq. (5) one can write that L = LW, with

W =

⎡
⎢⎢⎢⎣

W(1) 0 · · · 0
0 W(2) · · · 0
...

...
. . .

...

0 0 · · · W(J )

⎤
⎥⎥⎥⎦ , (7)

where, from Eq. (6), W( j )
k,k = 0, j = 1, . . . , J . Note that

by observing the underlying structure from W it is possible
to infer the subspace structure from L, which is said to be
blockwise low-rank as induced by W.

Let now X be such that it can be represented as an element
belonging to the UoS S added to a sparse residue E. This is
equivalent to stating it can be decomposed as

X = LW + E, (8)

where, from Eq. (7), W is blockwise diagonal with Wk,k = 0
for all k, L is blockwise low-rank, and E is sparse.

The RoSuRe method assumes sparsity both on W (due
to its structure) and E (as it is considered that each Ei is
sparse). To perform the decomposition and assure the above
constraints, the method solves the following optimization
problem:

min
W,E

||W||0 + λ||E||0, s.t.

⎧⎨
⎩

X = L + E
LW = L
Wii = 0, ∀i

, (9)

where || · ||0 represents the number of non-zero entries on
the matrix. As this is a hard non-convex optimization prob-
lem, [13] proposes solving a relaxation of it given by

min
W,E

||W||1 + λ||E||1, s.t.

⎧⎪⎨
⎪⎩

X = L + E
LW = L

Wii = 0, ∀i.

(10)

The optimization proposed in Eq. (10) can be solved with
the use of Algorithm 1. In this and in the subsequent algo-
rithms, the variable μk is the augmented Lagrange multiplier,
ρ is the step used to update μk , η1 ≥ ||L||22 and η2 ≥ ||Ŵ||22
are normalizing weights, τα(·) is the soft-thresholding operator
for the Augmented Lagrangian Multiplier, defined as [43]

τα(x) =

⎧⎪⎨
⎪⎩

x − α, x ≥ α

0, |x | ≤ α

x + α, x ≤ −α.

(11)

Further details can be found on [13].

Algorithm 1 RoSuRe

Input: Data matrix X ∈ R
m×n , λ, ρ > 1, η1, η2, μ0, W0 =

Ŵ0 = E0 = Y0 = 0.
while not converged do

Update W by linearized soft-thresholding:
Lk+1 = X − Ek

Wk+1 = τ λ
μη1

(
Wk − 1

η1
LT

k+1

(
Lk+1Ŵk − Yk

μk

))
Wii

k+1 = 0
Update E by linearized soft-thresholding:
Ŵk+1 = I − Wk

Ek+1 = τ 1
μη2

(
Ek + 1

η2
(Lk+1Ŵk+1 − Yk

μk
)ŴT

k+1

)
Update the Lagrange multiplier Y and the augmented
Lagrange multiplier μk

Yk+1 = Yk + μk (Lk+1Wk+1 − Lk+1)
μk+1 = ρμk

end while

The RoSuRe algorithm was proven [39] to work properly on
synthetic and real data created by randomly sampling vectors
from UoS and adding sparse corrupting noise with different
signal-to-noise ratios (SNR).

IV. MOVING-CAMERA VIDEO ANOMALY DETECTION

USING ROSURE DECOMPOSITION

Principal subspace analysis (PSA) methods can be used to
solve many practical problems. If, for instance, one assumes
a slowly moving camera, then consecutive frames of a given
reference video Xr share approximately the same low-rank
RoSuRe representation [13], [39] allowing one to write that

Xr = Lr Wr + Er , (12)

Er = Xr − Lr , (13)

where Lr is the low-rank1 representation of Xr and Er is its
sparse complement. Note that Eqs. (12) and (13) imply that
Lr Wr = Lr . The corresponding optimization problem then
becomes

min
Wr ,Er

||Wr ||1 + λ||Er ||1, s.t.

⎧⎪⎨
⎪⎩

Xr = Lr + Er

Lr Wr = Lr

Wrii = 0, ∀i.

(14)

In the absence of any anomalous content, the correspond-
ing frames in both the reference and target videos in the
surveillance system depicted in Fig. 1 share the same low-
rank representation. Therefore, one can use the low-rank
representation Lr of Xr to represent the target video Xt such
that

Xt = Lr Wt + Et , (15)

1The self-representative matrix Lr is guaranteed to be low-rank for a single
subspace. For a UoS, as presented in this case, it is usually low-rank, but
there may be cases where the construction of a specific UoS may not lead
to a low-rank matrix Lr . Nevertheless, as for making the notation of the
methodology compatible with that of previous works we will refer to Lr as
either “low-rank” or “self-representative” matrix interchangeably.
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with Wt and Et both being sparse matrices, to which the
corresponding optimization is

min
Wt ,Et

||Wt ||1 + λ||Et ||1, s.t. Lr Wt = Xt − Et . (16)

By modifying the original RoSuRe algorithm [13], the
optimization problem in Eq. (16) can be solved as summarized
in Algorithm 2.

Algorithm 2 Sparse Representation of X Given the Low-Rank
Representation L

Input: L, X, λ,ρ > 1, η1, η2, μ0, W0 = E0 = Y0 = 0.
while not converged do

L′
k+1 = X − Ek

Wk+1 = τ λ
μη1

(
Wk − 1

η1
LT

(
LWk − L′

k+1 + Yk
μk

))
Ek+1 = τ 1

μη2

(
Ek − 1

η2

(
LWk+1 − L′

k+1 + Yk
μk

))
Yk+1 = Yk + μk

(
LWk+1 − L′

k+1

)
μk+1 = ρμk

end while

Solving the problem in Eq. (16), all the anomalous infor-
mation in Xt that could not be represented from Lr Wt are
cast upon Et . Actually, there are in Et other artifacts (such as
high-frequency components not representable by the low-rank
matrix Lr ) that are not related to the anomalies of interest.
Those artifacts, however, are indeed supposed to be present
in matrix Er . Therefore, one can remove these artifacts from
Et by performing an additional decomposition of this matrix
using Er as its low-rank component, as given by

Et = Er We + Ee, (17)

such that the final residue matrix Ee contain only the anom-
alies of interest in the target video. To allow such representa-
tion, one has to perform the following optimization

min
We,Ee

||We||1 + λ||Ee||1, s.t. Er We = Et − Ee (18)

A summarized version of the complete moving-camera
RoSuRe (mcRoSuRe) algorithm is presented in Algorithm 3.

Algorithm 3 Moving-Camera RoSuRe Algorithm
Require: Xr , Xt

minWr ,Er ||Wr ||1 + λ||Er ||1, s.t. Xr = Lr + Er,
Lr Wr = Lr , Wrii = 0

minWt ,Et ||Wt ||1 + λ||Et ||1, s.t. LrWt = Xt − Et
minWe,Ee ||We||1 + λ||Ee||1, s.t. ErWe = Et − Ee

A. Accelerated Versions of mcRoSuRe Anomaly-Detection
Algorithm

The mcRoSuRe algorithm shows great performance in the
detection of abandoned objects in a cluttered environment,
with a good detection performance and a reduced false-positive
rate. However, the algorithm is computationally intensive and
is therefore not suited for real-time applications. In fact,
the computational complexity of the mcRoSuRe algorithm

increases significantly with the size of the videos being
analyzed (see Subsection IV-B for a precise analysis). This
explains the small video excerpts (70-frame long videos of
320 × 180-pixel frames) processed in [14]. To allow the
reduction on the execution time of the algorithm, one may
take advantage of some of its intrinsic properties concerning
the resulting data representation. In this subsection new accel-
erating techniques that benefit from this innate representation
(including the ones introduced in [44]) and modify the original
method are discussed.

The original mcRoSuRe formulation does not require a
precise frame-by-frame synchronization of the reference and
target videos, but only that the area covered by the target
video is contained within the area covered by the reference
video excerpt. This is clear from the analysis of Eq. (12),
where target-video data matrix Xt can be reconstructed by Lr ,
the low-rank component of the reference video, up to a sparse
error Et . If one could reduce the number of columns of Lr

to include only those corresponding to the exact portion of
the target video under analysis, great computational savings
could be obtained. This is the same as saying that the UoS
search space in the optimization problem described in Eq. (16)
is restricted to a limited number of relevant subspaces.

One way of selecting these reference frames of interest is
to observe the resulting Wt matrix in Eq. (15). This requires,
however, the computationally expensive implementation of
the first two steps of the mcRoSuRe algorithm described in
Eqs. (14) and (16), that are detailed in Algorithm 3. One
way to avoid this issue is to precompute Wt by representing
the frames from the target video not as a combination of
the low-rank representations of the reference frames Lr , but
as a combination of the actual reference frames Xr . This
proposition allows the construction of a version of the Wt

matrix without the need to find the low-rank representation of
the Xr matrix. This is the most costly step of the mcRoSuRe
algorithm as will be shown later in the experimental results
section. To perform this precomputation step one should
compute the decomposition below [44]

Xt = Xr Wt + Et . (19)

This new added step requires solving the optimization
problem defined by

min
Wt ,Et

||Wt ||1 + λ||Et ||1, s.t. Xt = Xr Wt + Et , (20)

whose implementation is summarized in Algorithm 4.

Algorithm 4 Decomposition of Xt Using Xr Instead of Lr

Input: X′
r , Xt , λ, ρ > 1, η1, η2, μ0, W0 = E0 = Y0 = 0.

while not converged do
X′

r(k+1) = Xt − Ek

Wk+1 = τ λ
μη1

(
Wk − 1

η1
XT

r

(
Xr Wk − X′

r(k+1) + Yk
μk

))
Ek+1 = τ 1

μη2

(
Ek − 1

η2

(
XrWk+1 − X′

r(k+1) + Yk
μk

))
Yk+1 = Yk + μk

(
Xr Wk+1 − X′

r(k+1)

)
μk+1 = ρμk

end while
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Fig. 2. Results for Wt matrix being used to localize the important
corresponding frames of Xr (brighter pixels denote higher values in the
matrices). The vertical dimension corresponds to the target video frames and
the horizontal dimension to the reference video frames: (a) Wt matrix from
Eq. (15); (b) Columnwise maximum of Wt matrix from Eq. (15); (c) Wt
matrix from Eq. (19); (d) Columnwise maximum of Wt matrix from Eq. (19).

Fig. 3. Example of resulting Wt matrices from Eq. (19) using: (a) complete
reference data matrix Xr ; (b) downsampled-in-time reference matrix Xds

r .

A direct comparison between the corresponding Wt matri-
ces generated by Eqs. (15) and (19), respectively, is shown
in Fig. 2, where one can readily observe that Eq. (19) yields
less spread and more precise results with respect to localization
of the important frames. That behaviour most likely comes
from the fact that the high-frequency components within Xr

(which are absent from Lr ) are crucial in selecting the proper
frame of Xr to represent the corresponding frame in Xt .

By detecting the columnwise maximum of the Wt matrices,
as depicted in the right-hand side of Fig. 2, one can find
the direct correspondence between the frames of Xr and Xt .
Selecting from Xr only the frames that correspond to the
portion of the target video Xt being analyzed one can execute
the optimization steps represented by Eqs. (14), (16), and (18)
replacing Xr by a much smaller X′

r matrix, thus reducing
the computational cost associated to the resulting algorithm.
This algorithm is referred to as mcRoSuRe with Temporal
Alignment (mcRoSuRe-TA) and was first introduced in [44].

Furthermore, one can use the above formulation to further
reduce the computation complexity. This can be achieved by
performing a uniform temporal subsampling of the original
reference video, yielding a smaller, yet representative, ref-
erence data matrix Xds

r . If one observes the Wt matrices
obtained by the decomposition performed by Eq. (16) with
the original Xr and with Xds

r it is possible to observe that the
width of Wt matrix computed with Xds

r is very much reduced
in comparison with that obtained with the original Xr matrix.
Nevertheless, the interval that relates to the frames of the target
video is still clear, allowing a precise selection of the reference
frames used to decompose the target video. Fig. 3 shows an
example of the Wt matrices generated using the original Xr

and decimated-in-time Xds
r .

From this figure, one can readily see the size discrepancy
between the two approaches, which translates in a much

TABLE I

VARIABLES RELATED TO THE ASSESSMENT OF THE
COMPUTATIONAL COMPLEXITY OF THE ALGORITHMS

reduced computational effort for the latter. Note that X′
r

corresponds to an interval of Xr ; Xds
r is only used to determine

the limits of this interval.
With the addition of the proposed pre-processing steps,

the accelerated version of the mcRoSuRe approach becomes
as summarized in Algorithm 5 and is called mcRoSuRe
Accelerated (mcRoSuRe-A).

Algorithm 5 mcRoSuRe - Accelerated

Downsample reference video to create Xds
r .

minWt ,Et ||Wt ||1 + λ||Et ||1, s.t. Xt = Xds
r Wt + Et,

Crop reference frames of interest based on Wt matrix.
Create X′

r .
minW′

r ,E′r ||W′
r ||1 + λ||E′

r ||1, s.t. X′
r = L′

r + E′
r,

L′
r W′

r = L′
r , W′

rii = 0
minW′

t ,E′ t ||W′
t ||1 + λ||E′

t ||1, s.t. X′
rW′

t = Xt − E′
t

minWe,Ee ||We||1 + λ||Ee||1, s.t. E′
rWe = E′

t − E′
e

B. Computational Complexity Analysis

We now consider the number of arithmetic operations
required to implement the different versions of the mcRoSuRe
algorithm discussed in Section IV. For the calculation of
the number of computations, the numbers of additions and
multiplications were obtained from Algorithms 1, 2, and 4.
For this analysis, let Nr and Nt be the numbers of R×C-pixel
frames in the reference and target videos, respectively, and let
P = RC be the number of pixels per frame, as indicated
in Table I.

The RoSuRe method, described in Algorithm 1, operates on
Nr × P matrices, where each iteration requires

A(Nr , P) = 2N2
r + 5P Nr (21)

additions and

M(Nr , P) = 4P N2
r + 2N2

r + 3P Nr + 7 (22)

multiplications, which, in practice, is dominated by the
O(P N2

r ) term [13].
The more computationally intensive mcRoSuRe algorithm,

described in Algorithm 3, requires even more operations in
each of its iterations, as given in Algorithm 2. In the first step,
one has the RoSuRe algorithm with the associated O(P N2

r )
cost. The second and third mcRoSuRe steps, however, perform
a distinct optimization as given in Algorithm 2, which deals
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TABLE II

COMPUTATIONAL COMPLEXITY PER ITERATION OF THE EVALUATED METHODS (IN NUMBER OF MULTIPLICATIONS)

with P × Nr , P × Nt , and Nt × Nr matrices. With that in mind
the method needs in each iteration

A(Nr , Nt , P) = Nr Nt + 8P Nr (23)

additions and

M(Nr , Nt , P) = 3P Nr Nt + 3Nr Nt + 3P Nt + 7 (24)

multiplications, which results in an overall cost of O(P N2
r +

P Nr Nt ).
The mcRoSuRe-A algorithm, introduced in Subsection IV-A

and described in Algorithm 5, creates an additional optimiza-
tion step as summarized in Algorithm 4. Its first step considers
an optimization on a downsampled reference video sequence
containing Nds

r 
 Nr frames. Therefore the actual number of
arithmetical operations for each iteration in this step is

A(Nds
r , Nt , P) = Nds

r Nt + 8P Nds
r (25)

additions and

M(Nds
r , Nt , P) = 3P Nds

r Nt + 3Nds
r Nt + 3P Nt + 7 (26)

multiplications, which is dominated by the O(P Nds
r Nt ) term.

After this step a new reference sequence is created with
only N ′

r 
 Nr frames, corresponding to the original ref-
erence video excerpt used to reconstruct the target frames.
The following steps use the same optimization described in
Algorithm 2 but using P × N ′

r , P × Nt , and Nt × N ′
r matrices,

requiring in the second step

A(N ′
r , P) = 2N ′2

r + 5P N ′
r (27)

additions and

M(N ′
r , P) = 4P N ′2

r + 2N ′2
r + 3P N ′

r + 7 (28)

multiplications for each iteration and in the subsequent steps

A(N ′
r , P) = N ′

r Nt + 8P N ′
r (29)

additions and

M(N ′
r , Nt , P) = 3P N ′

r Nt + 3N ′
r Nt + 3P Nt + 7 (30)

multiplications for each iteration.
These operations lead to an overall cost of the order

O(P N ′2
r ) for the second step and O(P N ′2

r + P N ′
r Nt ) for the

third and fourth ones, which once again is much smaller than
O(P N2

r ) and O(P N2
r + P Nr Nt ) respectively, as N ′

r 
 Nr .
A summary of the final computational complexities of the

algorithms analyzed is given in Table II. From the above
analysis, one can infer that mcRoSuRe-TA and mcRoSuRe-A

reduce drastically the resulting overall complexity when com-
pared with mcRoSuRe, as verified quantitatively in Section V.

To provide numerical information on these computational
complexities, we show here the figures associated with an
example from Section V-B. In this experimental scenario,
based on a real-world application, R = 320, C = 180, yielding
P = 57600, Nr = 5000 and Nt = 200. Using a typical
value for the downsampling value one will have Nds

r = 500.
Provided that the camera does not stop during the translational
movement (common case in real applications) N ′

r = 210 (the
size of Nt plus a guard interval). For a list of the variables
refer to Table I.

With these values the mcRoSuRe method would have the
following numbers of multiplications per iteration

• First step: 9.14 · 108 multiplications
• Second step: 1.73 · 1011 multiplications
• Third step: 1.73 · 1011 multiplications

while mcRoSuRe-A would have

• First step: 1.73 · 1010 multiplications
• Second step: 1.02 · 1010 multiplications
• Third step: 7.29 · 109 multiplications
• Fourth step: 7.29 · 109 multiplications

The gains in computation complexity in every step by using
the proposed algorithm can be inferred from this example.

V. EXPERIMENTAL RESULTS

A. Video Database for Abandoned Object Detection

To test the performance of the proposed algorithms in a real-
world challenging scenario the Video Database for Abandoned
Object Detection (VDAO) database (described in [45] and
available for download at [46]) was used. This database
contains over 8 hours of videos recorded in visually clut-
tered complex environments of industrial plants. The database
videos contain several challenges as illumination variation,
occlusion of objects, and camera jitter. The abandoned objects
are everyday static objects placed in the industrial scenario. All
videos feature reference and target sequences with manually
marked ground-truth labels. To the authors’ best knowledge,
the VDAO database is the only publicly available one exclu-
sively designed for the detection of abandoned objects [47].

The VDAO database was recorded using a camera mounted
on top of a moving robotic platform that follows a linear
path of about 6 m on a hanging rail at a height of approxi-
mately 2.5m. The camera is pointed at a cluttered environment
comprised of several pipes and valves depicting a scene of
interest inside an industrial facility. The database videos are
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TABLE III

TIME (IN SECONDS) USED BY EACH STEP OF THE MCROSURE,
MCROSURE-TA, AND MCROSURE-A METHODS WHEN

ANALYZING THE VDAO DATABASE WITH

DIFFERENT REFERENCE/TARGET

VIDEO LENGTHS

separated in two groups: single- and multi-object videos. The
single-object videos have only one abandoned object placed
along the camera path, whereas the multi-object videos have
at least two abandoned objects present in every frame of the
video. All the videos contain several passes of the camera in
the rail aiming to the same region.

Although the VDAO videos are in full-color and with
1280 × 720-pixel resolution, for the proposed experiments all
videos were converted to grayscale and downsampled to a
320 × 180 resolution.

B. Experimental Assessment of the Proposed Algorithms

In a first experiment we compare the three versions of
the mcRoSuRe algorithm: the original one summarized in
Algorithm 3 (mcRoSuRe) [14], the one in Algorithm 5
(mcRoSuRe-TA) [44], and the accelerated one proposed here
(mcRoSuRe-A) which uses a 10:1 decimated version of the
reference video in this first step of the algorithm.

For comparison purposes, we evaluate the performances
of these three versions when matrix Xr is composed by
Nr = {5000, 1000, 200} frames of a given VDAO reference
video and Xr is comprised of Nt = {200, 200, 100} frame
excerpts, respectively, from each of the 59 single-object VDAO
target videos. As for parameter initialization, we used: λ = 1,
ρ = 1.5, η1 = 3, η2 = 1.1σ1(Xr ), and μ0 = 1.25/σ1(Xr ),
where σ1(Xr ) is the largest singular value of input matrix Xr.

Table III shows the time (in seconds) taken by
each algorithm step when analyzing all videos in an
Intel i7-3630QM with 2.4GHz and 16GB of RAM, running
MATLAB © 2012b. From this table, it is noticeable how the
proposed modifications accelerate the algorithm, particularly

in the first step which is the dominant one in the original
mcRoSuRe version. Comparing the total running time of
each algorithm, one notices how the proposed mcRoSuRe-A
(using 10:1 downsampling ratio) outperformed the other two,
specially for longer video sequences where the acceleration
factor becomes 2.6 with respect to the mcRoSuRe-TA and
100 with respect to mcRoSuRe.

It must be emphasized that this speed improvement occurs
without hindering the system’s detection capability. In fact,
when one compares the outputs of both mcRoSuRe and
mcRoSuRe-A methods, one readily observes that both meth-
ods have very similar (if not exactly equal) results, as depicted
in Fig. 4. Similar results for the mcRoSuRe-TA method can
be found in [44].

C. Abandoned Object Detection Algorithms
Using Moving Camera

The performance of the proposed mcRoSuRe-A algo-
rithm has been assessed by comparing it with those of
some of state-of-the-art methods, such as the detection of
abandoned objects with a moving camera (DAOMC) [29],
the moving-camera background subtraction (MCBS) [34], and
the spatio-temporal composition for moving-camera detection
(STC-mc) [36]. To this end we used the annotated videos from
the VDAO database. As the algorithms of [29], [34], and [36]
could not be executed in a reasonable amount of time for the
complete VDAO videos, only short-length 200-frame videos
were employed.

The selected 200-frames video excerpts used in the exper-
iments described in this paper are publicly available at [48].
The results of all experiments carried out with the competing
methods can also be found at [48].

For comparison purposes, the reference-target video syn-
chronization was performed manually for the DAOMC algo-
rithm. In our implementation of the DAOMC, an NCC window
small enough to detect all objects in the database was used to
allow a fair comparison. For the MCBS algorithm, since the
application of the method changed from a railway surveillance
problem to a more general scenario, the post-processing steps
that find the railway tracks were removed from the original
algorithm. For the STC-mc the original author’s implemen-
tation of the algorithm was used. In addition, the results
presented for the MCBS algorithm were obtained after the
application of the optimized parameter configuration for the
two similarity metrics used in the original paper [34], namely:
the normalized vector distance (NVD) [49] and the radial reach
filter (RRF) [50].

To obtain quantitative results for the mcRoSuRe-A algo-
rithm the output matrix Ee was post-processed with simple
open and close morphological operations with 1 to 5 pixel-
wide structuring elements. Also, simple binary thresholding
was applied to obtain the final detection mask.

The performance for all methods was initially quantified
with the following metrics: (i) True positive (TP) detection
rate, where a TP occurs when the detection blob has at least
one coincident pixel with the abandoned-object ground-truth
bounding box; (ii) False positive (FP) detection rate, where an
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Fig. 4. Comparative results for the mcRoSuRe and mcRoSuRe-A algorithms (single frames of matrices Xr , Xt , Er , Et , and E of both methods) for
4 different abandoned-object videos from VDAO [45] database: (a) blue box; (b) shoe (c) pink bottle; (d) camera box. The similar detection performance of
both methods is clear from these experiments.

FP arises when the detection blob has all pixels outside the
ground-truth bounding box; (iii) False negative (FN) detection
rate, where an FN occurs when the ground-truth bounding
box has no detected pixels inside it; (iv) True negative (TN)
detection rate, where a TN is associated to a frame with no
bounding box and no detected pixels. In addition, we consider
the DIS parameter defined as

DIS =
√

(1 − TP)2 + FP2, (31)

which can be interpreted as the minimum distance of all
operating points to the point of ideal behaviour (TP = 1 and
FP = 0) in the TP×FP plane. The use of this metric allows
direct comparison with the results in [36].

In a first experiment, the same seven video excerpts of [36]
were considered. Since those videos contain only frames
with objects, only the TP and FP measurements are shown
in Table IV along with the distance parameter.

It is clear from the results in Table IV that for those limited
scenarios considered in [36] the mcRoSuRe-A method is either

equivalent or superior to the other algorithms for all considered
metrics. The average mcRoSuRe-A TP of 0.99 shows that
in almost all the cases the algorithm is able to detect the
presence of anomalies, with a somewhat low FP detection
rate of 0.20. The lowest DIS value of 0.20 indicates that the
mcRoSuRe-A algorithm achieves the best balance between the
TP and FP detections for this problem among all the competing
algorithms.

In a more extensive analysis, we considered the algorithm
average performances for all 59 single-object VDAO videos,
as given in Table V. In these videos there are both frames with
and without objects.

By analyzing the results presented in Table V one notices
that the mcRoSuRe-A method is consistently superior to the
other three competing methods in every metric considered.
The average mcRoSuRe-A TP detection rate is the only one
above 0.90, while yielding the lowest average FP detection
rate. Unlike the competing algorithms mcRoSuRe-A provides
over 0.60 of TN detections. In the case of the VDAO database
this is most challenging metric as even small changes in
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TABLE IV

DETECTION COMPARISON OF PROPOSED MCROSURE-A METHOD WITH THAT OF STC-MC, DAOMC,
AND MCBS METHODS FOR THE SAME SEVEN VIDEOS EXTRACTS EMPLOYED IN [36]

TABLE V

AVERAGE DETECTION COMPARISON OF PROPOSED MCROSURE-A
METHOD WITH THAT OF STC-MC, DAOMC, AND MCBS

METHODS FOR ALL 59 SINGLE-OBJECT VIDEOS
OF THE VDAO DATABASE

illumination and camera position can yield false detections.
Finally the mcRoSuRe-A is the only one among the tested
methods to have less than 0.10 average FN, providing the least
amount of undetected anomalies.

In this experiment we used the parameter values tuned for
the initial seven video experiment shown in Table IV for all
the compared methods. Since the videos in this experiment
present more challenging features (as objects being occluded)
and a larger variation in objects shapes and illuminations, not
all methods kept their good results. In contrast with most of
the competing methods mcRoSuRe-A have shown to be robust
to the challenges presented in this database having shown the
least decrease in the performance when compared with the
initial test results.

If one is not concerned with the identification of the anom-
aly position inside a given frame, but wants only to determine
whether a frame presents an anomaly, a more relaxed version
of the detection metrics can be used. By considering only a
frame-level detection analysis, one may define a TPfl (or FPfl)
by the presence of any detection blob in an anomalous (non-
anomalous) frame and an FNfl (or TNfl) by the absence of
a detection blob in an anomalous (non-anomalous) frame.
Average results for these frame-level metrics for all four
detection algorithms and for all 59 single-object videos from
the VDAO database are shown in Table VI.

Table VI leads to similar conclusions as Table V. Since here
the localization of the anomaly inside the frame is no longer
an issue, then slightly misplaced detection blobs now count
as a correct detection thus making the small objects more
frequently detected by all methods, improving, for instance,
the TPfl mcRoSuRe-A measurement to 0.95. Although the
TPfl results for the MCBS method are superior to the ones
of mcRoSuRe-A, it yields also yields 0.99 of FPfl detection,

TABLE VI

AVERAGE DETECTION COMPARISON OF PROPOSED MCROSURE-A
METHOD WITH THAT OF STC-MC, DAOMC, AND MCBS
METHODS FOR ALL 59 SINGLE-OBJECT VIDEOS OF THE

VDAO DATABASE USING FRAME-LEVEL METRICS

TABLE VII

AVERAGE DETECTION COMPARISON OF PROPOSED MCROSURE-A
METHOD WITH THAT OF STC-MC, DAOMC, AND MCBS

METHODS FOR THE 9 MULTI-OBJECT VIDEOS

OF THE VDAO DATABASE

showing it is unreliable for this type of application. On the
other hand, the FPfl also increased for all methods, as now
only the frames where there are no anomalies count for this
verification, thus making every error more relevant on the
statistics.

Another test was performed using the multi-object videos
from the VDAO database. Those videos are much more
challenging than the single-object videos, as in this case,
there are very small objects that can be hard to detect. Also,
the contrast of the videos is not as good as that of the single-
object videos. The results of these experiments are summarized
in Table VII.

Since in the multi-object videos each frame has at least two
objects (as explained in Section V-A), there are no TN frames.
Thus, as a result, similarly to what happened with the
7-video tests, only the TP, FP, and DIS results are displayed.
Unfortunately, by using the metrics that were chosen for the
other experiments it is not possible to take into account the
number of objects that were correctly detected in a frame with
more than one object.

When analysing the results from this experiment, it is clear
again that, in this more challenging scenario, mcRoSuRe-A
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TABLE VIII

TIME (IN SECONDS) USED BY ALGORITHMS STC-MC, DAOMC, MCBS,
AND MCROSURE-A METHODS WHEN ANALYZING SEVEN

VIDEOS FROM THE VDAO DATABASE

presents more reliable results than the other compared
methods. Although DAOMC and MCBS have better TP results
those two methods present much higher FP results as well,
as can be seen by inspecting the DIS measurement in the last
column of Table VII.

Finally, the time performance of all the competing algo-
rithms was compared using a computer with Intel i7-4790K
with 4.0GHz and 32GB of RAM, running MATLAB ©2015a.
Table VIII presents the total time taken by each algorithm to
run the same seven videos considered in Table IV. From these
results, one can easily notice how the mcRoSuRe-A method
is the fastest one, being able to run at least seven times faster
than the other methods in this test.

VI. CONCLUSION

This paper presents a family of algorithms that use sparse
representations for detecting anomalies in video sequences
obtained from slow moving cameras. The proposed techniques
project the acquired data from a reference (anomaly-free)
video onto a union of subspaces, and select a small number of
those subspaces that contain most of the information needed
to reconstruct the target (possibly anomalous) video.

The present work has shown the efficiency of the
mcRoSuRe-A method demonstrating that it is able to cope
with challenging scenarios in much less processing time
than the other methods in mcRoSuRe family, while attaining
qualitatively similar results. Depending on the size of the
videos, the method was shown to be able to run up to
2.6 times faster than mcRoSuRe-TA [44] and 100 times faster
than the original mcRoSuRe [14] algorithm, placing it among
the fastest methods for anomaly detection in moving-camera
videos.

Extensive experiments were conducted comparing the
mcRoSuRe-A detection performance with alternative state-of-
the-art approaches using the challenging VDAO database. The
algorithm was shown to perform well in this database attaining
the best average performance in all tests, reaching an average
rate of 0.91 of true positive detections and around 0.33 of
false positive detection, having the best compromise among
the tested methods.
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