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Abstract This paper addresses the problem of abandoned object detection in a cluttered
environment using a camera moving along a straight track. The developed system compares
captured images to a previously recorded reference video, thus requiring proper tempo-
ral alignment and geometric registration between the two signals. A real-time constraint is
imposed onto the system to allow an effective surveillance capability in practical situations.
In this paper, we propose to deal with the simultaneous detection of objects of different sizes
using a multiresolution approach together with normalized cross-correlation and a voting
step. In order to develop and properly assess the proposed method we designed a database
recorded in a real surveillance scenario, consisting of an industrial plant containing a large
number of pipes and rotating machines. Also, we have devised a systematic parameter tuning
routine that allows the system to be adapted to different scenarios. We have validated it using
the designed database. The obtained results are quite effective, achieving real-time, robust
abandoned object detection in an industrial plant scenario.

Keywords Video surveillance · Moving camera · Abandoned object detection · Cluttered
environment

1 Introduction

Computer vision techniques can be used to extract reliable information from a video sig-
nal, providing a reasonably good understanding of the recorded environments or processes.
By exploring this capability, automatic video-based monitoring systems can be deployed,
enabling significant savings of resources, minimizing labor risks in hazardous environments
and increasing system efficiency, particularly when dealing with repetitive or tedious tasks.
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The automatic detection of abandoned objects in a given scenario constitutes an interesting
feature of a surveillance or remote inspection system.This detection problemcanbe addressed
by comparing a newly acquired video, also known as the target video, to a reference video
considered free of abandoned objects. In this way, a video anomaly, which may be associated
to an abandoned object, is detected whenever and wherever the target and reference videos
differ to a significant amount.

When using static cameras for this purpose, simple background and behavior subtractions,
employing statistical approaches, allow one to detect anomalies in the acquired videos (Dore
et al. 2010; Subudhi et al. 2011; Saligrama et al. 2010; Tian et al. 2011). A good example
of such systems is described in Lin et al. (2017), where the authors deal with a background
with frequent local motions, such as waving trees. Also, in Chang et al. (2013), the proposed
method tries to identify the owner whenever it detects an abandoned object.

Someworks relax the static camera constraint by detectingmoving objects while compen-
sating a small amount of movement, usually due to some kind of jitter in the camera (Cheng
et al. 2011; Jodoin et al. 2012; Romanoni et al. 2014). Another popular application of auto-
matic surveillance systems is to track objects along a video sequence. As in the case of
object detection applications, this task is performed more easily when static cameras are
employed (Kim and Hwang 2002; Subudhi et al. 2011). Some other methods rely on a
pre-trained database of object shapes to detect the presence of anomalous objects in the
scene (Felzenszwalb et al. 2010).

A surveillance systembased solely on static cameras, however,maynot be efficient in cases
where a wide areamust be supervised (Tomioka et al. 2012) or expensive specialized cameras
[e.g. infrared, hydrocarbon-detecting cameras, like FLIR GF320 model (FLIR 2016)] are
employed.

A possible solution in some of these situations is to use pan-tilt-zoom (PTZ) or panoramic
cameras that add some flexibility to the camera field-of-view (FoV). Some approaches detect
mobile objects with PTZ cameras by building a dynamic background model and applying
modified background subtraction techniques (Micheloni and Foresti 2006; Suhr et al. 2011;
Xie et al. 2010; Xue et al. 2013, 2011). Others, such as Davis et al. (2007), develop motion
histograms and detect events whose motion differs from that estimated for the camera.

Another solution, particularly suited for specialized cameras, is the use of a moving
platform to increase the surveillance range. Such solution, however, brings new challenges
as the camera movement must be properly compensated in time and space before any sort
of comparison between the target and reference videos can be made (Hu et al. 2015; Kong
et al. 2010).

Many works have addressed the problem of detecting a moving object using a moving
camera. Some Kim et al. (2010), Nordlund and Uhlin (1996), Pinto et al. (2014) and Sun
et al. (2013) approach this challenge by using optical flow techniques and building several
background models to deal with the camera motion. Other methods Chen and Bajie (2011)
and Ghosh et al. (2012) perform global motion estimation to compensate the movement
of the camera and detect the objects of interest by using an edge detector. There are some
proposals that approach this problem by detecting pre-defined image patches in the video
sequence (Choi et al. 2013; Li et al. 2010; Yilmaz 2011). In others Hu et al. (2015), Kim
et al. (2013) and Lee et al. (2010), the moving object detection is performed by building a
dynamic background model to cope with the moving foreground. In Menezes et al. (2011)
Markov random fields are used to model an intensity map where a spatio-temporal approach
is applied to detect the objects.

In the applicationswhere the camera is usedonmovingplatforms the task of object tracking
is also of great importance. In this scenario, however, due to the need of compensation of the
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camera motion, the algorithms are usually more complex (Choi et al. 2013; Kim et al. 2013;
Xie et al. 2014; Yilmaz 2011).

In addition to the added complexity introduced by the use of moving cameras, if the
environment to be monitored is cluttered (such as are industrial plants), the process of sorting
out the useful information from the background becomes even more difficult, generally
reducing the overall detection robustness. The detection of still objects with a moving camera
with arbitrary trajectory is the subject of very few works in the literature. Examples can be
found in Kong et al. (2010), Taneja et al. (2015), and Mukojima et al. (2016). However, due
to the complex nature of this task, none of these methods is able to perform in real time.

In this paper, we propose a complete surveillance system for detecting the presence of
anomalies (abandoned objects) in a cluttered environment. We use a moving camera attached
to a robotic platform performing a translational movement. The monitoring system uses a
reference video with no anomalies, as certified by a system operator in an initial calibration
stage, similarly to the initial marking of Lee et al. (2010). The detection of anomalous objects
is carried out by comparing the target video, acquired in subsequent passages of the robotic
platform, with the initial reference video. All processing is performed in real time, what
requires specific signal-processing solutions and makes the system suitable for a wide scope
of practical situations.

The technical literature on automatic detection in surveillance applications is quite exten-
sive. However, to the best of our knowledge, the specific problem of real-time detection of
abandoned objects with a camera attached to a moving platform in a cluttered environment,
such as an industrial plant, has not been fully addressed yet. Therefore, as the starting point of
this work we generated a large database of surveillance videos taken from a moving camera
in a cluttered industrial environment. This database, publicly available at VDAO (2014), is
briefly described in Sect. 3.

A relevant issue in the type of surveillance system we are proposing is the temporal
alignment of the reference and target videos. Solutions to this problemusually include external
trigger signals to determine the camera position, such as a GPS device (Kong et al. 2010) or
the robot’s odometry (DeSouza and Kak 2002; Kundu et al. 2010). Our proposal dispenses
with external signals for temporal alignment, the camera position being determined using
a maximum-likelihood model for the camera movement derived directly from the acquired
reference and target videos.

We also devise a multiscale approach to compare the synchronized and registered frames
from the reference and target videos. In this framework, larger abandoned objects are searched
in lower video resolutions and smaller objects are searched in higher resolutions, leading to
an increased detection robustness at a reasonable computational cost. Video comparison
includes the computation of the normalized cross-correlation (NCC) (Kong et al. 2010)
between two video frames within the proposed multiresolution approach. After an NCC
threshold operation, a binary detectionmask is determined. Subsequent nonlinear operations,
which include temporal filtering, voting step, and morphological operations, remove most
false positive and false negative detections, increasing the overall system accuracy.

A step-by-step strategy for determining the system parameters was devised in order to
maximize its detection rate. We describe it along with the assessment of the impact of each
system variable on the resulting performance. Overall system performance is assessed using
validation on a large database, recorded in a real industrial plant, comprising more than 8 h
of annotated video and several types of abandoned objects(different colors, sizes, positions
etc.), as detailed in da Silva et al. (2014).

It is worth mentioning that in the proposed method the detection is performed without
the need of any pre-generated 3D model as those used in Taneja et al. (2015). It can also be
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applied without the need of selection of any Region of Interest (ROI) constraints like those
applied in Kong et al. (2010), Nordlund and Uhlin (1996) and Taneja et al. (2015) and in
much more complex and cluttered environments. In addition, unlike most of the previous
works (Kong et al. 2010; Taneja et al. 2015), changes in the texture of the image, as well
as flat objects, can be reliably detected. Considering the above, we can see that our target
application, and therefore the proposed method, is unique in many ways.

To describe the proposed surveillance system, this paper is organized as follows: Sect. 2
presents the deployed system, including the video-comparison strategy in a step-by-step
procedure. Section 3 briefly describes the database employed to adjust and evaluate the
proposed detection scheme. Section 4 details all specific solutions developed in the context
of this work to optimize the system’s performance in terms of computational complexity
and detection robustness. Section 5 describes the configuration of all system variables of
interest, discussing their individual effects on the resulting detection process. In Sect. 6,
detection results are presented characterizing the system’s performance in both quantitative
and qualitative ways. Finally, Sect. 7 concludes the paper emphasizing its main technical
contributions.

2 General system description

The proposed surveillance system consists of a high-definition (HD) 24 frame/s camera
mounted on a robotic Roomba� platform (iRobot 2016) performing a back-and-forth
movement on a horizontal track, as illustrated in Fig. 1. The moving robot takes about
3min to cover the entire 6 m track, which oversees an industrial plant with a cluttered back-
ground.

The following framework was employed for the real-time system operation: a reference
video is obtained from an initial robot passage and is validated by some operator, indicating
the absence of any strange objects. The videos from all subsequent robot passages are then

Fig. 1 Real camera-robot system with a glimpse of the cluttered environment of interest on the background
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Fig. 2 Flowchart of the system. Each step is described in details in Sect. 4

compared to that reference video in search of any newly observed object. If necessary, the
system operator may change the reference video using a simple update procedure, and after
this the monitoring system goes back to normal operation.

A flowchart with the implemented steps of the system is shown in Fig. 2.
For a proper object detectionwithin a given video sequence, the developed system includes

the following processing steps:

(i) Video alignment

(a) Reference and target video synchronization, both for the initial alignment and for
correcting subsequent deviations due to small variations on the robot’s speed;

(ii) Image registration

(a) Identification of points of interest (PoI), usually salient points, in the corresponding
reference and target frames to allow simplified real-time processing;

(b) Geometric registration between the corresponding reference and target frames to
reduce misalignments due to vibration effects on the robot movement along the rail;

(iii) Multiscale frame comparison

(a) Numerically efficient (for real-time purposes) and robust frame comparison, using
a multiresolution scheme, to identify significant frame discrepancies which can be
associated to an abandoned object;

(iv) Post-processing

(a) A pixel-level voting strategy along consecutive detectionmasks to identify consistent
detections along time, removing occasional false detections;

(b) Morphological operations to remove additional false-positive and false-negative sit-
uations.

Details about the techniques proposed in this paper for implementing the above stages is
presented in Sect. 4.
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3 Abandoned-object video database

In order to allow a systematic verification of the system robustness, a large video database,
described in da Silva et al. (2014) and available at VDAO (2014), was deployed. The so-
called VDAO database (from “video database of abandoned objects in a cluttered industrial
environment”) was recorded in a real industrial facility comprised of several machin-
ery, pipes and other visually complex structures that pose greater challenges than those
of other databases. The videos show cluttered, visually complex backgrounds and the
objects suffer occlusions in the video due to the presence of structures at several dif-
ferent distances from the camera. The whole database comprises more than 8 hours of
video and includes objects of different sizes, colors, textures and positions along the track.
Also, two illumination levels (with and without additional spotlights) were addressed in
the single-object videos and two different HD cameras were used to acquire the videos.
There are also small differences in illumination levels in the videos because, although the
videos were made indoors, they were recorded at multiple times of the day, in different
days.

As a result, 8 reference videos (without abandoned objects) and 65 different target videos
were produced (6multi-object videos and 59 single object videos). The 15 objects that appear
in the multi-object video set are different from the 9 objects that appear in the single-object
videos. Differences in the single-object videos include illumination levels and object type
and positions. The availability of videos with more than one object in the same view, together
with their different sizes and types, was important to test and tune the proposed multiscale
detection algorithm.

In the VDAO database, the positions of all abandoned objects within a given frame
are identified in a separate file by the corresponding bounding boxes, as illustrated in
Fig. 3.

Fig. 3 Example of abandoned-object identification within the VDAO database
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4 Surveillance system design

This section describes in detail all the processing steps listed in Sect. 2, including the tech-
niques proposed in this work for a reliable, real-time operation of the monitoring system.
The description that follows is based on the block diagram in Fig. 2.

4.1 Video alignment

The initial synchronization between the reference and target videos can be implemented
automatically using a maximum-likelihood approach based on the video’s motion data.

In that scheme, the robot’s motion model assumes a constant speed along the straight
track, with the direction changing when the robot reaches the track ends. The instantaneous
camera speed along the track can be estimated from the homography transformation between
consecutive reference and target frames, called respectively H{r(p−1), r(p)} and H{t (p−
1), t (p)}, as determined in Sect. 4.2. By integrating the horizontal component (along the
track) of the camera speed, one can obtain the horizontal camera displacement in each frame
index n up to a constant δ.

Figure 4 shows camera displacements as a function of the frame index estimated from
actual reference (solid black curve) and target (dotted red curve) video sequences. In this plot,
the maxima and minima of each curve can be associated to the two track ends. One should
note that different initial positions of the robot on the track give similar curves differing only
on their mean values.

The displacement curves are noisy due to the camera vibration. A noiseless motion model
dr(n), however, can be determined by performing the least-squares fitting of a piecewise-
linear model composed of two straight lines of opposite angular coefficients. Such a model
for the reference displacement is shown as a dashed blue line in Fig. 4, where, without
any loss of generality, the direction change is assumed to be at n = 0. A similar motion
model dt(n) can be generated for the target displacement. Once again, since we do not know
the initial position of the camera on the track, this function may have an arbitrary average
level.
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Fig. 4 Example of camera displacements estimated from reference (solid black line) and target (dotted red
line) videos,where the piecewise-linear dashed blue line represents the robot’smovementwith a constant-speed
model (Color figure online)
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Using the two displacement models, an initial frame alignment between the reference and
target videos can be determined as the displacement δ that maximizes the cross-covariance
between the dr(n) and dt(n), that is

δ̂ = argmax
δ

{∑
n

(dr(n − δ) − μr)(dt(n) − μt)

}
, (1)

where μr and μt are the average values of dr(n) and dt(n), respectively.
At a first glance, the summation interval in Eq. (1) should be approximately equal to

the number of frames Np of one full back-and-forth movement of the camera. In Fig. 4,
for instance, Np ≈ 2600 frames. However, this would impose severe restrictions for the
system’s real-time operation, as one would need to record a full back-and-forth cycle before
synchronizing the two videos. To mitigate this issue, the summation interval can be restricted
to only Δ ≈ 200 frames, as long as one guarantees that it contains one change in the camera
moving direction to allow a proper pattern matching.

It is important to note that such initial alignment does not need to be extremely precise,
since errors of a few frames translate into small displacements that can be compensated for
in the image registration stage (see Sect. 4.2).

4.2 Image registration

Assuming that the reference and target videos have been initially aligned, as described in
Sect. 4.1, a feature detector and descriptor algorithm was used to identify the points of
interest (PoI) on two corresponding frames of both video sequences. Based on the descriptor
comparisons results provided in Kucharczak et al. (2014), the SURF descriptor was chosen
as it yielded a larger number of relevant keypoint correspondences in a reasonably short
processing time.

In the proposed system, the HD video resolution was downsampled by a factor of 4 in
each dimension, to reduce the computational complexity, allowing the system to operate in
real-time.

An iterative method used to estimate parameters of a model from a set of observed data
containing outliers, the random sample consensus (RANSAC) algorithm (Kong et al. 2010;
Hartley and Zisserman 2003), is employed to select pairs of corresponding points in the
reference and target frames. Based on these correspondences, the the homography transfor-
mation H{r(p), t (p)} that best maps the reference PoI set onto the target PoIs is determined
to compensate for any difference in the camera positioning in the temporally aligned refer-
ence and target videos (Kong et al. 2010; Hartley and Zisserman 2003). An example of such
homography transformation can be seen in Fig. 5.

In this work, considering the camera’s horizontal movement, all reference-target PoI cor-
respondences yielded by the SURF algorithm with an angular displacement with absolute
value larger than 1◦ were immediately discarded. This strategy not only reduced the compu-
tational complexity associated to the RANSAC outlier removal procedure, but also improved
the consistency of the resulting homography transformation. An example of this approach is
given in Fig. 6, which depicts side-by-side temporally aligned frames from the reference and
target videos, along with the PoI correspondences (indicated by different color lines). From
this image, one immediately observes how the angular restriction imposed on the lower plot
eliminated several outlier correspondences and provided a reasonable homography transfor-
mation (represented by the green quadrilateral) for the horizontal camera movement.
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Fig. 5 Example of homography transformation. The green quadrilateral shows the image-plane mapping
from the first image into the second one: a reference video frame; b target video frame (Color figure online)

Fig. 6 Example of homographies generated with and without our angular restriction: a without angular
restriction; b with angular restriction

4.3 Multiscale frame comparison

At this point, in order to perform the comparison between the corresponding aligned frames
we propose the use of the normalized cross-correlation (NCC) (Kong et al. 2010) between the
two images, followed by a simple threshold detection, which yields a binary image indicating
areas of the target frame that are candidates to contain abandoned objects. In addition to that,
in this paper we propose to apply some spatio-temporal post-processing on the binary masks
generated.
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The NCC k(m, n) between the images r(m, n) and t (m, n) over a window W(m, n)

centered in the pixel position (m, n) can be defined as

k(m, n) = 1

Nw

∑
(m′,n′)∈W(m,n)

[r(m′, n′) − r̄ ][t (m′, n′) − t̄]
σrσt

, (2)

where Nw is the total number of pixels in the window W , r̄ and t̄ are the average values of
r and t inside the windowW(m, n), respectively, and σr and σt are their respective standard
deviations.

The NCC window size should be in the same order of the apparent size of the abandoned
object to be detected, which is considered unknown or may even vary if more than one object
appear on the same frame. In fact, large windows tend to overlook small objects, whereas
small NCC windows may identify a single large object as several small ones. Therefore, for
a robust detection, one must compute the NCC function between two frames with different
window sizes, what may greatly increase the computational complexity of the resulting
algorithm.

A proposed solution to this problem is to perform a multiscale NCC computation, which
employs a fixed window (K × K pixels) on several downsampled versions of the reference
and target videos. The whole multiscale procedure starts with a frame downsampling factor
of 64, which greatly simplifies the NCC computation and makes the fixed window suitable
to detect larger objects. Progressively smaller objects are then searched for with increasing
resolution images.

Due to the real-time constraint, one has to restrict the allowed values of K , image resolu-
tions, and downsampling factors. The value of K is set based on the size of the larger object
to be detected in the smallest resolution to be used. For the employed database, the NCC
window size was set to K = 5. A large K leads to missed detections due to low NCC values,
as the missed wrench in Fig. 7a. On the other hand, a too small K highly increases the NCC
sensitivity, yielding false-positive detections, as exemplified in Fig. 7b.

The number of scales to be employed should be decided according to the application at
hand. For the VDAO database, four different image resolutions were employed, correspond-
ing to image downsampling factors, in each direction, of 64 (suitable for the detection of larger
objects), 32, 16, and 8 (smaller objects), leading to a good overall system performance, as
illustrated in Fig. 8.

Figure 9 exemplifies our multiscale approach. Figure 9a shows the target image with a
backpack (large object), a string roll (medium object) and a mug (small object). In Fig. 9b an
image that is subsampled by 64 is used, and only the biggest object, the backpack, is detected.
In Fig. 9c an image subsampled by 32 is used, and the stringroll is also detected. In Fig. 9d
an image subsampled by 16 is used and the smallest object, the mug, is also detected. Note
that, at this resolution, a backpack strap is also detected.

4.4 Detection mask post-processing

In order to reduce both false positive (spurious) and false negative (missed) detections,
three additional processes are sequentially performed onto the resulting pixels of the NCC
multiscale masks: a temporal filtering procedure, a voting strategy and opening-closing mor-
phological operations.
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Fig. 7 Adjustment of NCC window size K (red stains indicate abandoned-object detection, and blue circles
indicate a real abandoned object): a excessively large values of K tend to oversee smaller objects (false-
negatives) such as the wrench at the top right; b excessively small values of K increase the sensitivity of the
NCC measure, leading to false-positives, such as the regions in the lower right (Color figure online)

Fig. 8 Example of VDAO-database objects of different sizes being detected with the multiscale approach:
The large coat is detected with the video decimation factor of 64, whereas the small bottle cap is detected
with the decimation factor of 8. The blue circles indicate the abandoned objects, and the red stains, object-
detection (Color figure online)
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Fig. 9 Example of detection masks using the multiscale approach: in image (b), only the largest object
(backpack) is detected; in (c), the string roll is also detected; finally, in (d), the mug algo starts to be detected.
The green box is not detected in this example because it did not appear a sufficient number of times for it to be
detected yet (due to the post-processing step). a Target image, b image subsampled by 64, c image subsampled
by 32 and d image subsampled by 16 (Color figure online)

First, temporal filtering is applied to the NCC mask frame sequence (Kong et al. 2010)
such that

M(m, n, p) =
L tf−1∏
i=0

k̂(m, n, p − i), (3)

where p is the frame index, L tf is the temporal-filter length and k̂(m, n, p) is a binary
version of the NCC output k(m, n, p), defined by a threshold bt (see Sect. 5.1). This filtering
operation requires the use of the registration procedure between consecutive frames computed
in Sect. 4.1, since the objects appear in different positions as the camera moves. This filtering
stage is ideal to remove most of the false-positive occurrences from the detection mask,
as it requires the intersection of L tf consecutive masks to activate a given pixel, as seen
in Fig. 10. An excessively large value of L tf , however, tends to produce false negatives in
our detection process. This is particularly relevant in our case since the camera is moving,
and large displacements among frames that are too distant in time tend not to be dealt with
properly by a homography. In our setup, the temporal filter length was set to L tf = 5. This
choice will be justified in Sect. 5.2.

Following the temporal filtering, a voting procedure is employed to increase the detection
robustness. The rationale for the voting procedure is that it is unlikely that an object will
disappear from the video for just a few frames to reappear again later. Likewise, it is unlikely
that an object will appear in the video for just a few frames. In the voting step a new mask
Mv(m, n, p) is generated as follows:
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Fig. 10 Example of false-positive elimination by the temporal filtering stage: a detection mask (red stain)
produced without temporal filtering; b detection mask produced with temporal filtering (Color figure online)

Mv(m, n, p) =
{
1, if

∑V−1
i=0 M(m, n, p − i) ≥ vt

0, if
∑V−1

i=0 M(m, n, p − i) < vt
, (4)

where M(m, n, p) is defined in Eq. (3), V is the voting interval length and vt is the voting
threshold. Once again, this procedure assumes a proper registration of the consecutive masks
using a homography transformation as given in Sect. 4.2. The values of V and vt determine
the minimum amount of times a masking pixel must be activated to be recognized as part of
an abandoned object. In practice, these parameters depend on the number of frames a given
abandoned object appears in the target video, that is related to the camera speed. The choice
of these parameters will be investigated in Sect. 5.3.

One could argue that the temporal filter [Eq. (3)] and the voting procedure [Eq. (4)] are
somewhat redundant. However, there are several cases when both are necessary. Generally
speaking, the temporal filter and the voting stage work in tandem to eliminate most of false
positives from the detection scheme. One illustrative example, depicted in Fig. 11, is when
partial occlusions generated by foreground obstacles cause an abandoned object to appear
in only a limited number of frames. These situations enforce upper limit values for the
voting interval length V and its corresponding threshold value vt . Therefore, they require the
temporal filter to remove a priori most of the isolated spurious detections.

In some cases, after the temporal filtering and voting steps there remains isolated small
regions in the detection masks. For removing such pixels, one can perform a morphological
binary opening operation. Also, there are cases when the same object is detected by more
than one separate mask. In this case, the masks can be connected by a morphological binary
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Fig. 11 Example of false positive promoted by occlusionwithout the temporal filtering step: a initial detection
of abandoned object without the temporal filtering step; b displacement of detection mask caused by the
foreground pipe in the absence of the temporal filtering (abandoned object is hidden behind bright pipe); c
detection mask properly placed by the temporal filtering, which removes the effect from the foreground pipe

closing operation. The binary opening and closing operations can be respectively defined
as (Soille 2003):

A ◦ B = (A � B) ⊕ B, (5)

A • B = (A ⊕ B) � B, (6)

where A is a binary image, B is the structuring element,⊕ denotes dilation (expansion of the
input image by the structuring element B), and � denotes erosion (contraction of the input
image by B). The effect of the closing operation is illustrated in Fig. 12. In the proposed
system, the closing operation is applied to the output of the opening operation.
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Fig. 12 Example of morphological closing (detail): a before; b after. It joins two separate masks that refer to
the same object

The size of the structuring element of the opening operator should be slightly larger than
the expected size of the isolated regions that may be present on the detection mask but cannot
be larger than the smallest apparent size of the object intended to be detected. In contrast, for
the closing operation, the structuring element size should be slightly larger than the expected
size of the gaps that separate the disconnected detection masks that may be associated to the
same object. In our system, we employed circular-shaped structuring elements with the same
radius for the two operations. In full resolution, this radius should be approximately twice as
large as the NCC window, and should keep its proportion to the resolution as it decreases.

Finally, we perform the union of the detectionmasks obtained in all resolutions to generate
a single, final detection mask. Algorithm 1 summarizes the proposed method.

5 Tuning of the system parameters

This section outlines the design of all stages described in Sect. 4 aiming at an overall
robust performance for the proposed system. As described in Sect. 3, we use the VDAO
database (VDAO 2014) for this purpose. In order to do so, we divide the target VDAO
sequences used in three sets. The training set comprises 16 single-object videos, while the
validation set has 38 single-object videos, and the testing set is composed by 3 videos with
multiple abandoned objects (those with extra illumination). The sequences on the training
set are used in this section to develop routines for the adjustment of each parameter, and
determine their values for the VDAO database. The effectiveness of these routines will be
assessed in Sect. 6 using the validation set, and the overall algorithm performance will be
assessed using the testing set.

To evaluate the effects of a given parameter in our method, several performance analysis
curves are derived. In these curves, the true positive measure is determined as the percentage
of the bounding box area of the abandoned objects which is covered by the detection mask,
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Algorithm 1 Proposed Algorithm
Input: Unaligned videos r and t
Output: Detection mask Mo
Parameters: K (number of scales), B and C (morphological masks), Lt f (temporal filtering window size) V

(voting window size), and vt voting threshold.
Temporal alignment:
Compute homographies H{r(p − 1), r(p)} and H{t (p − 1), t (p)}.
δ̂ = argmaxδ

{∑
n(dr(n − δ) − μr)(dt(n) − μt)

}
,

t̂(m, n, p) = t (m, n, p + δ̂).
Geometric registration:
Extract SURF features,
Select features with RANSAC
Apply homography H{r(p), t (p)} to t̂ : t̂ ′ ← t̂ .
for j = 1 to K do
NCC:

k(m, n, p) = 1
Nw

∑
(m′,n′)∈W(m,n)

[r(m′,n′,p)−r̄ ][t̂ ′(m′,n′,p)−t̄]
σr σt

,
Binarize the NCC:
k̂ ← k;
Temporal Filtering:
Apply homography H{t (p − i), t (p)} to k̂: k̂′ ← k̂

M j (m, n, p) = ∏L tf−1
i=0 k̂′(m, n, p − i),

Voting Step:
Apply homography H{t (p − i), t (p)} to Mj : M ′

j ← Mj

Mv( j)(m, n, p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if
V−1∑
i=0

M ′
j (m, n, p − i) ≥ vt

0, if
V−1∑
i=0

M ′
j (m, n, p − i) < vt

,

Morphological Operations:
Mv( j) = (Mv( j) ◦ B) • C ,

end for
Mo = M1 or M2 or M3 or …or MK

and the false positive measure is given by the percentage of remaining frame area covered
by detection masks. To generate each point on the curve, we first calculate, for a given
video, the average of the values obtained with each frame where the object and/or a detection
spot appears. Then, we calculate the average and the standard deviation of these averages,
considering all the objects in the training set. Some aspects, however, affect the performance
of the proposed system, and should be taken into account by the reader when considering
these measures:

– The voting operation requires a minimum number of frames to detect an abandoned
object. This is usually not a problem, since the camera speed is such that there is a large
number of frames between the entry of the object in the camera’s field of view and its
departure. However, when an object is occluded between entering and leaving the field
of view, there may not be enough frames to warrant its detection, which may cause
false-negative (missed) detections.

– Adual problemoccurswhen the voting strategy keeps the detectionmask active even after
the object disappears from the scene, artificially increasing the number of false-positive
detections.

– As the abandoned object does not occupy its entire bounding box, there may be a signif-
icant increase on the false-negative measure.
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– Abandoned objects sometimes project shadows or reflections on the other elements of
the scene. Strictly speaking, since such shadows and reflections are not present in the ref-
erence video, the algorithm tends to detect them. However, the VDAO database does not
consider them as objects of interest, which affect negatively the false-positive measure.

Based on all these facts, one should not expect ideal values of any pixel-based measurements,
and an additional subjective validation scheme must also be employed to assess the overall
system performance. However, in this parameter tuning procedure, we deemed the use of this
pixel-based measurement an useful tool to, in a certain way, measure the percentage of the
abandoned object covered by a detection spot, as this would help us better tune the system
considering that it deals with abandoned objects of different sizes. This allows us to perform
a finer parameter tuning than if we employed an object-level measurement in this procedure.

Each parameter study employs, for the other variables, the values already obtained in the
previous studies.

5.1 NCC binarization threshold

The first important parameter in the proposed system is the threshold value bt used to binarize
the NCC function. Note that, from Eq. (2), its dynamic range is the interval [−1, 1]. In the
discussion that follows, we assume that the NCC measure from Eq. (2) is normalized to
be in the interval [0, 255]. A small value of bt would generate too many false negatives,
whereas large values of bt would mark large numbers of abandoned-object as candidates to
be processed by the system’s subsequent stages. Figure 13 shows the region of convergence
(ROC) curve for values of bt in the set {60, 100, 140, 160, 190, 220, 250}. The smallest bt
corresponds to the lower leftmost point and the largest bt to the upper rightmost point. From
it, we can see that bt can set a trade-off between true positives and false positives. Therefore,
by analyzing the system’s performance on a training set, an operator can control this trade-off
by selecting a proper value of bt . The performance analysis curve in Fig. 13 shows that for
the training set used bt = 190 is a good trade-off, with a false-positive rate of 1.4% and a
true-positive rate of 53%.
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Fig. 13 ROC curve for the NCC binarization threshold variable bt ∈ {60, 100, 140, 160, 190, 220, 250}
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Fig. 14 ROC curve for the temporal filter length L tf ∈ {3, 5, 7, 9, 11, 13, 15, 17, 19}

5.2 Temporal filtering length

The second parameter of interest is the size of the temporal filter vector L tf . As mentioned
before, the temporal filtering is a necessary step to remove spurious false positives from the
subsequent voting stage. Larger values of L tf correspond to more restrictive temporal filters
which may introduce false-negative detections.

Figure 14 shows the ROC curve associated to temporal filter vector size. From this curve,
we can see that the best trade-off between true positives and false positives is given by
L tf = 5. It is indeed small enough to avoid most false negatives and large enough to deal
with most false positives such as the one illustrated in Fig. 11.

5.3 Voting parameters

The pixel-level voting procedure on the detection mask depends on two parameters, namely
the length in frames V of the voting interval and the threshold value vt , as given in Eq. (4).
When testing the influence of V , vt was set to half the value of V , and the ROC curve in
Fig. 15a has been obtained for V in the set {2, 6, 10, 16, 20, 24, 30, 40, 50, 60, 70, 80, 90}.
From this curve, for V ≥ 50, the true positive rates decrease without any improvement upon
the false positive rates. This result is to be expected because, as the sizes of V and vt increase,
the number of objects that would not appear in a sufficient number of frames in order for
them to be detected would also increase.

The best trade-offs are deliveredwith V = 16,which are then considered in the subsequent
analysis on the value of vt .

Figure 15b shows the results for V = 16 and vt ∈ {1, 4, 7, 10, 13, 16}. From the ROC
curves obtained from the study of the voting parameters, the best compromise is given by
V = 16 and vt = 7 frames, with a false positive rate of 1.83% and a true positive rate of
56.60%.

Table 1 summarizes the values obtained for each variable studied in this section:
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Fig. 15 ROC curves for the voting-stage parameters: a length in frames V of the voting interval; b threshold
value vt

Table 1 Table showing the
values obtained for the studied
variables

Variable name Variable Value

NCC binarization threshold bt 190

Temporal filtering length L tf 5

Voting vector length V 16

Voting threshold vt 7

6 Experimental results

In this section, we assess the parameter tuning procedure presented in Sect. 5 and the overall
system performance using the remaining database videos not employed in the parameter
tuning stage.
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Table 2 Comparison between
the detection results obtained
with the training and validation
sets

Data employed True positive False positive
μ (%) σ (%) μ (%) σ (%)

Training set 57 21 1.8 1.3

Validation set 66 15 3.6 3.6

6.1 Validation results with the VDAO database

Initially, we have computed the true positive and false positive rates (as defined in Sect. 5)
for the validation-set videos. The frame-based detection results (average (μ) and standard
deviation (σ ) values) are shown in Table 2 for both the training and validation sets. From
these numbers, on can conclude that the parameter tuning detailed in Sect. 5 yields similar
and consistent results with both video sets, indicating good generalization capability for the
resulting system. It is important to note that despite the not so high values of true positive
rates (of the order of 60%), these refer to the percentage of the bounding boxes covered in a
pixel-by-pixel level, as specified in Sect. 5. However, in a practical application, an operator
will see the masks and decide whether an abandoned object has been detected or not.We have
performed this evaluation in the validation set, and verified that all the abandoned objects
contained in the validation dataset were properly detected.

6.2 Additional performance metrics

In order to assess the overall system performance, we employed a testing set consisting of the
3 multi-object videos from the VDAO database (VDAO 2014), with 15 abandoned objects
in each video. This multi-object scenario requires more complex metrics than before, as in
principle one does not know beforehand which ground-truth frame mask corresponds to the
mask of a given detected object. In addition, in cases of missed or false detections, there is
no one-to-one correspondence with the ground truth masks. Due to these matters, the initial
system evaluation was based on Nawaz et al. (2014), which proposes metrics that take into
account the accuracy of the matchings as well as the false positives and false negatives for
the case of multiple objects. In addition, we also assess the proposed method using metrics
that mimic whether or not an operator, by looking at the detection masks generated, is able
to indicate correctly the presence of an abandoned object.

The definition of the metrics in Nawaz et al. (2014) is based on two pixel sets:

– Ak,i , the set of pixel positions belonging to the ground truth mask of the object of index
i in frame k.

– Âk,i , the set of pixel positions belonging to the bounding box of the detected mask of the
object of index i in frame k.

Thefirstmetric employed here is the accuracy errorAk , that represents themismatch extent
between the estimated and ground-truth states at frame k. This metric has to be computed
over all possible detected-objects and ground-truthmask correspondence. Hence, by defining

O(A, B) = |A ∩ B|
|A ∪ B| , (7)
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where |A| is the number of elements of the set A, then the accuracy error is given by

Ak = min
π∈Πmax(dk ,d̂k )

min(dk ,d̂k )∑
i=1

[1 − O( Âk,i , Ak,π(i))], (8)

where dk and d̂k are the numbers of ground-truth masks and detected objects in frame k,
respectively, the permutation π(i) is a one-to-one function that maps the set of indexes of
detected objects into the indexes of ground truth masks, and Π j is the set of all possible
permutations over j indexes. If dk > d̂k , then j = dk , otherwise j = d̂k . In Eq. (8),
O( Âk,i , Ak,π(i)) ∈ [0, 1] represents the amount of spatial overlap between the detected-
object bounding box Âk,i and its corresponding ground-truth value. Essentially, Eq. (8)
determined all possible spatial overlaps between the detected and ground-truth bounding
boxes in frame k and selects the combination that minimizes the mismatch Ak between the
estimated and ground-truth states.

Another metric is frame-level accuracy error rate (AER) defined as the average ofAk over
all frames, that is

AER = 1

K

K∑
k=1

Ak, (9)

where K is the total number of frames. The minimum accuracy error happens when all the
bounding boxes coincide exactly pixel by pixel, and is therefore zero. The maximum value
happens when no bounding boxes coincide, and is equal to min(dk, d̂k).

The problemwithAk is that if an object ismissed or there is a false positive, its contribution
toAk is zero. To cope with that issue, the authors of Nawaz et al. (2014) define the cardinality
error rate (CER), that quantifies the discrepancy in estimating the number of targets. It is just
the average difference in the numbers of ground truth masks and detected objects over all
frames, that is

CER = 1

K

K∑
k=1

Ck . (10)

where Ck = |dk − d̂k |.
Therefore, a metric that would take into account both the accuracy and the effect of false

positives and false negatives can be obtained by adding bothAk and Ck . In addition, since both
increase with the number of objects present, this sum can be normalized by the number of
objects to produce the multiple extended-target tracking error (METE) scoreMETEk defined
as (Nawaz et al. 2014)

METEk = Ak + Ck
max(dk, d̂k)

. (11)

In Nawaz et al. (2014) it is shown that the METE value is equal to 0 in the case of perfect
matching and is 1 in the worst case.

6.3 Testing results with the VDAO database

Table 3 shows the AER, CER and METE results, averaged over all frames, for the tuned
system using the testing video set. The high METE scores, around 78% for each video,
indicate discrepancies between the detected-object and ground-truth bounding boxes, what
is easily understood from the discussion provided in Sect. 5, as illustrated in Fig. 16. In fact,
in such a case, only about 50% of the bounding box for the string-roll detection mask, in
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Table 3 Quantitative evaluation
of object-detection system’s
performance using metrics
proposed in Nawaz et al. (2014)

Data employed AER CER METE
μ μ μ σ

Multi-object video 1 2.5 0.9 0.72 0.11

Multi-object video 2 2.5 2.2 0.77 0.14

Multi-object video 3 3.2 2.9 0.85 0.09

Fig. 16 Detection results for frame with objects of different sizes (backpack on the left, box on the right and
string roll in the middle). All of them have been correctly detected

the middle bottom of the frame, coincides with its ground truth, justifying the large METE
values attained.

Despite the large METE values yielded by the proposed system, an operator can correctly
indicate the presence of the string roll by looking at the provided detection mask. The same
is true for the backpack and the box objects, also shown in that frame image, and the object-
based detection error rate should be zero in that case. This demonstrates the importance
of measuring the detection error rate at the object level, which can be done based on the
following measurements:

– The number of true positives NTP j , that is the number of frameswhere object j is correctly
detected.

– The overall number of false positives NFPall , that is the number of frames where any
object is incorrectly indicated.

– The number of false negatives NFN j , that is the number of frames where object j is
missed.

– The overall number of true negatives NTNall , that is the number of frames that have been
correctly indicated as having no objects.

– The number of positives NP j , that is the number of frames where object j is present.
– The overall number of positives NP, that is the number of frames where the presence of

any object is indicated.
– The number of negatives NN j , that is the number of frames where object j is not present.
– The overall number of negatives NN, that is the number of frames where no object is

indicated.
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Table 4 Quantitative evaluation
of object-detection system’s
performance in terms of the
correct detection of an abandoned
object [Eqs. (12)–(15)]

Data employed TP FP TN FN

Multiobject video 1 0.68 0.40 – 0.13

Multiobject video 2 0.69 0.42 – 0.96

Multiobject video 3 0.77 0.43 – 0.08

Average 0.71 0.42 – 0.10

Note that the number of true negatives cannot be computed for a particular object j , since the
frames that have been correctly classified as having no object cannot be associated with any
object. In addition, one cannot assign a false positive to any object. Then, using the above
measurements the following detection error rate metrics are defined:

TP =
∑Nobjs

j=1 NTP j∑Nobjs
j=1 NP j

, (12)

FP = NFPall

NP
, (13)

TN = NTNall

NN
, (14)

FN =
∑Nobjs

j=1 NFN j∑Nobjs
j=1 NN j

, (15)

where K is the total number of frames and Nobjs is the total number of objects.
Table 4 shows the resulting values for these metrics using our multi-object testing set. The

average number of true positives as defined byEq. (12) is approximately 71%, and the average
number of false positives [Eq. (13)] is about 42%,most of them due to the object shadows and
reflections, which are multiplied in the cluttered environment, as already discussed in Sect. 5.
In addition, one can see that the average value of false negatives [Eq. (15)] is approximately
10.0%, meaning that there are not many missed frames containing abandoned objects. This
indicates that the proposed abandoned object detection system can be useful for providing
effective alarms of the presence of abandoned objects in a practical situation. Note that the
void entries in Table 4 are accounted for the fact that, in the particular case of the multi-object
videos of the VDAO databases, there are no frames without any abandoned objects. Thus,
both NTNall and NN are zero, and TN is undefined.

The proposedmetrics given in Eqs. (12)–(15) are relevant for the assessment of the overall
system capabilities and its intrinsic behaviors. In a practical surveillance scenario, however,
one is mostly interested in a system that can give an alarm for all abandoned objects. If the
alarm happens in all frames in which the object is present or just in some, the practical effect
is the same, drawing the attention of an operator that can further analyze the surveillance
video. We have performed this analysis on the three videos from the testing set, and have
verified that the proposed system has alarmed all 15 objects in the 3 videos. This suggests
the usefulness of the proposed method in a practical surveillance scenario.

As far as complexity is concerned, for real-time applications one has to be able to run the
detection algorithm in the time interval between two frames. If this time interval is not large
enough due to processing power restrictions, one has to subsample the videos temporally.
The problem with that solution is that if a video is subsampled by a very large factor, there
may be not enough frames where an object is present in order for us to perform the temporal
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filtering and voting procedures [Eqs. (3), (4)]. Furthermore, to alleviate the negative effects
of the temporal subsampling of the videos, we can reduce the robot speed and then subsample
the videos. In this case there may be both enough time for processing between frames and
an adequate number of frames for the temporal filtering and voting.

In our experiments, we employed an Intel core I7 2630QM processor with a 2-GHz clock
rate, and with 8GB of RAM. This allowed real-time operation with a temporal subsampling
of 8 (3 frames/s), which was enough for the algorithm to work at the robot speed as given in
Sect. 2.

6.4 Comparison with state-of-the-art methods

In Kong et al. (2010), the detection of abandoned objects with a moving camera (DAOMC)
mounted on a car explores several particular scenario characteristics, such as: (i) target regions
are constrained to road sides; (ii) all processed images contain horizon lines; (iii) parallax is
avoided by dealingwith far enough objects; (iv) an availableGPS signal is used to synchronize
the reference and target videos.

With a somewhat similar goal, in Mukojima et al. (2016) a camera is mounted in the
frontal part of a train to detect anomalies such as abandoned objects along the rails. The
proposed moving-camera background subtraction (MCBS) method employs an optical flow
algorithm (Weinzaepfel et al. 2013) to perform geometric registration. There, the regions of
interest are only the train rails, which exert a similar role as that of the road in Kong et al.
(2010). By limiting the area of the image when searching for anomalies, an excessive amount
of false positives is avoided in both works.

In Nakahata et al. (2017), a two-stage dictionary learning process is used in a spatio-
temporal composition for moving-camera detection (STC-mc) of anomalies between two
video sequences. In that approach, portions of the target video that are poorly represented by
the dictionary are considered anomalies. This method does not employ motion estimation,
tracking, background subtraction, temporal alignment or geometric alignment.

In the present contribution, we compare the proposed method, hereby referred to as the
anomaly detector using multiscales (ADMULT) algorithm, to the DAOMC (Kong et al.
2010), MCBS (Mukojima et al. 2016) and STC-mc (Nakahata et al. 2017) systems. In this
comparison, the post-processing steps to find the rails in the MCBS algorithm were removed
to make it fit to a more general surveillance scenario. In the same way, the restriction to detect
anomalies only under the horizon line was removed from the DAOMC approach. Also, for
this algorithm, the reference and target video synchronization was performedmanually, since
the GPS signal was not available.

Following the methodology employed in Nakahata et al. (2017), the metrics employed
to evaluate the methods were the following: true positives occur when at least one pixel
of the detection mask falls into the abandoned object bounding box, used as the ground
truth; false positives occur when there is no intersection between the detection mask and
an abandoned object bounding box; false negatives occur when no pixel from a detection
mask falls inside an abandoned object bounding box; and true negatives occur when there
are neither abandoned objects nor detection masks in the given frame. This analysis is made
frame by frame, and after all the frames from a given video clip are taken into account, an
average value is calculated for the metric. We also consider the minimum distance (DI S) of
all operating points to the ideal point (TP = 1 and FP = 0) in the TP × FP plane, that is

DIS =
√

(1 − TP)2 + FP2. (16)
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Table 5 Comparison results of the proposed ADMULT method, STC-mc, DAOMC, and MCBS considering
the same seven video clips employed in Nakahata et al. (2017)

Object STC-mc DAOMC MCBS ADMULT
TP FP DIS TP FP DIS TP FP DIS TP FP DIS

Dark blue box 1 1.00 0.04 0.04 1.00 0.00 0.00 1.00 0.90 0.90 1.00 0.00 0.00

Towel 0.92 0.01 0.08 1.00 0.10 0.10 1.00 0.07 0.07 1.00 0.00 0.00

Shoe 0.90 0.04 0.11 1.00 0.04 0.04 1.00 0.28 0.28 1.00 0.00 0.00

Pink bottle 0.99 0.13 0.13 1.00 1.00 1.00 1.00 0.96 0.96 1.00 0.00 0.00

Camera box 1.00 0.03 0.03 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

Dark blue box 2 0.37 0.42 0.76 1.00 1.00 1.00 1.00 0.10 0.10 1.00 0.00 0.00

White jar 0.29 0.64 0.96 1.00 0.10 0.10 1.00 0.99 0.99 1.00 0.00 0.00

Average 0.78 0.19 0.59 1.00 0.32 0.32 1.00 0.47 0.47 1.00 0.00 0.00

The best results are displayed in bold

In an initial experiment, only the same seven 200-frame VDAO video excerpts employed
inNakahata et al. (2017) were considered. In these video portions, all target frames contain an
abandoned object. Therefore, only the TP, FP and DI S metrics are shown in Table 5, where
one can observe the superior performance achieved by the proposed ADMULT method.

For a more comprehensive performance assessment, detection experiments were devised
with 200-frame excerpts from all the 59 single-object VDAO videos, as made available
in VDAO-200 (2017). It is important to note that all methods were configured using only the
seven videos employed in Nakahata et al. (2017), whose results are listed in Table 5. In the
broader 59-video dataset, however, there are many occlusions, objects entering or leaving the
scene and frames without any abandoned object. For example almost half (27 out of 59) of
the selected videos present some type of occlusion, while at least five of the videos present
objects that are completely occluded part of the time. Also in at least 21 of the selected
excerpts the objects are partially or completely covered by shadows cast by the environment.
In addition, there are more variations in illumination, in object shapes and in the amount of
camera vibration, which have a negative effect on the algorithm performances. Results for
each video in this increased dataset are shown in Table 6, whereas Table 7 summarizes the
average performances of all algorithms for the same dataset. Such results once again indicate
a superior overall performance of the ADMULT system (as given by the DIS measurement),
despite a lower TP value, which is compensated by the considerably better FP and TN
scores.

6.5 Processing-time experiment

In a final experiment, we evaluate the processing time of all discussed methods for process-
ing all 200 frames in the seven videos analyzed in Table 5. Results are shown in Table 8,
considering an Intel i7-4790KCPUwith 4.0GHz and 32GB of RAM. From such results, one
clearly observes how the proposed ADMULT method is much faster than all its competitors,
being more than twice as fast as any of the others.
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Table 6 Comparison results of the proposed ADMULT method, STC-mc, DAOMC, and MCBS considering
the whole VDAO-200 database

Object STC-mc DAOMC MCBS ADMULT
TP FP DIS TP FP DIS TP FP DIS TP FP DIS

Object 1 0.37 0.42 0.76 1.00 1.00 1.00 1.00 0.10 0.10 1.00 0.63 0.63

Object 2 1.00 0.04 0.04 1.00 0.00 0.00 1.00 0.90 0.90 1.00 0.00 0.00

Object 3 0.90 0.04 0.11 1.00 0.04 0.04 1.00 0.28 0.28 1.00 0.00 0.00

Object 4 1.00 0.03 0.03 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

Object 5 0.92 0.01 0.08 1.00 0.10 0.10 1.00 0.07 0.07 0.71 0.95 0.95

Object 6 0.29 0.64 0.96 1.00 0.10 0.10 1.00 0.99 0.99 1.00 0.00 0.00

Object 7 0.99 0.13 0.13 1.00 1.00 1.00 1.00 0.96 0.96 1.00 0.00 0.00

Object 8 0.00 0.01 1.00 1.00 0.87 0.87 0.75 0.31 0.39 0.54 0.02 0.47

Object 9 0.00 1.00 1.41 0.94 1.00 1.00 0.67 0.18 0.37 0.52 0.06 0.48

Object 10 0.01 0.01 0.99 1.00 0.97 0.97 0.89 0.10 0.15 0.69 0.00 0.31

Object 11 0.03 0.79 1.25 0.98 0.98 0.98 0.73 0.32 0.42 0.67 1.00 1.05

Object 12 0.20 0.07 0.81 0.94 0.48 0.48 0.87 1.00 1.01 1.00 0.22 0.22

Object 13 0.00 0.50 1.12 0.86 0.71 0.72 0.84 0.00 0.16 0.64 0.19 0.40

Object 14 0.08 0.05 0.92 1.00 0.74 0.74 0.92 0.01 0.08 1.00 0.15 0.15

Object 15 0.00 1.00 1.41 1.00 1.00 1.00 0.89 1.00 1.01 0.59 0.04 0.42

Object 16 0.00 0.08 1.00 0.77 1.00 1.02 0.00 0.00 1.00 0.00 0.00 1.00

Object 17 0.06 1.00 1.37 0.96 0.46 0.46 0.80 0.12 0.23 0.62 0.30 0.48

Object 18 0.00 0.09 1.00 0.75 0.99 1.02 0.43 0.00 0.57 0.00 0.23 1.03

Object 19 0.00 0.03 1.00 1.00 0.67 0.67 0.89 0.00 0.11 0.54 0.15 0.48

Object 20 0.36 0.50 0.81 0.26 1.00 1.24 0.67 1.00 1.05 0.00 0.00 1.00

Object 21 0.00 0.68 1.21 0.97 0.62 0.62 0.95 0.61 0.61 0.97 0.72 0.72

Object 22 0.00 0.07 1.00 1.00 0.90 0.90 0.92 0.05 0.09 0.68 0.75 0.81

Object 23 0.00 0.83 1.30 0.93 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00

Object 24 0.58 0.93 1.02 0.00 1.00 1.41 0.00 0.73 1.24 0.00 0.00 1.00

Object 25 0.00 0.02 1.00 1.00 0.90 0.90 0.58 0.00 0.43 0.56 0.55 1.00

Object 26 0.00 0.06 1.00 1.00 0.54 0.54 0.87 0.05 0.14 0.64 0.01 0.70

Object 27 0.26 0.34 0.82 1.00 0.72 0.72 1.00 1.00 1.00 1.00 0.10 0.36

Object 28 0.01 0.01 1.00 1.00 0.89 0.89 1.00 0.00 0.00 1.00 0.00 0.10

Object 29 0.00 0.14 1.01 0.91 0.98 0.98 0.76 0.02 0.24 0.68 0.01 0.32

Object 30 0.00 0.01 1.00 1.00 0.97 0.97 0.80 0.49 0.53 0.56 0.00 0.44

Object 31 0.00 0.01 1.00 1.00 0.61 0.61 0.87 0.80 0.81 0.61 0.55 0.67

Object 32 0.00 0.01 1.00 1.00 0.78 0.78 0.83 0.00 0.17 0.32 0.00 0.68

Object 33 0.78 0.81 0.83 0.83 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00

Object 34 0.00 0.02 1.00 1.00 0.69 0.69 0.70 0.00 0.30 0.56 0.00 0.44

Object 35 0.00 0.97 1.39 0.97 0.62 0.62 0.87 0.82 0.83 0.62 0.01 0.38

Object 36 0.24 1.00 1.26 0.02 1.00 1.40 1.00 1.00 1.00 1.00 1.00 1.00

Object 37 0.43 0.18 0.59 0.99 1.00 0.96 0.93 0.00 0.07 0.93 0.00 0.07

Object 38 0.00 1.00 1.41 1.00 0.99 0.99 0.71 0.05 0.30 0.44 0.00 0.56

Object 39 0.09 0.04 0.91 0.91 1.00 1.00 0.84 0.93 0.94 1.00 0.25 0.25

Object 40 0.56 0.44 0.92 1.00 0.95 0.95 1.00 0.56 0.56 1.00 0.14 0.14

Object 41 0.00 0.78 1.27 0.64 0.99 1.05 0.88 0.87 0.87 0.87 1.00 1.01
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Table 6 continued

Object STC-mc DAOMC MCBS ADMULT
TP FP DIS TP FP DIS TP FP DIS TP FP DIS

Object 42 0.00 1.00 1.41 0.96 0.96 0.96 0.88 0.91 0.91 0.49 0.00 0.51

Object 43 0.00 0.08 1.00 0.72 1.00 1.04 0.14 0.00 0.86 0.00 0.00 1.00

Object 44 0.00 0.19 1.02 0.96 1.00 1.00 0.73 0.14 0.31 0.63 0.00 0.37

Object 45 0.15 0.92 1.25 0.01 1.00 1.41 0.82 1.00 1.02 1.00 1.00 1.00

Object 46 0.00 0.43 1.09 0.93 0.97 0.97 0.95 0.79 0.79 0.99 0.14 0.14

Object 47 0.01 0.20 1.01 1.00 1.00 1.00 0.93 0.00 0.07 0.91 0.22 0.24

Object 48 0.00 0.01 1.00 0.96 0.97 0.97 0.72 0.16 0.32 0.42 0.00 0.58

Object 49 0.00 0.04 1.00 1.00 0.99 0.99 1.00 0.06 0.06 0.93 0.00 0.07

Object 50 0.00 0.02 1.00 1.00 0.77 0.77 0.86 0.14 0.20 0.18 0.89 1.21

Object 51 0.01 0.86 1.31 0.97 0.92 0.92 0.85 0.66 0.68 1.00 1.00 1.00

Object 52 0.00 0.68 1.21 0.40 1.00 1.17 0.63 0.79 0.87 0.84 1.00 1.01

Object 53 0.06 0.82 1.25 0.79 1.00 1.02 0.69 1.00 1.05 0.88 1.00 1.01

Object 54 0.00 0.20 1.02 1.00 0.51 0.51 0.84 0.01 0.16 0.50 0.00 0.50

Object 55 0.39 0.75 0.96 0.86 1.00 1.01 0.59 0.32 0.52 0.49 0.00 0.51

Object 56 0.52 0.45 0.65 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.38 0.38

Object 57 0.36 0.09 0.65 0.96 0.92 0.92 1.00 0.67 0.67 1.00 0.21 0.21

Object 58 0.00 0.05 1.00 0.97 0.80 0.80 0.62 0.00 0.38 0.18 0.00 0.82

Object 59 0.00 1.00 1.41 1.00 1.00 1.00 0.73 0.79 0.83 0.53 0.00 0.47

The best results are displayed in bold

Table 7 Average results for the detection methods ADMULT, STC-mc, DAOMC and MCBS systems con-
sidering all 59 single-object videos of the VDAO database

Method TP FP TN FN DIS

STC-mc 0.19 0.42 0.58 0.81 0.91

DAOMC 0.83 0.43 0.54 0.17 0.46

MCBS 0.89 0.84 0.02 0.11 0.85

ADMULT 0.71 0.28 0.63 0.29 0.40

The best results are displayed in bold

Table 8 Required processing
time (in seconds) for each
detection method when
processing each of the seven
200-frame videos of the VDAO
database. The hardware platform
used was an Intel i7-4790K CPU
with 4.0GHz and 32GB of RAM

Object STC-mc DAOMC MCBS ADMULT

Dark blue box 1 433 265 50924 106

Towel 345 280 50403 105

Shoe 542 293 50427 112

Pink bottle 415 280 50170 121

Camera box 448 299 50238 115

Dark blue box 2 221 289 51740 114

White jar 248 282 49901 128

Average 378 284 50543 114
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7 Conclusions and future work

In this paper, a new technique for real-time detection of abandoned objects in a cluttered
environment was described. Among the many innovations incorporated onto the proposed
system, we may highlight: a maximum-likelihood video-alignment approach that precludes
the use of any external trigger signals; a multiresolution video analysis that speeds up the
overall process and allows one to detect multiple abandoned objects of different apparent
sizes, in each video frame; a temporal-filtering procedure that improves the time consistency
of the abandoned detection process, thus eliminating false-positive detections; use of mor-
phological operations to remove isolated small detections and to connect close-by detection
spots.

Another contribution of this work was the description of a complete procedure for tuning
the algorithm parameters, the effectiveness of which was evaluated using an independent
validation video set. The VDAO database used in this work comprises more than 8 hours of
recorded and annotated video in a real industrial environment and has been made publicly
available at VDAO (2014). We have performed the overall system evaluation employing a
large set of testing videos and several distinct metrics (including processing time) to assess
the system performance. Extensive results show that the proposed method operates much
faster than the other state-of-the-art methods, running at least 2.5 times faster than every
other compared method in the performed experiments. Our experiments have shown that the
proposedmethod is able to detect abandoned objects in real time with good true positive rates
and low false negative rates. In one of the experiments our method has proven to perform
flawless obtaining 100% true positive results while attaining 0% false positive detections. In
another more comprehensive experiment the results show the least amount of false positive
detections (28%) when compared with state-of-the-art methods, while obtaining 71% true
positive results, and having overall the best compromise between true positive and false
positive as the DIS metric (0.40) shows. Observing the achieved results, we believe that
such a system has a good potential application in the surveillance of cluttered environments,
such as industrial plants, where their economic operation can greatly benefit from automated
operations.

Yet more work can be done to improve the already good results of the proposed technique.
Among the ideas that will follow up the developments of the present work are: the elaboration
of a technique to performmore generic video alignment that does not rely on a specific type of
movement by using dynamic time warping (DTW) techniques on visually extracted features
(da Silva et al. 2017); also to allow the video registration to be applied on such broad scenarios
the homography technique should be replaced with other more comprehensive methods such
as registration via 3D features obtained via the fundamental matrix computation (Hartley and
Zisserman 2003). Other ideas that could be applied to the current method are the illumination
compensation via color space transformations to allow the algorithm to copewith illumination
changes and other implementation optimizations to increase the number of frames that can
be computed in real time.
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