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Abstract—This paper deals with the statistical modeling of
key features of power line communication (PLC) channels that
are necessary for designing data communication systems that
operate over theses channels. The key features are average
channel attenuation, root mean squared delay spread, coherence
bandwidth and coherence time. All these features were estimated
from in-home PLC channels measured in seven distinct Brazilian
residences. Assuming that each feature is a random variable, four
criteria (i.e., maximum likelihood estimate and three different
information criteria) are used to select the statistical distribution
that fits best to the data. The symmetry and asymmetry of
the histogram associated with each feature is pointed out. The
reported results focus on three frequency bands, namely: 1.7–
30 MHz, 1.7–50 MHz and 1.7–100 MHz, which are in accordance
with the standards used in Europe, North America and Brazil.
The values obtained to Brazilian PLC channel features are
different from those related to US and Europe channels reported
in literature. Thus, the presented statistical models constitute an
important tool to better design practical PLC systems that are
suitable for Brazilian and in-home electric power grids.

Index Terms—power line communication, statistical modeling,
data communication channel.

I. INTRODUCTION

THE need for nurturing the technologies for Smart Grid
(SG), Internet of Things (IoT) and Industry 4.0 demands

the introduction of pervasive telecommunication systems and,
as a consequence, the scarcity of spectrum may be alleviated
by using all available medium for data communication pur-
poses [1]–[3]. In this context, it is important to bring attention
to power line communication (PLC) because it is a technology
that makes use of the existing and ubiquitous infrastructure of
electrical power systems to provide data communication.

The PLC has received considerable attention due to its low
installation costs, as the electric power systems infrastructures
are already available. Against the use of PLC technologies
is the fact that electric power grids were not specified, de-
signed and deployed for data communication purposes. In
fact, power lines are electromagnetically unshielded and, as
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a consequence, it interferes with and suffers interference from
telecommunication systems operating in the same frequency
band. Additionally, the transmitted signal is severely attenu-
ated as frequency and/or distance increases, since the power
lines are non-ideal conductors. Also, it is affected by high
power impulsive noises due to loads dynamics and impedance
mismatching frequently occurs due to the intrinsic topology of
the electric distribution system. Overall, electric power grids
represent a challenging data communication medium to be
pursued but the necessity of data communication availability
has continuously driven PLC technologies.

In its turn, the existence of telecommunication world-
wide regulations imposes constraints on the widespread us-
age of PLC systems. In fact, these systems are considered
as secondary users and sources of interference for primary
users (e.g., telecommunication system operating in the same
frequency band, such as military applications and amateur
radio [4]–[7]). Therefore, the specification and design of
PLC systems, which maximize the usage of available channel
resources under the imposed constraints, requires a thorough
study of the main features of electric power grids in the data
communication perspective.

In this context, statistical models of some key features
of PLC channels, which characterize the signal propagation
influence of electric power grids over the transmitted signal,
constitute an important and valuable information to be taken
into account for the development and performance evaluation
of PLC systems. Regarding wireless communication, Nak-
agami, Rician, Rayleigh and Weibull statistical distributions
have been widely applied to model the fading behavior of
wireless channels [8], [9]. More recently, the Gamma [10] and
Inverse Gaussian [11] distributions were considered to model
fading effects for frequencies above 60 GHz in free-space
optical communications. In PLC scenario, very few statistical
analysis are available, with most of them addressing the PLC
channels in US and European countries [12]–[17].

The main features of interest for statistical characterization
of in-home PLC channels that are suitable for advancing the
PLC systems are: average channel attenuation (ACA), root
mean squared delay spread (RMS-DS), coherence bandwidth
(CB), and coherence time (CT). The average channel gain
in dB (ACGdB) – the negative of ACA – and the RMS-DS,
for in-home PLC channels, have their normality/log-normality
discussed in a few papers on the related literature. In [16],
for instance, measurements of PLC channels in US urban and
suburban areas are presented with the frequency band 1.8–
30 MHz. In [12], normality tests based on 60 PLC channels
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estimates, which were measured in six different homes, did not
reject the null hypothesis in which ACGdB and RMS-DS were
considered normally and log-normally distributed continuous
variables, respectively. Also, [13] reported the analysis of 200
PLC channels estimates obtained in 25 different premises in
Spain, with a frequency band 2–30 MHz. In that study, the nor-
mality assumption for ACGdB was rejected by all performed
tests, whereas the log-normality assumption was validated for
delay spread. In Italy, a set of 1, 266 PLC channels was
measured in the frequency band 1.8–100 MHz [14]. The
normality of ACGdB was not strictly confirmed, whereas the
log-normality of RMS-DS was firmly advocated. Moreover,
[15] discussed some results related to CB in Spanish in-home
PLC channels for the frequency band 2–30 MHz. Regarding
the frequencies up to 100 MHz, [18] and [14] discussed some
CB results in France and Italy, respectively. The analyses
related to the CT of PLC channels were addressed in few
researches, such as [17], in which the CT estimates higher
than 600 µs were obtained from the measured in-home PLC
channels.

Even though the CB and CT are two of the main features
for characterizing PLC channels, there is a clear lack of
characterization for them in countries with distinct profiles
from US and European countries. An attempt to overcome
this problem is the analysis of ACA, RMS-DS, CB, and CT
in Brazilian in-home PLC channels provided in [19]. Also,
an initial attempt to provide statistical modelings of ACG and
delay spread in Brazil was introduced in [20].

Aiming to provide a better understanding about Brazilian
electric power grids usability for data communication pur-
poses, this work focuses on a comprehensive discussion of
statistical modeling of key features of Brazilian in-home PLC
channels, covering three important frequency bands. In this
regard, the main contributions of this paper are the following:
• Statistical models are provided for the ACA, RMS-

DS, CB, and CT parameters, which were obtained from
several PLC-channel estimates from seven typical and
different homes in Brazilian urban area.

• The data sets constituted by all measured features are
submitted to a modeling procedure that evaluated the
suitability of several continuous statistical distributions,
of up to three parameters, including symmetric (Logis-
tic, Normal and t-Student) and asymmetric (Exponen-
tial, Gamma, Inverse Gaussian, Log-logistic, Log-normal,
Nakagami, Rayleigh, Rician, Skew-normal and Weibull)
ones.

• The choice of the best statistical distribution is based
on the log-likelihood function and three distinct in-
formation criteria, namely Akaike information criterion
(AIC), Bayesian information criterion (BIC), and efficient
determination criterion (EDC) [21].

• The analysis comprises three distinct frequency bands:
Band A (1.7–30 MHz), Band B (1.7–50 MHz) and
Band C (1.7–100 MHz). Note that Band A applies to
some European countries [22], Band B refers to the
regulation imposed by Brazilian telecommunication reg-
ulatory authority [23], and Band C covers future PLC
systems offering data rates in order of 1-2 Gbps [16].

Through the development of this study, the following state-
ments regarding the statistical modelings of Brazilian in-home
PLC channels features can be determined:
• The ACA feature is better fitted by the Skew-normal

distribution in Band A and by the Nakagami distribution
in Bands B and C.

• The RMS-DS is better fitted in all frequency bands by
Gamma distribution, while the Log-normal distribution
offers quite similar fitting results.

• The best fit for CB is provided by the Inverse Gaussian
distribution in Bands A and C, while the Log-logistic
distribution is the best one for Band B. Moreover, the
Skew-normal distribution yields the best fits for CT in
all frequency bands. It is important to emphasize that
the statistical analysis of CB and CT constitutes the
first attempt to statistically model these important PLC
channel features.

The remainder of this paper is organized as follows: Sec-
tion II addresses the PLC channel measurement setup and
campaign. Section III defines the PLC channel features of
interest: ACA, RMS-DS, CB and CT. Section IV deals with
the formal concepts behind the maximum likelihood estima-
tion process. Section V presents and discusses the modeling
results for the ACA, RMS-DS, CB and CT features, including
comparisons with other results found in the related literature.
Finally, Section VI closes the paper summarizing its main
findings.

II. MEASUREMENT SETUP AND CAMPAIGN

The statistical characterization and modeling of the most
important PLC-channel features were supported by estimates
of channel frequency responses (CFRs), which were obtained
from a measurement campaign in seven Brazilian in-home
facilities. The block diagram of the PLC CFR measurement
setup is shown in Fig. 1, which consists of the following three
main components [24]:
• Signal generator: Equipment composed of an arbitrary

signal generator board mounted in a rugged computer.
A pre-designed sounding sequence is loaded into it and
converted to an analog signal, which is used to estimate
the PLC CFRs. Essentially, the sounding sequence is
composed of consecutive Hermitian symmetric orthog-
onal frequency division multiplexing (HS-OFDM) [25]
symbols with 2N subcarriers and a cyclic prefix of length
Lcp.

• Data digitizer: Equipment composed of a data acquisition
board mounted in a rugged computer. It is responsible
for collecting the sounding signal that was distorted by
the propagation effects associated with the electric power
grids.

• Coupler: Circuitry used to connect both signal generator
and data digitizer to the electric power grids under analy-
sis [26]. The designed coupler introduces an insertion loss
lower than 2 dB in the frequency band 1.7–100 MHz.

The PLC CFR estimates are obtained through the channel-
estimation methodology applied in both transmitted (from the
signal generator) and received (by the data digitizer) sounding
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Fig. 1: The block diagram of the measurement setup.

signals, as detailed in [24], [27], [28]. The adopted parameters
in the channel-estimation methodology are summarized in
Table I. By adopting a sampling frequency of 200 MHz, the
resulting frequency resolution is around 48.83 kHz. From the
values chosen for N and Lcp chosen values, the CFR estimates
are obtained every 23.04 µs (which is the time interval
duration of the HS-OFDM symbol), approximately. Note that
the adopted time interval duration is much shorter than the
minimum value of CT of 600 µs, as desired, which was found
in in-home Spanish facilities, covering the frequency band of
1.7–30 MHz [17].

TABLE I: Main configuration parameters adopted for estimat-
ing the PLC CFRs [24].

Description Value
Sampling frequency fs = 200 MHz

Number of sub-carriers N = 2048
Modulation BPSK

Cyclic prefix length Lcp = 512
Frequency resolution ∆f = 48.83 kHz

Symbol duration 23.04 µs

A measurement campaign was carried out in seven distinct
and typical sites (residences) in an urban area in Brazil, as
described in Table II. In the entire measurement campaign,
245 different outlet pairs (i.e., electric circuits) were measured,
providing a total of 148,037 CFR estimates, with an average
of 604 consecutive CFR estimates for each outlet pair.

TABLE II: Main characteristics of the measured places.

Construction type Age (years) Constructed area (m2)
House #1 30 78
House #2 10 69

Apartment #1 9 54
Apartment #2 9 42
Apartment #3 18 65
Apartment #4 3 62
Apartment #5 2 54

III. POWER LINE FEATURES UNDER INVESTIGATION

This section defines the ACA, RMS-DS, CB, and CT
features. In this context, we assume that the PLC channel is
modeled as band limited, linear and time invariant system,
as the time interval duration of each HS-OFDM symbol is

much shorter than the coherence time. From now on, the
channel impulse response of a PLC channel is denoted by
h(t) ∈ R| t ∈ [0, Th), and its corresponding Fourier transform
is represented by H(f) ∈ C| − B < f < B, in which B is
the considered frequency bandwidth.

A. Average channel attenuation

The average channel gain (ACG) is given by

ACGdB = 10 log10

(
1

2B

∫ B

−B
|H(f)|2df

)
. (1)

As some of statistical distributions considered in this study
can not assume negative values, we opt to analyze the ACA
feature defined as ACA = −ACGdB.

B. Root mean squared delay spread

The RMS-DS denotes the distribution of transmitted power
over several paths in a multipath environment. It can be defined
as the square root of second central moment of a power delay
profile, as given by

τrms =

√∫∞
0

(τ − τ)2h2(τ)dτ∫∞
0
h2(τ)dτ

, (2)

where

τ =

∫ τmax

τmin
τh2(τ)dτ∫ τmax

τmin
h2(τ)dτ

, (3)

τmin and τmax are the arrival times of the first and last paths,
respectively. Such channel feature indicates how disperse the
communication channel is. This information is usually used to
support the specification of the guard or cyclic-prefix interval
duration in a multi-carrier modulation (e.g., HS-OFDM and
OFDM) to avoid inter-symbol interference.

C. Coherence bandwidth

The CB parameter reflects the CFR selectivity, and it can
be obtained by using the correlation function given by

R(∆f ) =

∫
H(f)H∗(f + ∆f )df, (4)

in which ∆f ∈ R+ denotes the frequency spacing and {∗}
is the conjugate operator. The value of coherence bandwidth
(Bc) is determined from the relationship

|R(Bc)| = γ|R(0)|, (5)

where γ ∈ R|0 < γ < 1 is the correlation level indicating that
the channel frequency response does not vary considerable
when ∆f ∈ [0, Bc]. Based on the use of HS-OFDM scheme
and the values in Table I, in our study we get Bc = (B/N)λ ≈
48.83λ kHz, where λ = 0, 1, . . . , N − 1. From its definition,
the CB is a key parameter to evaluate the need for equalization
in a practical data communication scheme.
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D. Coherence Time

The CT is the time duration in which the PLC-channel im-
pulse response can be considered time invariant. By assuming
that the PLC channel is a wide-sense stationary uncorrelated
scattering (WSSUS) process [29], the CT feature becomes
related to the coherence time of the complex gains, αl(t),
which incorporate both attenuation and phase deviations due
to l = 1, 2, . . . , L signal multiple reflections in the communi-
cation medium.

In its turn, the coherence index between samples of αl(t),
taken ∆t time units apart, is given by

ραl
=
E[αl(t)α

∗
l (t+ ∆t)]

E[|α2
l (t)|]

, (6)

in which E[.] is the expectation operator. Thus, it can be
assumed that the correlation index of the PLC channel is given
by

ρh(∆t) =

∑L
l=1 Plραl

(∆t)∑L
l=1 Pl

; 0 ≤ |ρh(∆t)| ≤ 1, (7)

where Pl = E[|α2
l (t)|] is the average power of the lth path.

Hence, the CT feature can be obtained through the relationship

|ρh(T βc )| ≥ β, (8)

where 0 < β < 1 refers to the minimum correlation index
admitted to characterize the channel as time-invariant during
the time interval ∆t = T βc . For a HS-OFDM based scheme,
the CT for the correlation index β, denoted by T βc , can be
estimated by using [29]

T βc = Mc(2N + Lcp)Ts, (9)

where Ts = 1/fs denotes the sampling period, 2N is the
number of subcarriers, Lcp is the length of the cyclic prefix in
the HS-OFDM symbol, and Mc is the number of consecutive
channel estimates required to reach a correlation score equal to
0 < β < 1. In other words, Mc is the number of consecutive
channel estimates in which a correlation of β between them,
can be observed. In this sense, the higher is the value of Mc,
the longer will be the coherence time.

In practice, the CT feature is crucial for instance to inform
the periodicity of channel state information that must be
provided for performing channel equalization and resource
allocation.

IV. STATISTICAL MODELING EVALUATION

Assuming that the features are random variables, than the
fitting between their data sets and any statistical distribution
may be evaluated in terms of different criteria, as described
below.

A. Maximum Likelihood Estimate

Let X = xi denotes a realization of a random variable with
a parametric probability density function (pdf) f(x|θ), where
θ = [θ1, ..., θK ]T denotes K unknown parameters. Thus, the
likelihood function can be expressed as [30]

L(θ) =
∏
i

f(xi|θ1, ..., θK), (10)

which is commonly replaced by its logarithmic version, re-
ferred as log-likelihood, which is given by

γ(θ) =
∑
i

log(f(xi|θ1, ..., θK)). (11)

The maximum likelihood estimate (MLE), represented by
vector θ̂, is obtained by

θ̂ = arg max
θ

γ(θ). (12)

Such maximization problem is easily performed for some dis-
tributions with analytic solutions, as it occurs, for instance, for
Normal distribution. On the other hand, analytic solution for
others statistical distributions (e.g., Skew-normal and Gamma
distributions) can be very complicated and, as a consequence,
numerical procedures may apply [31].

B. The information Criteria

These criteria quantitatively evaluate the suitability of a
statistical distribution to model a data set by penalizing the
number of parameters in each distribution to avoid data over-
fitting. The three information criteria considered here, namely
the Akaike information criterion (AIC), Bayesian information
criterion (BIC), and efficient determination criterion (EDC),
have the general form of [21]

−2γ(θ̂) +Kcn, (13)

where K is the number of parameters used by a pdf and
cn is the penalty term of the criterion. Note that cn is in
accordance with Table III, where n denotes the data set size.
Different from the log-likelihood function, a low value of the
information criterion means a better fitting between data set
and the statistical distribution.

TABLE III: Penalty term cn of the information criteria.

Criterion cn
AIC 2
BIC log(n)
EDC 0.2

√
n

V. NUMERICAL RESULTS

Statistical analyses were performed in the data sets of the
ACA, RMS-DS, CB, and CT features, extracted from the
measured in-home PLC channels covering the following three
frequency bands:
• Band A: 1.7–30 MHz.
• Band B: 1.7–50 MHz.
• Band C: 1.7–100 MHz.
The statistical modeling was based on several symmetric

and asymmetric continuous statistical distributions, which
were chosen according to the general behavior observed in
each data set. In this sense, the chosen symmetric distributions
are the Logistic, Normal, and t-Student, while the asym-
metric ones are the Exponential, Gamma, Inverse Gaussian,
Log-logistic, Log-normal, Nakagami, Rayleigh, Rician, Skew-
normal, and Weibull. The statistical analysis of each feature
is presented in the following subsections.
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A. ACA Statistical Analysis

The parameters of all considered statistical distributions,
applied to fit the ACA, are listed in Tables IV-VI, for Bands
A, B and C, respectively. The statistical models that best fit
the ACA, the fit to the normal distribution and the histograms
of the dataset that represents the ACA can be observed in
Fig. 2. From these results, one can note that the Skew-normal
distribution offers the best fit to the ACA values obtained
from the measured Brazilian in-home PLC channels, when
considering Band A. Moreover, the Nakagami distribution
achieves the best fits for Bands B and C. At this point, it
is important to emphasize that the fitting is performed in the
datasets instead of the histograms that represent them, since
the format of the histograms are due to the dataset but is
strongly dependent to the chosen number of bins. Thus, the
quality of the achieved fit is not verified only by the inspection
of the corresponding histogram, but together with the analysis
of the achieved MLE score. The above comment is also applied
to all considered channel parameters.

Regarding Band A and based on some normality tests, the
ACA was considered normally distributed in some US in-home
PLC channels, as detailed in [16]. The mean values for ACA
in US is more than two times the one observed in Brazilian
residences and this difference is probably related to the fact
that the sizes of typical apartments and residences in Brazil are
smaller than in US (see Table II in [12]). These same tests were
performed in in-home PLC channels in Spain [13], and the null
hypothesis in which ACA is considered normally distributed
was rejected. In that contribution, the Jarque-Bera, Lilliefors,
and Kolmogorov-Smirnov tests [32], performed at 5% and 1%
correlation levels, were applied and normality assumption with
respect to ACA feature was also strongly rejected. The values
of ACA reported from Spain are close to those encountered
in US. Regarding the measured Brazilan PLC channels, the
use of the Normal distribution seems to be not appropriate to
give a reasonable model for the ACA. This is because among
the tested distributions, the normal is just the eighth best fit,
for Band A. On the other hand, the normal distribution can be
eventually used in Bands B and C, although it is the fourth
best fit, but the MLE score is quite close when comparing
the normal and the first three best statistical models, as can be
observed in Tables V and VI, for Bands B and C, respectively.

Regarding Band C, for comparison purposes, [14] showed
that the Normal distribution yields the best fit to ACA values
related to Italian in-home PLC channels. In that paper, the
mean and standard deviation associated with the Normal
distribution, (µ, σ), are equal to (35.412, 10.521) dB, where
the values (30.211, 9.158) dB are obtained in the Brazilian
in-home scenario. These results reinforce the fact that Italian
in-home PLC channels faces more attenuation, around 5 dB,
in comparison to their Brazilian counterparts.

B. RMS-DS Statistical Analysis

With respect to the statistical modeling of the RMS-DS
feature, the histograms depicted in Fig. 3 show a clear positive
asymmetry. In fact, the analysis of RMS-DS for Brazilian
in-home PLC channels revealed that this feature is better
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Fig. 2: The histograms and the best distribution for the ACA
feature. The Normal distribution is included for comparison
purpose.

modeled by a Gamma distribution, for all three frequency
bands considered here. This result is different from those
reported for in-home PLC channels in US [16], [22] and for
in-home PLC channels in Spain [13], regarding frequency
Band A. Also, it differs from the one presented in [14] for
Italian in-home PLC channels in Band C, in which RMS-DS
was considered to be log-normally distributed. Furthermore,
the values of RMS-DS observed in US and Europe are higher
than those estimated from Brazilian power lines. This matches
the same observation applied to justify the discrepancy verified
in ACA parameter from different countries, due to the size
of the measured residences, in which are probably smaller in
Brazil.

On the other hand, the obtained results with the Normal
distribution applied to the RMS-DS values extracted from the
Brazilian in-home PLC channels are not so distant to those
obtained with the Gamma distribution, as give in Tables VII-
IX. For instance, regarding Band A, a very low relative
difference of 0.02 is observed between the EDC values for
Gamma and Log-normal distributions. The suitability of the
Log-normal distribution to fit the RMS-DS can be visualized



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019. 159

0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10

RMS−DS (µs)

D
e

n
s
it
y

 

 

Data
Gamma (best fit)
Log−normal

(a) RMS-DS for Band A.

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

RMS−DS (µs)

D
e

n
s
it
y

 

 

Data
Gamma (best fit)
Log−normal

(b) RMS-DS for Band B.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10

RMS−DS (µs)

D
e

n
s
it
y

 

 

Data
Gamma (best fit)
Log−normal

(c) RMS-DS for Band C.

Fig. 3: The histograms and the best distribution for the
RMS-DS feature. The Log-normal distribution is included for
comparison purpose.

in Fig. 3a. Similar behavior is observed for both Band B and
Band C, as depicted in Figs. 3b and 3c, respectively.

C. CB Statistical Analysis

The CB values estimated from the measured in-home PLC
channels are analyzed in this contribution with respect to a
correlation level of 90%. Comparing the CB values (at a 90%
of correlation level) extracted from Brazilian in-home PLC
channels with their Spanish [15] (for Band A) and French [18]
(for Band C) counterparts, larger CB values can be observed
in the Brazilian PLC channels. In fact, the maximum CB value
in Brazil is almost 3 MHz, approximately 1.6 and 2.5 times
its French and Spanish counterparts, respectively.

The statistical modeling of the CB feature revealed that it is
better fitted by the Inverse Gaussian distribution for Band A
and Band C, as shown in Figs. 4a and 4c, respectively. For
Band B, the best fit is achieved by the Log-logistic distribution.
For comparison purposes, the fit for the Log-normal distribu-
tion is also depicted in Fig. 4, since the histograms suggest that
the CB data set presents positive asymmetry. It is important
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Fig. 4: The histograms and the best distribution for the CB fea-
ture. The Log-normal distribution is included for comparison
purpose.

to state that the fit offered by the Log-normal distribution
yields very close performance to the distributions offering the
best fits in terms of log-likelihood and all evaluated criteria,
something that is much more accentuated in Bands A and C.
The parameters for each considered statistical distribution,
including the Log-normal one, together with all criterion
values are listed in Tables X-XII, for Bands A, B and C,
respectively.

Since the statistical modeling of CB values, to the authors’
best knowledge, is firstly introduced in this contribution, no
comparison can be performed against previous related papers.

D. CT Statistical Analysis

The CT data set is constituted by less samples in comparison
with the ACA, RMS-DS, and CB data sets, due to the
methodology applied to estimate this feature. In fact, the CT
values are derived from a set of consecutive CFRs, and only
those combinations that rendered more than 640 consecutive
CFR estimates where considered. This means that the data set
for CT values is composed of only 178 estimates.
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For this feature, the histograms depicted in Fig. 5 show
some negative asymmetry of the CT values. This observation
is reinforced by the fact that the Skew-normal is the best sta-
tistical distribution, with a negative skewness, as indicated by
the value of γ in Tables XIII-XV for all considered frequency
bands. As can be observed, the second-best statistical distri-
bution provides fitting scores far worst than those achieved
by the best distribution in each band, and, as a consequence,
they may not be chosen to model the CT associated with the
Brazilian in-home PLC channels.
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Fig. 5: The histograms and the best distributions for the CT
feature.

VI. CONCLUSION

This paper have provided statistical models of key features
of in-home PLC channels. The average channel attenuation,
root mean squared delay spread, coherence bandwidth and
coherence time features were obtained from PLC-channel
estimates yielded by a measurement campaign carried out in a
Brazilian urban area. The covered frequency bands were 1.7–
30 MHz (Band A), 1.7–50 MHz (Band B), and 1.7–100 MHz
(Band C).

The attained results have shown that the average channel
attenuation feature is better fitted by the Skew-normal distribu-
tion in Band A, and by the Nakagami distribution in Bands B
and C. The root mean squared delay spread feature is better
fitted in all frequency bands by the Gamma distribution, having
the Log-normal distribution achieving very similar modeling
results. Regarding the coherence bandwidth feature, the best
fit was obtained with the Inverse Gaussian distribution for
Bands A and C, while the Log-logistic distribution offered
the best fit for Band B. Finally, the Skew-normal distribution
yields the best fits for the coherence time feature in all
frequency bands.

Comparisons with previous studies carried out in US and
Europe (Spain, France, and Italy) have shown the existing
similarities and, most importantly, differences from Brazilian
PLC channels. For instance, the normality assumption for the
average channel attenuation verified in some countries may not
be accepted in the Brazilian case. On the other hand, the log-
normality of the root mean squared delay spread was verified
in several countries, including Brazil.

Indeed, the provided models are more suitable to repre-
sent Brazilian PLC channels and thus, they are useful for
developing data communication systems which are capable of
maximizing the use of available resources in Brazilian electric
power grids.
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APPENDIX
STATISTICAL MODELS FOR PLC CHANNEL FEATURES

TABLE IV: The results of the statistical modeling of ACA for Band A.

Distribution Parameter estimate MLE AIC BIC EDC
Exponential µ = (23.2804± 0.0820) −2.7412× 104 5.4825× 104 5.4827× 104 5.4839× 104

Gamma a = (6.9369± 0.0139) −2.3451× 104 4.6906× 104 4.6909× 104 4.6934× 104

b = (3.3560± 0.0035)
Inverse Gaussian µ = (23.2804± 0.0137) −2.3525× 104 4.7054× 104 4.7057× 104 4.7082× 104

λ = (139.8050± 5.9148)
Logistic µ = (23.0296± 0.0124) −2.3802× 104 4.7608× 104 4.7612× 104 4.7637× 104

σ = (5.1032± 0.0026)
Log-logistic µ = (3.0939± 0.2621) −2.3766× 104 4.7536× 104 4.7539× 104 4.7564× 104

σ = (0.2346± 0.0556)
Log-normal µ = (3.0738± 0.2357× 10−4) −2.3547× 104 4.7099× 104 4.7102× 104 4.7127× 104

σ = (0.3946± 0.1179× 10−4)
Nakagami µ = (1.9633± 0.0010) −2.3434× 104 4.6873× 104 4.6876× 104 4.6901× 104

ω = (616.0890± 29.2519)
Normal µ = (23.2804± 0.0112) −2.3606× 104 4.7215× 104 4.7219× 104 4.7244× 104

σ = (8.6094± 0.0056)
Rayleigh B = (17.5512± 0.0117) −2.4165× 104 4.8333× 104 4.8335× 104 4.8347× 104

Rician s = (21.1317± 0.0174) −2.3542× 104 4.7088× 104 4.7092× 104 4.7117× 104

σ = (9.2071± 0.0093)
µ = (22.7062± 0.0124) −2.3359× 104 4.6726× 104 4.6731× 104 4.6768× 104

Skew-normal σ = (9.4122± 0.0081)
γ = (0.9625± 0.0015)
µ = (23.2802± 0.0112) −2.3606× 104 4.7217× 104 4.7223× 104 4.7260× 104

t-Student σ = (8.6091± 0.0056)
ν = (1.0684× 107 ± 3.0323× 109)

Weibull A = (26.1488± 0.0132) −2.3471× 104 4.6945× 104 4.6949× 104 4.6974× 104

B = (2.9580± 0.0008)

TABLE V: The results of the statistical modeling of ACA for Band B.

Distribution Parameter estimate MLE AIC BIC EDC
Exponential µ = (25.2440± 0.0964) −2.7947× 104 5.5895× 104 5.5897× 104 5.5910× 104

Gamma a = (8.5236± 0.0212) −2.3368× 104 4.6741× 104 4.6744× 104 4.6769× 104

b = (2.9617± 0.0027)
Inverse Gaussian µ = (25.2440± 0.0132) −2.3549× 104 4.7102× 104 4.7106× 104 4.7131× 104

λ = (184.5320± 10.3958)
Logistic µ = (25.1994± 0.0109) −2.3478× 104 4.6960× 104 4.6964× 104 4.6988× 104

σ = (4.8178± 0.0024)
Log-logistic µ = (3.1965± 0.1971× 10−4) −2.3630× 104 4.7264× 104 4.7268× 104 4.7293× 104

σ = (0.2058± 0.0441× 10−4)
Log-normal µ = (3.1688± 0.1947× 10−4) −2.3543× 104 4.7091× 104 4.7094× 104 4.7119× 104

σ = (0.3587± 0.0974× 10−4)
Nakagami µ = (2.4072± 0.0015) −2.3289× 104 4.6582× 104 4.6586× 104 4.6611× 104

ω = (705.8651± 31.3180)
Normal µ = (25.2445± 0.0104) −2.3350× 104 4.6705× 104 4.6708× 104 4.6733× 104

σ = (8.2835± 0.0052)
Rayleigh B = (18.7865± 0.0134) −2.4437× 104 4.8875× 104 4.8877× 104 4.8890× 104

Rician s = (23.3614± 0.0135) −2.3326× 104 4.6656× 104 4.6660× 104 4.6684× 104

σ = (8.6429± 0.0070)
µ = (25.2377± 1.0401× 10−2) −2.3335× 104 4.6676× 104 4.6682× 104 4.6719× 104

Skew-normal σ = (8.2875± 0.0054)
γ = (0.1779± 1.1403× 10−3)

µ = (25.2445± 0.0104) −2.3350× 104 4.6707× 104 4.6712× 104 4.6750× 104

t-Student σ = (8.2829± 0.0052)
ν = (1.2079× 106 ± 1.7073× 109)

Weibull A = (28.1449± 0.0119) −2.3296× 104 4.6595× 104 4.6599× 104 4.6624× 104

B = (3.3479± 0.0010)
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TABLE VI: The results of the statistical modeling of ACA for Band C.

Distribution Parameter estimate MLE AIC BIC EDC
Exponential µ = (30.2112± 0.1381) −2.9134× 104 5.8270× 104 5.8272× 104 5.8284× 104

Gamma a = (10.1338± 0.0301) −2.4027× 104 4.8058× 104 4.8062× 104 4.8087× 104

b = (2.9812± 0.0027)
Inverse Gaussian µ = (30.2112± 0.0154) −2.4165× 104 4.8335× 104 4.8338× 104 4.8363× 104

λ = (270.2152± 22.0960)
Logistic µ = (30.1738± 0.0135) −2.4163× 104 4.8330× 104 4.8333× 104 4.8358× 104

σ = (5.3523± 0.0029)
Log-logistic µ = (3.3809± 0.1667× 10−4) −2.4287× 104 4.8577× 104 4.8581× 104 4.8606× 104

σ = (0.1889± 0.0369× 10−4)
Log-normal µ = (3.3581± 0.1610× 10−4) −2.4167× 104 4.8339× 104 4.8342× 104 4.8367× 104

σ = (0.3262± 0.0805× 10−4)
Nakagami µ = (2.8123± 0.0021) −2.3962× 104 4.7928× 104 4.7931× 104 4.7956× 104

ω = (996.5721± 53.4341)
Normal µ = (30.2112± 0.0127) −2.4014× 104 4.8032× 104 4.8035× 104 4.8060× 104

σ = (9.1581± 0.0063)
Rayleigh B = (22.3223± 0.0188) −2.5465× 104 5.0932× 104 5.0934× 104 5.0947× 104

Rician s = (28.5925± 0.0155) −2.3998× 104 4.8001× 104 4.8005× 104 4.8029× 104

σ = (9.4616± 0.0079)
µ = (30.2037± 1.2715× 10−2) −2.4004× 104 4.8015× 104 4.8020× 104 4.8058× 104

Skew-normal σ = (9.1627± 0.6591× 10−2)
γ = (0.1488± 1.2825× 10−3)

µ = (30.2115± 0.0127) −2.4014× 104 4.8034× 104 4.8039× 104 4.8076× 104

t-Student σ = (9.1574± 0.0063)
ν = (6.3036× 106 ± 2.9163× 109)

Weibull A = (33.5333± 0.0143) −2.3977× 104 4.7957× 104 4.7961× 104 4.7986× 104

B = (3.6440± 0.0012)

TABLE VII: The results of the statistical modeling of RMS-DS for Band A.

Distribution Parameter estimate MLE AIC BIC EDC
Exponential µ = (0.1481± 3.3180× 10−6) 6.0141× 103 −1.2026× 104 −1.2024× 104 −1.2012× 104

Gamma a = (5.3806± 0.0083) 9.2350× 103 −1.8466× 104 −1.8462× 104 −1.8437× 104

b = (0.0275± 0.0002)
Inverse Gaussian µ = (0.1481± 0.0007× 10−3) 9.1701× 103 −1.8336× 104 −1.8333× 104 −1.8308× 104

λ = (0.6674± 0.1348× 10−3)
Logistic µ = (0.14373± 0.5951× 10−6) 8.8357× 103 −1.7667× 104 −1.7664× 104 −1.7639× 104

σ = (0.0358± 0.1321× 10−6)
Log-logistic µ = (−1.9881± 0.3114× 10−4) 9.0858× 103 −1.8168× 104 −1.8164× 104 −1.8139× 104

σ = (0.2584± 0.0687× 10−4)
Log-normal µ = (−2.1459± 0.4191× 10−4) 9.0471× 103 −1.8090× 104 −1.8087× 104 −1.8062× 104

σ = (0.5263± 0.2096× 10−4)
Nakagami µ = (1.5153± 0.5768× 10−3) 9.1241× 103 −1.8244× 104 −1.8241× 104 −1.8216× 104

ω = (0.0261± 0.0001× 10−3)
Normal µ = (0.1481± 0.6280× 10−6) 8.7462× 103 −1.7488× 104 −1.7485× 104 −1.7460× 104

σ = (0.0644± 0.0644× 10−4)
Rayleigh B = (0.1142± 4.9324× 10−7) 8.8165× 103 −1.7631× 104 −1.7629× 104 −1.7617× 104

Rician s = (0.1222± 0.2104× 10−5) 8.9461× 103 −1.7888× 104 −1.7885× 104 −1.7860× 104

σ = (0.0746± 0.1056× 10−5)
µ = (0.1477± 6.2367× 10−7) 9.2045× 103 −1.8403× 104 −1.8398× 104 −1.8360× 104

Skew-normal σ = (0.0649± 4.1255× 10−7)
γ = (0.8453± 1.7173× 10−4)
µ = (0.1442± 6.2515× 10−7) 8.8602× 103 −1.7714× 104 −1.7709× 104 −1.7672× 104

t-Student σ = (0.0566± 5.1078× 10−7)
ν = (9.2055± 0.6177)

Weibull A = (0.1672± 0.0008× 10−3) 9.0239× 103 −1.8044× 104 −1.8040× 104 −1.8015× 104

B = (2.4300± 0.4811× 10−3)
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TABLE VIII: The results of the statistical modeling of RMS-DS for Band B.

Distribution Parameter estimate MLE AIC BIC EDC
Exponential µ = (0.1384± 2.8962× 10−6) 6.4634× 103 −1.2925× 104 −1.2923× 104 −1.2911× 104

Gamma a = (4.6809± 0.0062) 9.2915× 103 −1.8579× 104 −1.8575× 104 −1.8550× 104

b = (0.0295± 0.0004)
Inverse Gaussian µ = (0.1384± 0.0078× 10−4) 9.1057× 103 −1.8207× 104 −1.8204× 104 −1.8179× 104

λ = (0.5105± 0.7888× 10−4)
Logistic µ = (0.1342± 0.5661× 10−6) 8.9580× 103 −1.7912× 104 −1.7908× 104 −1.7883× 104

σ = (0.0351± 0.1274× 10−6)
Log-logistic µ = (−2.0601± 0.3524× 10−4) 9.1259× 103 −1.8248× 104 −1.8244× 104 −1.8219× 104

σ = (0.2767± 0.0801× 10−4)
Log-normal µ = (−2.0886± 0.3625× 10−4) 9.1479× 103 −1.8292× 104 −1.8288× 104 −1.8263× 104

σ = (0.4895± 0.1813× 10−4)
Nakagami µ = (1.3543± 0.4528× 10−3) 9.2203× 103 −1.8347× 104 −1.8433× 104 −1.8408× 104

ω = (0.0232± 0.0001× 10−3)
Normal µ = (0.1384± 0.6109× 10−6) 8.8374× 103 −1.7671× 104 −1.7667× 104 −1.7642× 104

σ = (0.0635± 0.3055× 10−6)
Rayleigh B = (0.1076± 4.3838× 10−7) 9.0486× 103 −1.8095× 104 −1.8093× 104 −1.8081× 104

Rician s = (0.1062± 0.3890× 10−5) 9.0973× 103 −1.8191× 104 −1.8187× 104 −1.8162× 104

σ = (0.0771± 0.1642× 10−5)
µ = (0.1383± 6.0740× 10−7) 9.2278× 103 −1.8450× 104 −1.8444× 104 −1.8407× 104

Skew-normal σ = (0.0636± 3.9489× 10−7)
λ = (0.7747± 3.1647× 10−4)
µ = (0.1344± 5.8888× 10−7) 8.9774× 103 −1.7949× 104 −1.7943× 104 −1.7906× 104

t-Student σ = (0.0548± 5.0551× 10−7)
ν = (8.1067± 0.4104)

Weibull A = (0.1564± 0.0008× 10−3) 9.1580× 103 −1.8312× 104 −1.8308× 104 −1.8283× 104

B = (2.3007± 0.4367× 10−3)

TABLE IX: The results of the statistical modeling of RMS-DS for Band C.

Distribution Parameter estimate MLE AIC BIC EDC
Exponential µ = (0.1327± 2.6647× 10−6) 6.7386× 103 −1.3475× 104 −1.3473× 104 −1.3461× 104

Gamma a = (4.1178± 0.0048) 9.2151× 103 −1.8426× 104 −1.8423× 104 −1.8398× 104

b = (0.0322± 0.0001)
Inverse Gaussian µ = (0.1327± 0.0085× 10−4) 9.0035× 103 −1.8003× 104 −1.7999× 104 −1.7974× 104

λ = (0.4167± 0.5256× 10−4)
Logistic µ = (0.1285± 0.5914× 10−6) 8.8334× 103 −1.7663× 104 −1.7659× 104 −1.7634× 104

σ = (0.0358± 0.1324× 10−6)
Log-logistic µ = (−2.1128± 0.4106× 10−4) 9.0088× 103 −1.8014× 104 −1.8010× 104 −1.7985× 104

σ = (0.2984± 0.0932× 10−3)
Log-normal µ = (−2.1459± 0.4191× 10−4) 9.0471× 103 −1.8090× 104 −1.8087× 104 −1.8062× 104

σ = (0.5263± 0.2096× 10−4)
Nakagami µ = (1.2160± 0.3587× 10−3) 9.1591× 103 −1.8314× 104 −1.8311× 104 −1.8286× 104

ω = (0.0218± 0.0001× 10−3)
Normal µ = (0.1327± 0.6290× 10−6) 8.7409× 103 −1.7478× 104 −1.7474× 104 −1.7449× 104

σ = (0.0645± 0.3146× 10−6)
Rayleigh B = (0.1043± 4.1171× 10−7) 9.0844× 103 −1.8167× 104 −1.8165× 104 −1.8152× 104

Rician s = (0.1940× 10−3 ± 0.3422× 10−5) 9.0844× 103 −1.8165× 104 −1.8161× 104 −1.8136× 104

σ = (0.1043± 0.0177× 10−5)
µ = (0.1323± 6.3203× 10−7) 9.1509× 103 −1.8296× 104 −1.8290× 104 −1.8253× 104

Skew-normal σ = (0.0649± 4.2056× 10−7)
λ = (0.8127± 2.6454× 10−4)
µ = (0.1288± 6.2274× 10−7) 8.8528× 103 −1.7700× 104 −1.7694× 104 −1.7657× 104

t-Student σ = (0.0564± 5.3258× 10−7)
ν = (8.8234± 0.5668)

Weibull A = (0.1484± 0.0008× 10−3) 9.1259× 103 −1.8248× 104 −1.8244× 104 −1.8219× 104

B = (2.1794± 0.4020× 10−3)
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TABLE X: The results of the statistical modeling of CB for Band A.

CB for Band A
Distribution Parameter estimate MLE AIC BIC EDC
Exponential µ = (0.7049± 8.5353× 10−5) −3.7828× 103 7.5677× 103 7.5694× 103 7.5809× 103

Gamma a = (2.8401± 0.0025) −2.4386× 103 4.8811× 103 4.8847× 103 4.9077× 103

b = (0.2481± 0.0003)
Inverse Gaussian µ = (0.7047± 0.0360× 10−3) −2.0820× 103 4.1681× 103 4.1716× 103 4.1946× 103

σ = (1.6715± 0.9603× 10−3)
Logistic µ = (0.6209± 0.2684× 10−4) −3.5161× 103 7.0363× 103 7.0398× 103 7.0628× 103

σ = (0.2348± 0.0717× 10−4)
Log-logistic µ = (−0.5605± 0.5852× 10−4) −2.1168× 103 4.2375× 103 4.2411× 103 4.2640× 103

σ = (0.3351± 0.1340× 10−4)
Log-normal µ = (−0.5362± 0.6042× 10−4) −2.0949× 103 4.1937× 103 4.1973× 103 4.2202× 103

σ = (0.5929± 0.3022× 10−4)
Nakagami µ = (0.78001± 0.1550× 10−3) −2.9776× 103 5.9592× 103 5.9627× 103 5.9857× 103

ω = (0.7342± 0.1187× 10−3)
Normal µ = (0.7047± 0.4082× 10−4) −4.0741× 103 8.1522× 103 8.1558× 103 8.1787× 103

σ = (0.4874± 0.2042× 10−4)
Rayleigh B = (0.6059± 1.5771× 10−5) −3.1074× 103 6.2168× 103 6.2186× 103 6.2301× 103

Rician s = (0.0006± 44.5535) −3.1074× 103 6.2188× 103 6.2224× 103 6.2453× 103

σ = (0.6059± 0.0002)
µ = (0.7571± 2.9376× 10−5) −2.4792× 103 4.9645× 103 4.9698× 103 5.0043× 103

Skew-normal σ = (0.4262± 1.7408× 10−5)
γ = (0.9695± 7.6399× 10−6)
µ = (0.5512± 0.1816× 10−4) −2.9988× 103 6.0035× 103 6.0088× 103 6.0433× 103

t-Student σ = (0.2318± 0.1693× 10−4)
ν = (1.9421± 0.0037)

Weibull A = (0.7943± 0.0473× 10−3) −2.7952× 103 5.5944× 103 5.5979× 103 5.6209× 103

B = (1.6091± 0.2242× 10−3)

TABLE XI: The results of the statistical modeling of CB for Band B.

Distribution Parameter estimate MLE AIC BIC EDC
Exponential µ = (0.6808± 8.6105× 10−5) −3.3134× 103 6.6288× 103 6.6305× 103 6.6414× 103

Gamma a = (3.2404± 0.0035) −1.8063× 103 3.6167× 103 3.6202× 103 3.6421× 103

b = (0.2101± 0.1742× 10−4)
Inverse Gaussian µ = (0.6808± 0.3224× 10−4) −1.6152× 103 3.2344× 103 3.2378× 103 3.2597× 103

σ = (1.8182± 0.0012)
Logistic µ = (0.6156± 0.2239× 10−4) −2.5392× 103 5.0825× 103 5.0859× 103 5.1078× 103

σ = (0.2062± 0.0582× 10−4)
Log-logistic µ = (−0.5518± 0.5466× 10−4) −1.5519× 103 3.1078× 103 3.1112× 103 3.1331× 103

σ = (0.3126± 0.1266× 10−4)
Log-normal µ = (−0.5466± 0.0584× 10−3) −1.5821× 103 3.1682× 103 3.1717× 103 3.1935× 103

σ = (0.5608± 0.0292× 10−3)
Nakagami µ = (0.8755± 0.2155× 10−3) −2.2836× 103 4.5713× 103 4.5747× 103 4.5966× 103

ω = (0.6549± 0.0910× 10−3)
Normal µ = (0.6808± 0.3557× 10−4) −3.1887× 103 6.3815× 103 6.3849× 103 6.4068× 103

σ = (0.4376± 0.1779× 10−4)
Rayleigh B = (0.5722± 1.5209× 10−5) −2.3163× 103 4.6345× 103 4.6363× 103 4.6472× 103

Rician s = (0.0135± 0.0823) −3.1074× 103 4.6365× 103 4.6400× 103 4.6619× 103

σ = (0.5723± 0.2677× 10−4)
µ = (0.7852± 0.2471× 10−4) −2.5880× 103 5.1821× 103 5.1876× 103 5.2249× 103

Skew-normal σ = (0.4151± 0.1412× 10−4)
γ = (0.9777± 0.0026× 10−4)
µ = (0.5777± 0.1714× 10−4) −2.1428× 103 4.2917× 103 4.2969× 103 4.3297× 103

t-Student σ = (0.2304± 0.1485× 10−4)
ν = (2.4015± 0.0072)

Weibull A = (0.7695± 0.0423× 10−3) −2.1687× 103 4.3414× 103 4.3448× 103 3.3667× 103

B = (1.7123± 0.2658× 10−3)
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TABLE XII: The results of the statistical modeling of CB for Band C.

Distribution Parameter estimate MLE AIC BIC EDC
Exponential µ = (0.8205± 1.0187× 10−4) −5.3016× 103 1.0605× 104 1.0607× 104 1.0619× 104

Gamma a = (2.4376± 0.0016) −4.1263× 103 8.2565× 103 8.2602× 103 8.2850× 103

b = (0.3366± 0.0001)
Inverse Gaussian µ = (0.8205± 0.0473× 10−3) −3.3638× 103 6.7317× 103 6.7353× 103 6.7602× 103

σ = (1.7677± 0.9456× 10−3)
Logistic µ = (0.6901± 0.3653× 10−4) −5.7185× 103 1.1441× 104 1.1445× 104 1.1470× 104

σ = (0.2964± 0.1048× 10−4)
Log-logistic µ = (−0.4703± 0.5356× 10−4) −3.3850× 103 6.7739× 103 6.7776× 103 6.8024× 103

σ = (0.3427± 0.1249× 10−4)
Log-normal µ = (−0.4167± 0.5735× 10−4) −3.4170× 103 6.8380× 103 6.8417× 103 6.8665× 103

σ = (0.6156± 0.2868× 10−4)
Nakagami µ = (0.6464± 0.0904× 10−3) −5.0245× 103 1.0053× 104 1.0057× 104 1.0082× 104

ω = (1.11856± 0.2929× 10−3)
Normal µ = (0.8205± 0.6739× 10−4) −6.7045× 103 1.3413× 104 1.3417× 104 1.3441× 104

σ = (0.6673± 0.3370× 10−4)
Rayleigh B = (0.7478± 2.1156× 10−5) −5.5227× 103 1.1047× 104 1.1049× 104 1.1062× 104

Rician s = (0.0187± 0.0558) −5.5227× 103 1.1049× 104 1.1053× 104 1.1078× 104

σ = (0.7477± 0.0002)
µ = (0.9349± 4.1300× 10−5) −4.2329× 103 8.4719× 103 8.4772× 103 8.5117× 103

Skew-normal σ = (0.5425± 2.3862× 10−5)
γ = (0.9903± 1.0703× 10−6)
µ = (0.5703± 0.1704× 10−4) −4.4368× 103 8.8797× 103 8.8851× 103 8.9225× 103

t-Student σ = (0.2239± 0.1561× 10−4)
ν = (1.4647± 0.0014)

Weibull A = (0.9156± 0.0698× 10−3) −4.5826× 103 9.1692× 103 9.1729× 103 9.1978× 103

B = (1.4356± 0.1494× 10−3)

TABLE XIII: The results of the statistical modeling of CT for Band A.

Distribution Parameter estimate MLE AIC BIC EDC
Exponential µ = (1.1863± 0.0079) −208.4095 418.8191 419.0695 419.4874

Gamma a = (8.2153± 0.7288) −88.1016 180.2032 180.7040 181.5399
b = (0.1444± 0.0002)

Inverse Gaussian µ = (1.1863± 0.0015) −177.1688 238.3375 238.8384 238.6742
λ = (6.3446± 0.4523)

Logistic µ = (1.2413± 0.6095× 10−3) −59.7283 123.4566 123.9575 124.7933
σ = (0.1883± 0.1440× 10−3)

Log-logistic µ = (1.1858± 0.6190× 10−3) −92.6302 189.2604 189.7613 190.5971
σ = (0.1949± 0.1642× 10−3)

Log-normal µ = (1.1087± 0.8980× 10−3) −108.2377 220.4754 220.9762 221.8121
σ = (0.3998± 0.4528× 10−3)

Nakagami µ = (2.6184± 0.0685) −74.1036 152.2072 152.7080 153.5438
ω = (1.5226± 0.0050)

Normal µ = (1.1863± 0.6515× 10−3) −60.3188 124.6375 125.1384 125.9742
σ = (0.3405± 0.3285× 10−3)

Rayleigh B = (0.8725± 0.0011) −110.0999 222.1998 222.4502 222.8681
Rician s = (1.1305± 0.7709× 10−3) −61.3467 126.6934 127.1942 128.0301

σ = (0.3496± 0.3919× 10−3)
µ = (1.1440± 0.0004) −3.5299 13.0597 13.8110 15.0647

Skew-normal σ = (0.2909± 0.0002)
γ = (−0.9898± 1.4123 10−5)
µ = (1.3867± 5.6459× 10−4) −57.7546 121.5093 122.2605 123.5143

t-Student σ = (0.1204± 0.0011)
ν = (1.0848± 0.0878)

Weibull A = (1.3027± 0.0005) −53.8489 111.6979 112.1987 113.0345
B = (4.5431± 0.0939)
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TABLE XIV: The results of the statistical modeling of CT for Band B.

Distribution Parameter estimate MLE AIC BIC EDC
Exponential µ = (1.1374± 0.0073) −200.9125 403.8249 404.0753 404.4932

Gamma a = (6.7627± 0.4898) −96.2638 196.5276 197.0285 197.8643
b = (0.1682± 0.0003)

Inverse Gaussian µ = (1.1374± 0.0019) −136.0928 276.1856 276.6864 277.5222
λ = (4.3390± 0.2115)

Logistic µ = (1.1850± 0.6431× 10−3) −63.5261 131.0521 131.5530 132.3888
σ = (0.1924± 0.1485× 10−3)

Log-logistic µ = (0.1366± 0.7225× 10−3) −99.3000 202.6000 203.1009 203.9367
σ = (0.2122± 0.1921× 10−3)

Log-normal µ = (0.0530± 0.0012) −121.5316 247.0631 247.5640 248.3998
σ = (0.4555± 0.0006)

Nakagami µ = (2.2325± 0.0490) −80.2633 164.5266 165.0274 165.8632
ω = (1.5226± 0.0050)

Normal µ = (1.1374± 0.6792× 10−3) −64.0309 132.0619 132.5627 133.3985
σ = (0.3477± 0.3477× 10−3)

Rayleigh B = (0.8408± 0.0009) −106.8342 215.6684 215.9188 216.3367
Rician s = (1.0751± 0.8329× 10−3) −65.3746 134.7492 135.2500 136.0858

σ = (0.3591± 0.4242× 10−3)
µ = (1.5311± 0.0005) −31.5650 69.1300 69.8813 71.1350

Skew-normal σ = (0.3212± 0.0003)
γ = (−0.9241± 0.0005)
µ = (1.1698± 0.0018) −63.6052 133.2104 133.9616 135.2154

t-Student σ = (0.3124± 0.0017)
ν = (10.0589± 137.5842)

Weibull A = (1.2527± 0.0006) −62.8862 129.7724 130.2733 131.1091
B = (4.0363± 0.0707)

TABLE XV: The results of the statistical modeling of CT for Band C.

Distribution Parameter estimate MLE AIC BIC EDC
Exponential µ = (1.1039± 0.0068) −195.6078 393.2157 393.4661 393.8840

Gamma a = (5.4787± 0.3180) −107.4669 218.9338 219.4346 220.2704
b = (0.2015± 0.0005)

Inverse Gaussian µ = (1.1039± 0.0022) −45.4933 294.9865 295.4874 296.3232
λ = (3.3797± 0.1283)

Logistic µ = (1.1506± 0.8628× 10−3) −83.9979 171.9958 172.4967 173.3325
σ = (0.2209± 0.1876× 10−3)

Log-logistic µ = (0.0916± 0.0010) −116.0575 236.1149 236.6158 237.4516
σ = (0.2507± 0.0003)

Log-normal µ = (0.0049± 0.0014) −131.0328 266.0655 266.5663 267.4022
σ = (0.5041± 0.0007)

Nakagami µ = (1.8166± 0.0316) −92.9655 189.9390 190.4318 191.2676
ω = (1.3629± 0.0057)

Normal µ = (1.1039± 0.8141× 10−3) −80.1585 164.3171 164.8179 165.6538
σ = (0.3807± 0.4105× 10−3)

Rayleigh B = (0.8255± 0.0009) −108.8567 219.7134 219.9638 220.3817
Rician s = (1.0218± 0.0011) −81.2115 166.4229 166.9238 167.7596

σ = (0.3992± 0.0006)
µ = (1.5492± 0.0006) −44.4363 94.8727 95.6239 96.8777

Skew-normal σ = (0.3550± 0.0003)
γ = (−0.9655± 0.0002)
µ = (1.1039± 0.0008) −80.1571 166.3143 167.0655 168.3193

t-Student σ = (0.3796± 0.0004)
ν = (6.2559× 106 ± 7.4749× 1010)

Weibull A = (1.2267± 0.0008) −81.1403 166.2806 166.7814 167.6173
B = (3.4355± 0.0515)


