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Abstract—This paper presents a special matrix factorization
based on sparse representation that detects anomalies in video
sequences generated with moving cameras. Such representation
is made by associating the frames of the target video, that is
a sequence to be tested for the presence of anomalies, with the
frames of an anomaly-free reference video, which is a previously
validated sequence. This factorization is done by a sparse coeffi-
cient matrix, and any target-video anomaly is encapsulated into a
residue term. In order to cope with camera trepidations, domain-
transformations are incorporated into the sparse representation
process. Approximations of the transformed-domain optimization
problem are introduced to turn it into a feasible iterative process.
Results obtained from a comprehensive video database acquired
with moving cameras on a visually cluttered environment indicate
that the proposed algorithm provides a better geometric regis-
tration between reference and target videos, greatly improving
the overall performance of the anomaly-detection system.

Index Terms—Video anomaly detection, sparse representation,
matrix factorization, object detection, change detection, moving
camera, l1-optimization.

I. INTRODUCTION

ANOMALY detection in images and video sequences is a
classical research problem in computer vision and related

areas, which has direct applications in many tasks, ranging
from domestic security and medical diagnosis to industrial
and military activities [1], [2]. The increasing number of
applications and the necessity of precise results are raising the
demand for alternative, less human-dependant solutions. Apart
from being a regularly known problem, automatic anomaly
detection still remains a difficult and challenging topic due
to several complex issues such as camera pose, illumination,
shadows, occlusions, weather conditions, camera jitter, and so
on [3].

In several surveillance tasks, additional cameras should be
employed to deal with the problem of multiple occlusions.
Some activities, especially in cluttered environments like
industrial plants and offshore oil platforms, usually require
multiple viewpoints for proper inspection [4], [5]. Such a need
is even greater in hazardous environments and when there are
places that are difficult to access [6], [7], [8]. Increasing the

Eric Jardim, Lucas A. Thomaz, Eduardo A. B. da Silva, and Sergio
L. Netto are with the Electrical Engineering Program at COPPE - Uni-
versidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. e-mail:
{eric.jardim,lucas.thomaz,eduardo,sergioln}@smt.ufrj.br Lucas A. Thomaz is
also with the Instituto de Telecomunicações, Portugal. Eduardo A. B. da
Silva was supported in part by FAPERJ, grant no E-26/202.856/2018 and
CNPq grant no. 307675/2014-9. This work was funded by FCT/MEC through
national funds, under project PlenoISLA PTDC/EEI-TEL/28325/2017 and
when applicable co-funded by FEDER – PT2020 partnership agreement under
the project UID/EEA/50008/2019.

number of cameras also increases the amount of video to be
analyzed what can become unpractical in large facilities.

An interesting approach to deal with this issue is to monitor
several viewpoints with a single moving camera. In practice,
a conventional camera can be mounted on top of a moving
platform (e.g. a car, robot, or drone) that takes the camera
to the desired positions along a predefined trajectory. While
this approach can significantly reduce the necessary number
of cameras, it also enables the selection of specific points-
of-view to be monitored at the same time that it allows the
automation of repetitive inspections. These factors, allied to
the widespread use of portable cameras, are spurring the in-
terest in problems of surveillance and background/foreground
separation using moving cameras [6], [9], [10], [11], [12].

The work presented in this paper addresses the problem of
detecting changes in video sequences captured by this kind
of camera arrangements. The proposed method decomposes a
possibly anomalous target video into a sparse combination of
the frames from an anomaly-free reference video plus a sparse
residual that corresponds to the possible anomalies of interest.
The basic assumption for the algorithm to work efficiently is
that the camera’s poses and trajectories during the target and
reference video acquisitions are similar, in such a way that
the information in the frames of the target video is mostly
contained in the frames from the reference video. Under these
circumstances, the decomposition of the target frames as an
sparse combination of the reference frames can be achieved
by linear convex optimization. Unfortunately, in real world
scenarios, the camera trembles as it moves, and thus its pose
and trajectory during recording of the reference video may
present variations relative to the recording of the target video.
A way to cope with this issue is to add to the optimization
process an additional non-linear domain-transformation term,
that will require an iterative linearization approximation. This
domain transformation enables the method to find a better
correspondence between reference and target video frames,
thus yielding less false detections as result of the algorithm.

The main contributions of the present work are related to
the expansion of the anomaly detection capabilities of low-
rank representation methods, such as the mcRoSuRe-A [8],
by incorporating domain transformations on the optimization
framework. That improvement allows such methods to achieve
a better correspondence between reference and target frames,
thus obtaining superior anomaly-detection results. The pro-
posed approach main innovation consists in the development
of a sparse representation model that incorporates domain
transformations in its iterative optimization procedure by using
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a first-order approximation of the transformations. In such
framework the proposed method performs geometric trans-
formation only in the target frames, hence not changing the
reference video (or dictionary). This improves the computa-
tional efficiency of the modeling process in comparison to
other domain transformation methods [13].

This text is organized as follows: Section II reviews the
state-of-the-art techniques for linear low-rank modeling of
high-dimensional data by matrix decomposition with sparse
representations. Section III introduces the problem of anomaly
detection in videos acquired from moving cameras and details
the adaptation of one of these sparse representation-based
techniques for the problem at hand. Section IV then discusses
how to make such a scheme robust to severe geometric
misalignment between reference and target videos. The idea is
to incorporate a transformation into the optimization problem
associated to the sparse representation. Section V validates
the proposed methodology by presenting experimental results
on a comprehensive video database, comparing it to the
state-of-the-art. Finally, conclusions are drawn in Section VI
emphasizing the paper main contributions.

II. LITERATURE REVIEW

A. Sparse and low-rank decompositions
1) Principal component analysis: When dealing with high-

dimensional observations, a very popular and successful ap-
proach is to fit the data with a simplified, lower-dimensional
model. More precisely, data is often assumed to lie approx-
imately on some low-rank subspace, reducing model com-
plexity and consequently increasing model robustness and
simplifying further analysis and storage space. Unfortunately,
real-world data usually comes from sensors, which may suffer
from noise and other types of perturbations. Thus, these sensor
readings can be modeled as the superposition of a low-rank
component plus some kind of undesired corruption term.
Mathematically, if X ∈ Rm×n represents a matrix which
columns are these observed values, it can be modeled as

X = L+ E, (1)

where the columns of L represents a low-rank model and E is
a matrix of perturbations. In practice, the problem of finding
anomalies is reduced to the decomposition of X , isolating the
spurious data into the perturbation component E.

In statistics, principal component analysis (PCA) is perhaps
one of the most commonly known tools for data analysis, and
it is widely used in this kind of scenario. If r = rank(L)
is previously known and the entries of E are relatively
small, with independent and identical Gaussian distribution,
the problem can be efficiently solved with PCA by simply
performing a singular value decomposition (SVD) of X and
projecting its columns onto the subspace spanned by the
r major left-singular vectors obtained in the process. Under
these circumstances, the estimated subspace is optimal in the
sense that it minimizes the mean squared reconstruction error
of the columns of X , which allows us to rewrite the PCA as
the optimization problem

min
L,E
||E||F subject to (s.t.)

{
X = L+ E
rank(L) ≤ r , (2)

where ||.||F is the Frobenius norm of a given matrix.
A downside of this method is that, in many practical situa-

tions, r might not be known a priori. Even worse, the presence
of large corruptions in E can significantly compromise the
estimation of L. It is possible to demonstrate that a single
corrupted entry can induce PCA to estimate a solution that
is arbitrarily far from the correct one [14]. Hence, in order
to generate decompositions with a broader range of usability,
more error-tolerant approaches must be considered.

2) Robust principal component analysis: In computer vi-
sion applications, it is desirable that the presence of some
visual anomalies, like partially occluding objects, does not
compromise the model accuracy. The robust PCA (RPCA) [14]
presents an interesting solution to this issue by forcing a sparse
error term E, that is, with most of its entries equal to zero.

To this end, Eq. (2) is modified so as to as generate the
following minimization problem

min
L,E

rank(L) + λ||E||0 s.t. X = L+ E, (3)

where ||.||0 is the l0-norm (number of non-zero entries), and
the parameter λ balances the sparsity of E and the rank of L.
Notice that, unlike the case of Eq. (2), the rank of L is not
constrained, and should be considered an intrinsic property of
the data.

Unfortunately, this problem is intractable due to its com-
binatorial nature, and its convex relaxation is considered
instead [15]:

min
L,E

||L||∗ + λ||E||1 s.t. X = L+ E, (4)

where ||.||∗ is the nuclear norm of a matrix, defined by
||A||∗ = trace(

√
ATA). The main advantage of this latter

formulation is that it can be solved with high probability p
under very weak conditions if λ is set to 1/

√
max(m,n) [14],

where m and n are the matrix dimensions.
The RPCA algorithm works very efficiently on scenarios

with relatively static background, usually acquired by a static
camera. According to Eq. (3), the method decomposes the
background into the low-rank component L, while any other
moving objects are isolated into E. This decomposition suc-
ceeds whenever the columns of L can be assumed to lie within
a single subspace.

3) Principal subspace analysis: The pursuit for more gen-
eral models has shown that the union of subspaces can be a
more accurate representation of high-dimensional data when
compared to the single subspace approach [16], [17]. This
problem is clearly more complex than the single subspace
modeling since it is difficult to determine, without any previous
information, if a given sample is an outlier or it represents
another subspace. The method known as robust subspace
recovery (RoSuRe), that is described in the sequel, solves this
by taking into account all samples simultaneously.

Consider S1,S2, . . . ,Sk to be subspaces in Rm and let
L1, L2, . . . , Lk be matrices where the columns of each Lj
are vectors uniformly sampled from Sj , assuming sufficient
sampling density such that each column of Lj can be rep-
resented by the other columns with high probability. Since
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the above assumption is equivalent to saying that Lj is self-
representative, there exists a square coefficient matrix Wj

with null diagonal which allows one to write Lj = LjWj .
Let

⋃
S =

⋃k
j=1 Sj be the union of the Sj subspaces.

Therefore, it is fair to say that L = [L1| . . . |Lk] is a self-
representative sample matrix of

⋃
S in the same way each Lj

is for Sj . Indeed, one can easily build a block-diagonal matrix
W = diag(W1, . . . , Wk) which provides

L = LW, (5)

where W has a null diagonal. By construction, W is expected
to be sparse and it reveals the underlying subspace structure
represented by L, which is said to be blockwise low-rank in a
basis induced by L. So, apart from possible corruptions, recov-
ering

⋃
S from the sampled data is equivalent to recovering

L along with W . Thus, if X stacks n noisy observations of⋃
S, the subspace recovery can be obtained by performing the

decomposition
X = LW + E, (6)

where E is once again the matrix of perturbations.
The algorithm proposed in [18], [19] assumes the sparsity

of both W and E matrices to obtain the representation in (6).
In the same fashion as in RPCA, it does so by solving the
relaxation of a harder combinatorial optimization problem. The
resulting relaxed problem

min
W,E
||W ||1 + λ||E||1 s.t.

 X = L+ E
LW = L
Wii = 0

, (7)

is not convex due to the bilinearity of W and E, but the global
optimizer can be approximated by the augmented Lagrangian
multiplier (ALM) method [19].

Apart from successful tests with synthetic data, the RoSuRe
method also demonstrated strong potential in moving-camera
surveillance problems [7], [20].

B. Domain transformations

The use of linear modeling techniques applied to images
that are samples from a given process was an important
breakthrough in image analysis. However, the success of these
methods is strongly dependent on the pixelwise correlation
among such images. It is known that even small misalignments
among them can break the linear structure that is being mod-
eled, compromising the low-rank assumption upon the data.
However, unless sample images are previously registered or
acquired under controlled conditions, geometric misalignments
will occur, and are indeed very common in practice, specially
when dealing with moving cameras. To work around this
issue, images can be considered to lie in a different geometric
domain, the misalignments being modeled as domain trans-
formations. Many techniques try to model simultaneously the
data while searching for the best domain transformation that
optimizes its representation parsimony [13], [21], [22].

In this context, the robust alignment by sparse and low-rank
(RASL) [13] decomposition tries to solve the RPCA problem
with sample images that were not previously aligned. It works

with batch alignments of linearly correlated images, instead of
aligning single images.

Let D = [I1| . . . |In] be a matrix of observations, where
each column is an image stacked into a flat vector. By general
assumption, its samples are not aligned and are possibly cor-
rupted. Let τ = [τ1| . . . |τn] be a set of domain transformations
that act on each sample of D, in such a way that

D ◦ τ = [I1 ◦ τ1| . . . |In ◦ τn], (8)

where the resulting Ij ◦ τj vectors may have a dimension that
is different from the one of Ij . The entries of D ◦ τ can be
considered as selected regions of the entries of D that were
geometrically transformed by each entry of τ . Suppose A is
a matrix that, given a proper τ , contains the aligned entries
of D. In this sense, A is approximately low-rank and thus
one can write that D ◦ τ = (A + E), where E encapsulates
any possible data corruption. With this constraint, the RASL
approach can be defined as the optimization problem

min
A,E,τ

rank(A) + γ‖E‖0 s.t. D ◦ τ = A+ E. (9)

In this framework, it is quite reasonable to assume that the
best alignment of the samples in D minimizes the rank of
A. Assuming the sparsity of the residue E, the solution
of Eq. (9) simultaneously attempts to align and model the
samples while compensating for the presence of any sparse
corruptions. Eq. (9) can be solved by usual convex relaxation
and the local linearization of τ in each iteration step [13].

Some recent approaches, namely [23], [24], [25], explore
the use of domain transformations to cope with misalignment
between temporally close frames in background subtraction
applications. Although the results of these methods are en-
couraging, none of them explore the use of videos acquired
by moving cameras. Due to the nature of the problem, change
detection in moving-camera videos demands the ability of
comparing frames acquired at different times and whose
field-of-view (FoV) only partially overlap. Thus, unlike these
previous publications, the use of domain transformations in
this application requires the compensation of much more than
slight frame misalignments due to a camera jitter.

III. MOVING-CAMERA SURVEILLANCE WITH SPARSE
REPRESENTATION

A. The moving-camera surveillance problem

Despite the success of several well established surveillance
techniques using fixed cameras, the use of fixed-camera so-
lutions can be expensive or unpractical in certain complex
scenarios. Attaching a camera to a moving platform poses as
an interesting work around to reach several viewpoints without
increasing the number of cameras and, consequently, all the
computational complexity related to them. This investigation
addresses the problem of detecting changes in video sequences
acquired by this kind of recording arrangements.

To describe the precise setup of the problem, some termi-
nology is needed. Operator-validated sequences containing no
anomalies are labeled as reference videos. These videos should
be used to model the expected behaviour of the surveilled
area. On the other hand, unsupervised video sequences that



1057-7149 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2019.2940686, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Target
Recording

Object 
Detection

Reference 
Recording

Target
Pre-processing

Reference 
Pre-processing Video 

Alignment
Post-

processing

Fig. 1. The generic framework of anomaly detection with a moving camera.

should be inquired by the detection algorithm in order to locate
any abnormal presence are called target videos. Since most
moving-camera techniques perform a frame-by-frame compar-
ison, temporal and geometric alignment between reference and
target videos is often required. Image processing techniques
may also be considered to reduce the effect of undesired
artifacts (e.g. noise, sporadic bright spots, illumination nor-
malization, etc.). Figure 1 summarizes the usual framework
that is followed by most of the solutions.

A few recent works try to solve the moving-camera de-
tection problem by a diverse range of techniques. Solu-
tions like [9], [10] rely on feature-tracking to perform fore-
ground/background separation. However, they are not suitable
for reference/target videos comparison. The methods proposed
in [6], [11] use image features to perform the geometric-
registration step and employ the normalized cross-correlation
(NCC) for actual anomaly detection. However, both of these
works use external information to perform the temporal align-
ment, limiting their applicability range. Machine learning tech-
niques like deep convolutional networks, dictionary learning
of spatio-temporal features, and principal subspace analysis
(PSA) are used respectively in [20], [26], and [27], with the lat-
ter showing the best results. However, due to camera vibration,
such videos often contain significant geometric misalignments
between corresponding target and reference frames, leading to
a significant number false alarms in all these solutions.

In this paper we propose a new method to detect changes
in moving-camera video sequences by performing a sparse
representation of the target video in a transformed domain
that copes with high levels of geometric misalignment with
the reference video.

B. Adapting sparse representation to moving-camera surveil-
lance

As mentioned before, linear approximation methods
(Eqs. (1) to (7)) can be successfully employed on video
surveillance problems to model video background using one
or many low-rank subspaces and treating foreground anoma-
lies as sparse outliers. However, dealing with backgrounds
acquired with a moving camera can be significantly difficult
as, due to the perspective effect, structures closer to the camera
move faster along the video. This phenomenon can break
the linearity assumption, “confusing” the modeling process
and introducing undesired sparse non-linear artifacts in the
corruption component.

Another important issue is the way modeling and detection
are performed in such framework. For a static background,
these two steps can easily be done simultaneously once a
single sample contains information of the whole background
and anomalies are not expected to be present in every sample,
or at least not in the same spatial locations. In the case of a

moving-camera background, several samples may be needed
for representing each point-of-view. Additionally, the presence
of outliers can induce the incorrect modeling of these objects
as background if their relative frequency is high.

The moving-camera RoSuRe (mcRoSuRe) method [7] was
proposed in order to work around these issues, and considers
the modeling and detection stages into two different stages.
First, a subspace learning stage, where the reference video
is modeled, followed by a sparse representation stage, that
isolates any anomaly present in the target video.

Let Xr be a data matrix which columns are composed by
reference samples, generally frames from a reference video
stacked as long column vectors. The modeling step uses the
RoSuRe algorithm (Eq. (7)) to decompose Xr such that

Xr = LrWr + Er, (10)

where Lr is the blockwise low-rank part of the reference
samples and is assumed to resemble the sampling of a union of
linear subspaces, which structure is described in Wr. For this
model, Er is the corruption component, which is assumed to
be sparse. Notice that Er is not seen as a matrix of anomalies,
but as residual information that could not fit the recovered
model in Lr.

Now let Xt be a matrix of target samples, analogous to Xr.
Assuming that Xt shares the same subspace structure with its
reference counterpart, one can rewrite the blockwise low-rank
part of Xt as a combination of the columns of Lr plus a sparse
residual. In other words, one can find sparse matrices Wt and
Et, such that the target data matrix can be written as

Xt = LrWt + Et. (11)

Using this description, all anomalies present in Xt are en-
capsulated into Et. To perform this alternate representation of
Xt, taking advantage of Lr as determined in (10), a sparse
representation algorithm inspired on RoSuRe is used, where
the given low-rank term Lr is fixed. To do so, the new cost
function is defined as

min
E,W

= ||W ||1 + λ||E||1 s.t. X = LW + E, (12)

where X and L are set up as input with Xt and Lr respectively.
The decomposition given in Eq. (11) tends to isolate in Et

all the target-sample information that is not present in Lr.
However, besides the sparse corruptions generated by the
anomalies, Et will also have the residual sparse non-linear
information that could not be captured by the blockwise low-
rank LrWt representation. The outlier information contained
in Et can be separated from its inherent non-linear residual
by noting that, as Xt and Xr are similar by assumption,
Et will look in general quite similar to Er, except around
these anomalies. Therefore, in this method a third and last
step is also performed, decomposing Et using Er as the input
parameter L of the optimization described in Eq. (12), yielding

Et = ErW + Ee. (13)

In the above equation, the remaining sparse component E
tends to contain, as desired, just the outliers in Xt not present
in Xr.
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Fig. 2. mcRoSuRe optimization workflow inserted in the traditional moving
camera object detection framework.

Such a method has the great advantage of obviating the
necessity of geometric registration of each frame. This is ex-
tremely useful when the perturbations of the camera movement
are not so large, or even in synthetic moving video like “virtual
pannings” generated from pan-tilt-zoom (PTZ) cameras or
alike, saving a considerable computational time.

Figure 2 summarizes the mcRoSuRe method optimization
workflow.

IV. DOMAIN-TRANSFORMABLE SPARSE
REPRESENTATIONS

Recent state-of-art techniques, such as the mcRoSuRe al-
gorithm briefly described in Section III, make use of sub-
space learning to find a low-rank representation model of the
moving-camera reference sequence. For small perturbations
in the camera path, this technique can successfully extract
the target video anomalies, exploiting the strong correlation
between consecutive frames in both the reference and target
videos, and also between the corresponding frames in these
two sequences.

However, in many moving-camera practical scenarios, it
is quite difficult to avoid eventual geometric misalignments
between corresponding frames. Cameras attached to moving
platforms may suffer from this problem since these devices
may have to deal, besides normal camera vibration, with path
irregularities or unpredicted weather conditions, for example.

In this section we discuss the use of geometric domain-
transformations to model the effect over the samples caused
by the camera movement and rotation referred above. In short,
the idea is to include a transformation term in the sparse
representation procedure presented in Eq. (12), updating the
optimization algorithm to reflect these changes.

Let Xr ∈ Rm×nr and Xt ∈ Rm×nt be the reference
and target matrices, respectively, containing information about
their corresponding video sequences. Let m be the number
of pixels in the video frames, and nr and nt the number of
frames in the reference and target videos, respectively. In a first
moment, let us assume a scenario where both reference and
target sequences were acquired with similar camera path and
pose, as considered in [6], [11], [26]. Under these conditions,
it is fair to assume that every column in Xt has at least one
corresponding column in Xr, leading to the problem given by

min
W,E
‖W‖1 + λ‖E‖1, s.t. Xt = XrW + E, (14)

where W ∈ Rnr×nt is a coefficient matrix, which describes
the relations of the columns of Xt and Xr, and E ∈ Rm×nt
is the error term (that arises from the mismatches between
Xr and Xt), which has the same dimensions of Xt. In this
problem, the factor λ is used to balance the importance of
the two minimized terms and may be adjusted considering the
expected amount of sparsity in W and E. Notice that Eq. (14)
is basically Eq. (12), but under a different context where the
representation is direct, and not made on top of a subspace
model.

Now, let us relax the previous assumptions by breaking
the requirement that Xt and Xr are perfectly aligned, since
there are uncontrolled camera shaking and rotation. Since
images acquired at the same center of projection (which is
now our only assumption) can be related by a homography
transformation [28], it is possible to consider that the target
observations in Xt are in a different geometric domain with
respect to Xr. This assumption allows one to model the camera
shaking as a geometric transformation applied to a domain
where corresponding target and reference samples are aligned.
In this sense, Eq. (14) becomes

min
W,E,τ

‖W‖1 + λ‖E‖1, s.t. Xt ◦ τ = XrW + E, (15)

where τ = [τ1 . . . τnt ] is an vector of domain-transformations,
in the same fashion as the discussed in Section II-B. Eq. (15)
generalizes the model considered in Eq. (14) by incorporating
the transformation τ . The additional degrees of freedom inher-
ent to τ allow a better match between Xr and Xt, minimizing
the content of E as desired. Each entry of τ acts on its
corresponding column of Xt, that represents the observed
target samples. For implementation purposes, τ is represented
by a p × nt matrix where each column is a vector with the
p parameters necessary to describe each transformation acting
on Xt.

Although at a first glance one might think this development
is just a new implementation of [13], since it appears that the
domain transformations are used in the same way, a thorough
inspection of the proposed formulation shows that both Xr and
Xt are fixed in the present formulation. Also, it would come
naturally from [13] that the Xr matrix would be modified
by the transforms, since it plays a similar logical role in the
present work and in [20] as the X matrix in [13]. We have
chosen, however, to apply the transformations over Xt, since
we assume here that Xr is well known by the system and
is considered to be the best representation available to the
background model. As for the Xt matrix we assume it might
suffer from misalignments that should be corrected before the
decomposition is performed.

In this problem, the composition of a geometric domain-
transformation with Xt breaks the linearity of the optimization
constraint that appears on the right side of Eq. (15). However,
in order to iterate on τ along the optimization procedure, one
can perform a first order approximation. Hence, we consider
that, for a small variation ∆τ = [∆τ1| . . . |∆τnt ] ∈ Rp×nt
of τ , it is possible to approximate this constraint by linearizing
Xt ◦ τ with the current estimate of τ , in a similar way it is
done in [21] and [22], such that
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Xt ◦ (τ + ∆τ) ≈ Xt ◦ τ +

nt∑
i=1

Ji∆τεiε
>
i , (16)

where the εi represent the canonical basis for Rnt and

Ji =
∂

∂ζ

(
(Xt)i ◦ ζ
‖(Xt)i ◦ ζ‖2

)∣∣∣∣
ζ=τi

∈ Rm×p (17)

is the Jacobian of the i-th column of the target matrix Xt with
respect to τi.

This leads to the modified optimization problem

min
W,E,∆τ

‖W‖1 + λ‖E‖1,

s.t. Xt ◦ τ +

nt∑
i=1

Ji∆τεiε
>
i = XrW + E. (18)

Hence, the solution of Eq. (15) can be achieved by re-
peatedly solving (18) and then updating τ at each iteration
step. In practice, the whole optimization of the so-called
moving-camera domain-transformation sparse representation
(mcDTSR) algorithm can be computed within two loops.

In the outer loop, the Jacobian matrices Ji are computed
based on the current estimate of τ . Then, the columns of Xt◦τ
are normalized to avoid undesired trivial solutions, like, for
example, zooming to a black pixel of a given frame of Xt,
that will end up with a null column of W . This explains why
the derivative in Eq. (17) is also normalized. Only after that the
inner loop is performed by solving (18). At last, τ is updated
by the ∆τ increment that is recurrently computed in the inner
loop, which also estimates the sparse coefficient W and the
error E. We have empirically observed that the relative change
of the objective function is a good stopping criterion for the
outer loop, meaning that given a positive value εr, the outer
loop is exited when

|objk − objk−1|
|objk|

< εr, objk = ‖Wk‖1+λ‖Ek‖1, (19)

where k is the iteration index of the outer loop. In this
procedure, an initial set of transformations τ0 must be provided
for the outer loop, along with the Xr and Xt matrices. If
one assumes that both of these matrices were acquired under
similar conditions, τ0 can be initially chosen as a set of identity
transforms. The proposed method for the mcDTSR outer loop
is summarized in Algorithm 1. To efficiently solve Eq. (18)
inside the inner loop, we shall make use of the augmented
Lagrangian method [15]. By defining

h(W,E,∆τ) = Xt ◦ τ +
n∑
i=1

Ji∆τεiε
>
i −XrW − E, (20)

one can write the augmented Lagrangian function as

Lµ(W,E,∆τ, Y ) = ‖W‖1 + λ‖E‖1 + 〈Y, h(W,E,∆τ)〉
+
µ

2
‖h(W,E,∆τ)‖2F , (21)

where Y is Lagrange multiplier matrix and µ is a positive
scalar. This can be solved by estimating both Y and the
optimal solution iteratively [29] as follows

(Wk+1, Ek+1,∆τk+1) = arg min
W,E,∆τ

Lµk(W,E,∆τ, Yk),

Yk+1 = Yk+µkh(Wk+1, Ek+1,∆τk+1),
µk+1 = ρµk,

(22)

where µ0 and ρ are tunable parameters that will be discussed
later. To facilitate the solution of Eq. (22), we can break it into
three and approximate the result by minimizing one unknown
at a time, such that

Wk+1 = arg min
W
Lµk(W,Ek,∆τk, Yk),

Ek+1 = arg min
E
Lµk(Wk+1, E,∆τk, Yk),

∆τk+1 = arg min
∆τ
Lµk(Wk+1, Ek+1,∆τ, Yk).

(23)

The great advantage of alternating the unknowns in (23) is
that each one has a direct form of computation.

As in [18], W and E can be estimated by the soft-
thresholding operator, defined as

Sγ [A] = sign (A) ·max{|A| − γ, 0}, (24)

where the sign and max operations are applied entrywise on
the matrix A.

Expanding the expressions in Eq. (23) using the same
rationale underlying the development in [19], we would have:

Wk+1 = S λ
µk

[
Wk −X>r

(
XrWk + Ek−

−Xt ◦ τ −
∑n
i=1 Ji∆τkεiε

>
i + 1

µk
Yk

)]
,

Ek+1 = S λ
µk

[
Ek −

(
XrWk+1 + Ek−

−Xt ◦ τ −
∑n
i=1 Ji∆τkεiε

>
i + 1

µk
Yk

)]
,

∆τk+1 = S λ
µk

[
∆τk − C∗

(
XrWk+1 + Ek+1−

−Xt ◦ τ −
∑n
i=1 Ji∆τkεiε

>
i + 1

µk
Yk

)]
,

(25)

where C∗(θ) is the adjoint of the functional C(θ) =∑n
i=1 Jiθεiε

>
i which is applied over ∆τ in h(W,E,∆τ).

However, in our application the ∆τ is not assumed to be
sparse, therefore we chose not to apply the soft threshold
operator Sγ [·] in its update equation, replacing the last line
of Eq. (25) by:

∆τk+1 = ∆τk − C∗
(
XrWk+1 + Ek+1−

−Xt ◦ τ −
∑n
i=1 Ji∆τkεiε

>
i + 1

µk
Yk

)
.

(26)

In our application, the functional C∗(θ) is defined by∑n
i=1 J

−1
i θεiε

>
i .

Since the space-size parameter p is relatively small when
compared to the frame resolution dimension m, the Jacobian
matrices Ji are likely to be ill-conditioned, which may lead to
numerical instability in the inner loop. To work this around,
one may perform a QR factorization of the Jacobians, that
is, Ji = QiRi, and use orthogonal factors Qi inside the inner
loop in place of the Jacobians Ji. In this manner, the inner loop
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Algorithm 1 - Domain-transformable sparse representation for moving camera videos (mcDTSR): outer loop
input: Reference matrix Xr ∈ Rm×nr , target matrix Xt ∈ Rm×nt , inital transformation vector τ = [τ1 . . . τnt ] ∈ Rp×nt ,
and weight λ > 0

while not converged (Eq. (19) is not satisfied) do
(step 1) compute Jacobian matrices for each τi

Ji ←
∂

∂ζ

(
(Xt)i ◦ ζ
‖(Xt)i ◦ ζ‖2

)∣∣∣∣
ζ=τi

, for i = 1, . . . , nt;

(step 2) warp and normalize the images in Xt matrix

Xt ◦ τ ←
[

(Xt)1 ◦ τ1
‖(Xt)1 ◦ τ1‖2

. . .
(Xt)nt ◦ τnt
‖(Xt)nt ◦ τnt‖2

]
;

(step 3) solve linearized convex optimization (inner loop):

(W ∗, E∗,∆τ∗)← arg min
W,E,∆τ

‖W‖1 + λ‖E‖1 s.t.

Xt ◦ τ +

nt∑
i=1

Ji∆τεiε
>
i = XrW + E.

(step 4) update the transformation vector:
τ ← τ + ∆τ

.
end

ouput: solution W ∗, E∗, and τ∗ to problem (15).

will output ∆τi = Ri∆τi instead of ∆τi for each component
of ∆τ , also the inner loop will only see the Qi components
of each Ji. Since the Ri are invertible, ∆τ can be easily
computed [13].

The mcDTSR inner loop described in Algorithm 2 solves
separately for both W and E, using the linearized alter-
nating direction method with adaptive penalty (LADMAP)
approach [29], differently from the approach in [13], where
the ALM is applied. By expanding the Lagrangian using
LADMAP one is able to reach a faster convergence [29]. The
use of LADMAP is the reason µk is updated by a positive ρ
(Eq. (22)). The value of ρ has influence on the compromise
between approximation accuracy and the algorithm’s running
time. For the stopping criterion of the inner loop, one may
consider the ratio between the Frobenius norm of h (which can
be thought of as the residual of the cost function in Eq. (18)),
and the norm of Xt ◦ τ itself. More precisely, the inner loop
will stop when

‖h(Wk, Ek,∆τk)‖F
‖Xt ◦ τ‖F

< εt, (27)

where k is the current inner-loop iteration index.
Assuming that reference and target videos may have signifi-

cant misalignments between its correspondent frames, working
with the full video frames can make the warped frames of
Xt present invalid pixels at the borders, that are the result
of the mapping of pixels beyond the borders of Xt. As these
invalid pixels can affect the algorithm convergence, a common
practice is to work with a region-of-interest (ROI) window that
is smaller than the full video frame, so that it can have some

freedom to warp and avoid the mapping of pixels outside the
frame’s borders. Thus, Xt and Xr are in general ROI windows
inside the full frames.

Figure 3 shows the block diagram for the proposed algo-
rithm.

Compute 
Jacobians 

(Ji)

Xr,
Xt,
𝝉

Warp Xt 
Matrix

Solve 
linearized 

convex 
optimization

Update 
transform 
vector (𝝉)

Converged
?

No

Yes

Object Detection

Target
Recording

Object 
Detection

Reference 
Recording

Target
Pre-processing

Reference 
Pre-processing Video 

Alignment
Post-

processing

Fig. 3. mcDTSR block diagram.

V. EXPERIMENTAL RESULTS

A. Testing dataset

In order to assess the detection quality of our proposed
technique we considered the VDAO [30] database, which
contains several recordings on a complex industrial-like en-
vironment. The dataset sequences were acquired with a rigid
camera mounted on a robotic iRobotTM Roomba platform
with a back-and-forth linear movement along a fixed 6m-
long hanging rail. Two different IP cameras were employed,
having the same 1280×720 pixel resolution and frame rate of
24 fps. An industrial environment was considered, comprised
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Algorithm 2 - Domain-transformed sparse representation for moving camera videos (mcDTSR): inner loop

input: W0 ∈ Rnr×nt , E0 ∈ Rm×nt , Q, ∆τ0 = 0 ∈ Rp×nt , µ0 > 0, ρ > 0, λ > 0

while not converged (Eq. (27) is not satisfied) do
Wk+1 = S λ

µk

[
Wk −X>r

(
XrWk + Ek −Xt ◦ τ −

∑n
i=1Qi∆τkεiε

>
i + 1

µk
Yk

)]
;

Ek+1 = S λ
µk

[
Ek −

(
XrWk+1 + Ek −Xt ◦ τ −

∑n
i=1Qi∆τkεiε

>
i + 1

µk
Yk

)]
;

∆τk+1 = ∆τk +
∑n
i=1Q

T
i

(
XrWk+1 + Ek+1 −Xt ◦ τ −

∑n
j=1Qj∆τkεjε

>
j + 1

µk
Yk

)
εiε
>
i ;

Yk+1 = Yk + µkh(Wk+1, Ek+1,∆τk+1);
µk+1 = ρµk;

end while

∀i : ∆τi = R−1
i ∆τ i

ouput: solution W ∗, E∗, and ∆τ∗ to problem (18).

of several pipes and valves, and 24 distinct abandoned objects
were employed in the recordings, which total approximately
8.2 hours of annotated video. To the best of our knowledge, at
the time of writing, the VDAO was the only publicly available
dataset designed for object-detection in moving-camera video
sequences, as indicated by [31]. Even other recent object-
detection surveys such as [32] do not feature similar moving-
camera datasets comprising reference (without objects) and
target (potentially with objects) videos. In fact, some of the
more broadly used anomaly detection datasets from recent
years such as [33], [34] feature only a limited amount of
moving-camera surveillance videos without, however, refer-
ence and target corresponding pairs. Other object-detection
works such as [35], [36], although featuring over 6 different
datasets in their experiments, do not include anyone designed
in a similar way as that of the VDAO database [30].

In the VDAO database, the recordings were divided into
two groups: reference and target sequences. The reference
sequences have no abandoned objects, as validated by human
supervision, while the target sequences contain one or more
objects to be detected automatically by the proposed mcDTSR
algorithm. Due to track imperfections and mechanical friction
with the robot wheels, the captured sequences present con-
siderable camera trepidation. These camera trepidations and
jitter cause the images from reference and target videos not
to match perfectly. Even when comparing frames acquired by
the camera while the robot is at the same position at two
different instants, the fields-of-view of the camera at different
posisions do not overlap completely, making the database a
very challenging one. Among the challenges presented by the
VDAO database are the temporal and geometric misalignments
that make this database even more complex. As stated before,
there are different camera poses between corresponding ref-
erence and target frames acquired in the same rail position,
as illustrated in Figure 4. This effect hinders the ability of
traditional algorithms to find the correct reference-target frame
match. Other VDAO challenges include object occlusions and
the fact that objects in different depths may appear differently
due to some parallax effect caused by camera rotations. By
considering all these issues, the VDAO dataset allows one

to test his/her algorithm in a quite challenging anomaly-
detection scenario. This database, along with the ground truth
annotations of the abandoned objects, can be downloaded
from [37].

(a) (b)

Fig. 4. Example of geometrical mismatch between reference and target frames
of the VDAO dataset: (a) reference frame; (b) target frame. One can notice the
camera rotation between the two frames, that was caused by different camera
poses during the video acquisition.

A special selection of the database called VDAO-200 [38] is
used to perform the qualitative and quantitative experiments in
upcoming Sections V-C and V-D, respectively. This auxiliary
database is composed of 59 excerpts with 200 frames taken
from VDAO single-object target videos. The selection contains
a total of 9 different objects in different positions and 2 types
of illumination. On almost half of the videos, the objects
are partially or completely occluded. There are also several
situations of environment shadow casting, different object
shapes and camera shaking, which make the selection very
challenging and also representative of the full database.

B. Domain-transformation compensation

The VDAO database comes with ground truth annotations of
the abandoned objects for every target-video frame, where the
object positions are marked with rectangular bounding boxes.
Since the abandoned objects have arbitrary shapes, working
with bounding boxes can lead to results which are not very
precise, that may mask the actual amounts of true and false
positives.

This said, another relevant concern is that τ is computed
with respect to the target video, so any evaluation metric
should take into account the domain-transformation performed
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on each frame of Xt. Since a general transformation should
change the annotated bounding boxes into quadrilateral poly-
gons, we chose to maintain the target domain fixed and apply
the inverse transformation τ−1 to the reference domain when
carrying out the performance assessment. More precisely,
applying τ−1 to both sides of the constraint in Eq. (15) leads
to

Xt = XrW ◦ τ−1 + E′, (28)

where E′ = E ◦ τ−1. To compute E′ we consider the
transformation applied to the whole image, and not only the
region-of-interest. So, a general transformation on XrW may
yield frames that contain zero values near their boundaries,
since the image border may be overlapped by the resulting
quadrilateral. To avoid dummy false positives, E′ is set to
zero in these problematic regions. The metrics described in the
sequel are applied to this resulting error image, after all post-
processing steps. These choices are motivated by simplicity
and the possibility to compare our results with the ones other
methods with no need for any adaptation of these other results.

In Section IV we discussed that a possible initialization for
the τ0 parameter could be the identity matrix. If in a given
video the geometric misalignment is large enough, however,
this could result in unnecessary costly iterations due to a
bad transformation initialization. To manage this issue, one
can run the outer loop optimization for a single (possibly
central) frame and obtain an “initial guess” for the geometrical
transformation τ = [τ1 . . . τnt ] ∈ Rp×nt for all other video
frames, as given in Algorithm 1.

To assess how the use of such initialization method would
impact the performance of the algorithm we ran two versions
of the code: first with the τ0 initialized as an identity matrix
and later with the proposed “initial guess”. We compared
both initializations in terms of number of outer loop iterations
(Algorithm 1) and processing time (already considering the
time used to compute the initial guess). For this test we
employed a computer with an Intel i7-4712HQ processor at
2.4Hz and 16 GB of RAM. Table I shows the results for both
methods using all the 59 videos from VDAO-200 dataset.

TABLE I
PERFORMANCE TEST OF THE TWO PROPOSED τ0 INITIALIZATION

SCHEMES.

Initialization Total Iter. Avg. Iter. Total Time (s) Avg. Time (s)

Identity 1404 23.80 1506879 25540.32
Initial Guess 966 16.37 1067791 18098.15

By inspecting Table I one can readily see that the proposed
“initial guess” transformation accelerates the algorithm reduc-
ing the number of the outer loop iterations by over 31% and
the total time by more than 27%. This comes with virtually no
difference in the algorithm detection performance. Therefore,
for the remainder of the experiments, the proposed “initial
guess” initialization is employed.

C. Qualitative evaluation
In this section, we illustrate the advantage of including

domain transformations into the optimization process. When

the corresponding target and reference sequences have con-
siderable levels of misalignment, the sparse representation
of the target frames performs poorly, generally introducing
several artifacts into the residual component E. If some
algorithm that uses low-rank or sparse representation is used
for detection purposes, this misalignment can yield a large
number of false positive regions, possibly masking the actual
presence of strange objects on the scene, compromising the
practical applicability of such a method. In this sense, a simple
experiment was designed to illustrate and qualitatively evaluate
the gain in detection performance provided by the proposed
algorithm. To this end, the main components of Eq. (18) will
be inspected along the iterations of the mcDTSR outer loop
described in Algorithm 1, providing some insights about what
is happening “under the hood”.

For this task, we have selected an excerpt of the target video
from the VDAO database entitled “Object 3 (shoe, position
3)”. This sequence presents a case of significant misalignment
with respect to its corresponding reference video, making any
conventional method that is not tolerant to camera shaking not
to perform well. A 50-frame snippet of this target video was
selected together with a 100-frame snippet of the correspond-
ing reference video, manually chosen such that the entire target
excerpt can be represented by the reference one. It is important
to point out that, although in this case the target-reference
match is guaranteed, the algorithm has no information about
which reference frames shall be used to represent an arbitrary
target frame, nor about the parameters of camera tilt between
these corresponding frames. To reduce the processing time,
these video snippets where downsampled to a 320×180-pixel
resolution and converted to grayscale, and the chosen regions-
of-interest (ROI) were the 280 × 150-pixel central windows
from each frame in both videos.

In theory, any parametrizable geometrical transform could
be used as τ , with an unlimited number of degrees of freedom
for the deformations applied to the target frames. However,
considering our target application, we chose to consider that
any two corresponding frames could be matched through
planar homographies. By considering only these transforms
to represent the domain transformation, one gets p = 8 by
using a 4-point parametrization to describe the columns of τ .
An example of the frame matching achieved by the use of
such planar homographies can be seen in Figure 5, where one
can notice that the applied transform corrected the position of
the target frame that after the transformation approximates the
reference frame.

(a) (b) (c)

Fig. 5. Example the homography transformation applied to a target frame:
(a) reference frame; (b) target frame; (c) transformed target frame. One
can notice that the original target frame presented a geometrical mismatch
when compared with the reference frame. This mismatch is corrected when
a homography transformation is applied to the target frame, resulting in a
registered image.
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The parameter setup used in mcDTSR was λ = 102, ρ =
1.01, and µ0 = 1.25/‖Xt◦τ‖, following the values used in [7].
The inner loop tolerance for the stopping criterion was set to
εt = 10−4 and the outer loop tolerance εr was left loose.
The idea was to observe how the magnitudes of the algorithm
unknowns and metrics behave along a total of 55 outer-loop
iterations.

At the post-processing detection stage, a simple thresholding
procedure was performed by marking as foreground every
entry of |E| with intensity greater than β = 0.125, otherwise
turning it as background.
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Fig. 6. Evolution of several mcDTSR parameters and performance metrics
along outer-loop iterations, illustrating improvement over time of proposed
algorithm: (a) ‖W‖1; (b) ‖E‖1; (c) ‖∆τ‖1; (d) True-positive detection rate;
(e) False-positive detection rate; (f) Precision rate.

In Figs. 6(a), 6(b), and 6(c), it is possible to see the evolution
of the l1-norm of ‖W‖, ‖E‖, and ‖∆τ‖, respectively, across
the outer-loop iterations. Independently of their magnitude
ranges, one can clearly notice how the three norms evolve
in time, converging to their final values after approximately
45 iterations.

However, the great strength of the proposed method can
be noticed in Figs. 6(d), 6(e), and 6(f), where some detection
metrics for the mcDTSR algorithm are displayed. All these
three metrics were computed pixelwise, by comparing the
binary mask video E′, as given in Section V-B, to the provided
bounding-box ground truth from the VDAO database.

The behaviour shown by the true-positive rate (TPR) plot
in Fig. 6(d) is explained by the fact that the ground truth
bounding boxes are larger than the actual object. Thus, this
plot represents the superposition of the actual false positives
that lie inside the bounding box being eliminated, promoting a
decrease in the TPR, plus the actual object being increasedly
detected. This can be appreciated by looking also at evolution
of E over the outer-loop iterations in Fig. 7. This figure also
explains the impressive false-positive rate (FPR) and precision
plots depicted in Fig. 6(e) and Fig. 6(f), respectively, as a result
from the improved geometric alignment between the target and
reference frames. In fact, from the first outer-loop iteration
(i = 1) to the last one (i = 55), more than 99% of the false
positives were eliminated.

(a) (b)

(c) (d)

Fig. 7. Evolution of residual matrix |E| through selected mcDTSR outer-
loop iterations i, for a fixed video frame: (a) i = 1; (b) i = 19; (c) i = 37;
(d) i = 55. Notice that the gradual alignment between target and reference
correspondences contributes for an impressive reduction of potential false-
positives regions, and also for a more precise detection of the abandoned
object.

The geometric alignment can be crucial to the convergence
of sparse representation methods. This is well illustrated by
Figs. 8 and 9, which show the evolutions of the target ROIs and
the estimated W , respectively. In fact, the improved geometric
alignment provided by the transformation τ , as given in Fig. 8,
enables a more robust and consequently more precise matrix
factorization for the target video, as seen in Fig. 9.

D. Quantitative evaluation

For this experiment, we consider all 59 200-frame videos
excerpts from the VDAO-200 subset, as given in Section V-A.
The parameter setup for the proposed mcDTSR algorithm are
the same as in Section V-C, with addition of the stopping
criterion set to εr = 10−5. The post-processing detection stage
is composed by a thresholding step on |E′| with β = 0.2,
followed by morphological open and then close operations
with 2 and 4 pixel-wide, disk-shaped structuring elements,
respectively. This is followed by a simple temporal voting
using a 5 pixel-wide window, that turns the pixel on if more
than half of the window is also on.

To assess the performance of the proposed mcDTSR
method, the following metrics are employed: true positive rate
(TP) and false positive rate (FP). A true positive happens
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(a) (b)

(c) (d)
Fig. 8. ROI evolution through selected mcDTSR outer-loop iterations i, for a
fixed video frame: (a) i = 0 (initial ROI); (b) i = 19; (c) i = 37; (d) i = 55.

(a) (b) (c) (d)

Fig. 9. Evolution of weight matrix |W | through selected mcDTSR outer-loop
iterations i, for a fixed video frame: (a) i = 1; (b) i = 19; (c) i = 37; (d) i =
55. Notice how the target frames are incorrectly temporally correlated with
the reference frames at the first iterations. The optimization gradually shifts
the correlation to the correct frames, thanks to the transformations applied to
the target video.

when the detection blob has a non-empty intersection with
the abandoned-object ground-truth bounding box, and a false
positive happens when the detection blob and the ground-
truth bounding boxes are disjoint. Another metric used for
performance assessment is the DIS metric, that integrates both
TP and FP, defined as

DIS =

√
(1− TP)2 + FP2. (29)

The DIS metric represents the minimum distance of the
(TP,FP) point to the point of ideal behaviour (TP = 1 and FP
= 0) on the TP×FP plane. The use of this metric allows direct
comparison with the results in [6] and [20] for several state-
of-the-art methods found in the literature, namely: the spatio-
temporal composition for moving-camera detection (STC-
mc) [27]; the detection of abandoned objects with a moving
camera (DAOMC) [11]; the moving-camera background sub-
traction (MCBS) [26] the anomaly detection with a moving
camera using multiscale video analysis (ADMULT) [6]; and
the anomaly detection in moving-camera video sequences
using principal subspace analysis (mcRoSuRe-A) [20]. The
overall results for all these methods, including the proposed
mcDTSR algorithm, are given in Table II.

The analysis of the results presented in Table II shows that
the proposed mcDTSR method outperforms the state-of-the-
art algorithms in 43 of the 59 videos, while also pairing up
in 4 other videos. This shows that mcDTSR has superior
individual performance over the other algorithms, but also
that using domain transformations to deal reference/target
misalignments is an improvement over mcRoSuRe-A, which
is also a sparse representation technique. The average results
of Table I can be seen in Table III, which shows that mcDTSR
significantly reduces the average DIS score. This confirms the
effectiveness of the introduction of the domain transformations
in the detection pipeline.

It can be argued that object-level detection is a very harsh
metric in applicability terms, so one may consider a less
strict metric for detection performance based on a frame-level
analysis, which does not specifically consider the anomaly
position in the given frame. In this frame-level context the
TPfl metric is affected by the presence of any blob detected
in an anomalous frame. Conversely, the FPfl is determined
by the presence of any blob detected in a non-anomalous
frame. The average results for the frame-level comparison over
the same 59 VDAO-200 videos is summarized in Table IV.
These results confirm that mcDTSR has a clear performance
advantage when compared to the STC-mc, DAOMC, MCBS,
and ADMULT methods, and, more importantly, it represents
a significant detection improvement when compared directly
to the mcRoSuRe-A, even in a frame-level analysis, as can be
seen in Tabel IV.

The post-processing setups for the mcDTSR and
mcRoSuRe-A algorithms, used to obtain the results shown in
Tables II,III,IV, were adjusted by a simple methodology. A
parameter grid search is performed on 28 of the 59 videos,
in order to minimize the object-level DIS score. The best
parameter setup is then used to compute the results for all
59 videos in all three tables. In that search, diameters of the
structuring elements of the morphological open and close
range, each one, from 1 to 5; the threshold ranges from
0.2 to 0.3 in 0.01-steps, and the temporal voting windows
are tested for the 3, 5, and 7 sizes. Although the same
tuning methodology was used for both algorithms, the best
setup of each one is chosen independently, yielding the
best average results of the object-level DIS metric for each
method. For example, one can note that, although the FP
score of mcRoSuRe in Table III is slightly better than the
one for the mcDTSR, the superior mcDTSR TP score largely
compensates for it. The optimal setup for each algorithm
is shown in Table IV. In practice, one may expect that the
proposed mcDTSR will have equal or superior performance
when compared to mcRoSuRe-A. This is so because in cases
with well aligned videos both algorithms tend to provide
similar scores, but heavily misaligned videos will benefit from
the domain transformation present in the mcDTSR algorithm.

Fig. 10 illustrates the superiority of mcDTSR relative to
mcRoSuRe-A in the presence a significant geometric mis-
alignment between the target and reference frames, practically
eliminating the false-alarm regions on the final residue matrix.
This is one of the many examples where all the previous
methods fail (having DIS metric larger than 0.85) and the
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TABLE II
COMPARISON RESULTS OF THE PROPOSED MCDTSR METHOD WITH STC-MC, DAOMC, MCBS, AND ADMULT, CONSIDERING ALL THE 59

SINGLE-OBJECT VIDEOS OF THE VDAO-200 DATABASE.

Video # STC-mc [27] DAOMC [11] MCBS [26] ADMULT [6] mcRoSuRe-A [20] mcDTSR

TP FP DIS TP FP DIS TP FP DIS TP FP DIS TP FP DIS TP FP DIS
1 0.37 0.42 0.76 1.00 1.00 1.00 1.00 0.10 0.10 1.00 0.63 0.63 1.00 0.00 0.00 1.00 1.00 1.00
2 1.00 0.04 0.04 1.00 0.00 0.00 1.00 0.90 0.90 1.00 0.00 0.00 0.96 0.17 0.17 0.74 0.00 0.26
3 0.90 0.04 0.11 1.00 0.04 0.04 1.00 0.28 0.28 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.70 0.70
4 1.00 0.03 0.03 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
5 0.92 0.01 0.08 1.00 0.10 0.10 1.00 0.07 0.07 0.71 0.95 0.95 0.99 0.54 0.54 1.00 0.59 0.59
6 0.29 0.64 0.96 1.00 0.10 0.10 1.00 0.99 0.99 1.00 0.00 0.00 1.00 0.75 0.75 1.00 0.79 0.79
7 0.99 0.13 0.13 1.00 1.00 1.00 1.00 0.96 0.96 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
8 0.00 0.01 1.00 1.00 0.87 0.87 0.75 0.31 0.39 0.54 0.02 0.47 1.00 0.16 0.16 1.00 0.17 0.17
9 0.00 1.00 1.41 0.94 1.00 1.00 0.67 0.18 0.37 0.52 0.06 0.48 0.94 0.00 0.06 0.97 0.00 0.03
10 0.01 0.01 0.99 1.00 0.97 0.97 0.89 0.10 0.15 0.69 0.00 0.31 0.99 0.76 0.76 0.97 0.73 0.73
11 0.03 0.79 1.25 0.98 0.98 0.98 0.73 0.32 0.42 0.67 1.00 1.05 0.94 0.05 0.07 0.93 0.00 0.07
12 0.20 0.07 0.81 0.94 0.48 0.48 0.87 1.00 1.01 1.00 0.22 0.22 0.92 0.00 0.08 0.90 0.00 0.10
13 0.00 0.50 1.12 0.86 0.71 0.72 0.84 0.00 0.16 0.64 0.19 0.40 0.98 0.00 0.02 1.00 0.00 0.00
14 0.08 0.05 0.92 1.00 0.74 0.74 0.92 0.01 0.08 1.00 0.15 0.15 0.99 0.00 0.01 0.88 0.00 0.12
15 0.00 1.00 1.41 1.00 1.00 1.00 0.89 1.00 1.01 0.59 0.04 0.42 1.00 0.23 0.23 1.00 0.03 0.03
16 0.00 0.08 1.00 0.77 1.00 1.02 0.00 0.00 1.00 0.00 0.00 1.00 0.91 0.12 0.15 0.89 0.08 0.13
17 0.06 1.00 1.37 0.96 0.46 0.46 0.80 0.12 0.23 0.62 0.30 0.48 0.94 0.04 0.07 0.96 0.01 0.04
18 0.00 0.09 1.00 0.75 0.99 1.02 0.43 0.00 0.57 0.00 0.23 1.03 0.54 0.00 0.46 0.56 0.00 0.44
19 0.00 0.03 1.00 1.00 0.67 0.67 0.89 0.00 0.11 0.54 0.15 0.48 1.00 0.03 0.03 0.95 0.00 0.05
20 0.36 0.50 0.81 0.26 1.00 1.24 0.67 1.00 1.05 0.00 0.00 1.00 0.99 0.97 0.97 0.80 0.98 1.00
21 0.00 0.68 1.21 0.97 0.62 0.62 0.95 0.61 0.61 0.97 0.72 0.72 1.00 0.37 0.37 1.00 0.04 0.04
22 0.00 0.07 1.00 1.00 0.90 0.90 0.92 0.05 0.09 0.68 0.75 0.81 1.00 0.02 0.02 1.00 0.04 0.04
23 0.00 0.83 1.30 0.93 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 0.93 0.76 0.76 0.72 0.07 0.29
24 0.58 0.93 1.02 0.00 1.00 1.41 0.00 0.73 1.24 0.00 0.00 1.00 0.69 1.00 1.05 0.12 0.00 0.88
25 0.00 0.02 1.00 1.00 0.90 0.90 0.58 0.00 0.43 0.56 0.55 1.00 0.51 0.00 0.50 0.55 0.01 0.45
26 0.00 0.06 1.00 1.00 0.54 0.54 0.87 0.05 0.14 0.64 0.01 0.70 0.99 0.07 0.07 1.00 0.53 0.53
27 0.26 0.34 0.82 1.00 0.72 0.72 1.00 1.00 1.00 1.00 0.10 0.36 1.00 0.41 0.41 1.00 0.02 0.02
28 0.01 0.01 1.00 1.00 0.89 0.89 1.00 0.00 0.00 1.00 0.00 0.00 0.64 0.27 0.45 0.25 0.00 0.75
29 0.00 0.14 1.01 0.91 0.98 0.98 0.76 0.02 0.24 0.68 0.01 0.32 0.43 0.81 0.99 0.00 0.00 1.00
30 0.00 0.01 1.00 1.00 0.97 0.97 0.80 0.49 0.53 0.56 0.00 0.44 1.00 0.36 0.36 1.00 0.53 0.53
31 0.00 0.01 1.00 1.00 0.61 0.61 0.87 0.80 0.81 0.61 0.55 0.67 0.95 0.81 0.81 0.95 1.00 1.00
32 0.00 0.01 1.00 1.00 0.78 0.78 0.83 0.00 0.17 0.32 0.00 0.68 1.00 0.01 0.01 0.99 0.01 0.01
33 0.78 0.81 0.83 0.83 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 0.92 1.00 1.00
34 0.00 0.02 1.00 1.00 0.69 0.69 0.70 0.00 0.30 0.56 0.00 0.44 0.95 0.02 0.05 0.97 0.03 0.04
35 0.00 0.97 1.39 0.97 0.62 0.62 0.87 0.82 0.83 0.62 0.01 0.38 0.94 0.81 0.81 0.96 0.00 0.04
36 0.24 1.00 1.26 0.02 1.00 1.40 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 0.95 0.06 0.08
37 0.43 0.18 0.59 0.99 1.00 0.96 0.93 0.00 0.07 0.93 0.00 0.07 0.99 0.00 0.01 0.97 0.00 0.03
38 0.00 1.00 1.41 1.00 0.99 0.99 0.71 0.05 0.30 0.44 0.00 0.56 0.96 0.00 0.04 0.72 0.00 0.28
39 0.09 0.04 0.91 0.91 1.00 1.00 0.84 0.93 0.94 1.00 0.25 0.25 0.91 1.00 1.00 0.92 1.00 1.00
40 0.56 0.44 0.92 1.00 0.95 0.95 1.00 0.56 0.56 1.00 0.14 0.14 0.92 0.28 0.29 1.00 1.00 1.00
41 0.00 0.78 1.27 0.64 0.99 1.05 0.88 0.87 0.87 0.87 1.00 1.01 0.96 1.00 1.00 1.00 0.04 0.04
42 0.00 1.00 1.41 0.96 0.96 0.96 0.88 0.91 0.91 0.49 0.00 0.51 0.96 0.00 0.04 0.99 0.00 0.01
43 0.00 0.08 1.00 0.72 1.00 1.04 0.14 0.00 0.86 0.00 0.00 1.00 0.93 0.15 0.16 0.93 0.11 0.13
44 0.00 0.19 1.02 0.96 1.00 1.00 0.73 0.14 0.31 0.63 0.00 0.37 0.92 0.43 0.43 0.95 0.00 0.05
45 0.15 0.92 1.25 0.01 1.00 1.41 0.82 1.00 1.02 1.00 1.00 1.00 0.71 1.00 1.04 0.37 0.41 0.75
46 0.00 0.43 1.09 0.93 0.97 0.97 0.95 0.79 0.79 0.99 0.14 0.14 0.92 0.01 0.08 0.91 0.00 0.09
47 0.01 0.20 1.01 1.00 1.00 1.00 0.93 0.00 0.07 0.91 0.22 0.24 0.98 0.30 0.30 0.97 0.26 0.26
48 0.00 0.01 1.00 0.96 0.97 0.97 0.72 0.16 0.32 0.42 0.00 0.58 0.96 0.03 0.05 0.98 0.00 0.02
49 0.00 0.04 1.00 1.00 0.99 0.99 1.00 0.06 0.06 0.93 0.00 0.07 1.00 0.24 0.24 1.00 0.76 0.76
50 0.00 0.02 1.00 1.00 0.77 0.77 0.86 0.14 0.20 0.18 0.89 1.21 0.95 0.01 0.05 0.97 0.02 0.04
51 0.01 0.86 1.31 0.97 0.92 0.92 0.85 0.66 0.68 1.00 1.00 1.00 0.94 0.98 0.98 0.81 1.00 1.02
52 0.00 0.68 1.21 0.40 1.00 1.17 0.63 0.79 0.87 0.84 1.00 1.01 0.73 1.00 1.04 0.74 0.55 0.61
53 0.06 0.82 1.25 0.79 1.00 1.02 0.69 1.00 1.05 0.88 1.00 1.01 0.84 0.09 0.19 0.85 1.00 1.01
54 0.00 0.20 1.02 1.00 0.51 0.51 0.84 0.01 0.16 0.50 0.00 0.50 0.94 0.01 0.06 1.00 0.02 0.02
55 0.39 0.75 0.96 0.86 1.00 1.01 0.59 0.32 0.52 0.49 0.00 0.51 0.76 0.44 0.50 0.71 0.00 0.29
56 0.52 0.45 0.65 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.38 0.38 0.98 1.00 1.00 0.81 1.00 1.02
57 0.36 0.09 0.65 0.96 0.92 0.92 1.00 0.67 0.67 1.00 0.21 0.21 0.99 0.01 0.01 0.93 1.00 1.00
58 0.00 0.05 1.00 0.97 0.80 0.80 0.62 0.00 0.38 0.18 0.00 0.82 0.83 0.00 0.17 0.88 0.00 0.13
59 0.00 1.00 1.41 1.00 1.00 1.00 0.73 0.79 0.83 0.53 0.00 0.47 0.44 0.00 0.56 0.61 0.01 0.39

Average 0.19 0.42 0.91 0.83 0.43 0.46 0.89 0.84 0.85 0.71 0.28 0.40 0.91 0.33 0.34 0.86 0.28 0.31

TABLE III
AVERAGE DETECTION OF PROPOSED MCDTSR METHOD COMPARED TO
MCROSURE-A, STC-MC, DAOMC, AND MCBS METHODS FOR ALL 59

SINGLE-OBJECT VIDEOS OF THE VDAO DATABASE. THE SAME
PIXEL-LEVEL METRICS USED IN TABLE II HAVE BEEN EMPLOYED.

Method TP FP DIS

STC-mc 0.18 0.38 0.90
DAOMC 0.83 0.43 0.46
MCBS 0.89 0.84 0.85

mcRoSuRe-A 0.72 0.25 0.37
mcDTSR 0.84 0.27 0.31

proposed method excels, having a DIS metric of only 0.03.
Since the mcDTSR is based on the same sparse representa-

tion algorithm present in mcRoSuRe-A, the mcDTSR exhibits

TABLE IV
AVERAGE DETECTION OF PROPOSED MCDTSR METHOD, COMPARED TO
STC-MC, DAOMC, MCBS, AND MCROSURE-A METHODS FOR ALL 59

SINGLE-OBJECT VIDEOS OF THE VDAO DATABASE USING FRAME-LEVEL
METRICS.

Method TPfl FPfl DISfl

STC-mc 0.48 0.41 0.66
DAOMC 0.89 0.46 0.47
MCBS 0.99 0.98 0.98

mcRoSuRe-A 0.76 0.24 0.34
mcDTSR 0.88 0.26 0.29

lower FP rates, in general, due to its intrinsic compensation
of the camera trepidations. However, there are some situations
in Table II where the mcDTSR presents more false alarms
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TABLE V
CHOSEN SETUP FOR METHODS MCROSURE-A AND MCDTSR. “OPEN

SIZE” AND “CLOSE SIZE” REFER TO THE DIAMETERS OF THE
CORRESPONDING STRUCTURING ELEMENTS.

Method Open Size Close Size Binarization Threshold Vote Size

mcRoSuRe-A 4 1 0.20 3
mcDTSR 1 4 0.28 3

(a) (b)

(c) (d)
Fig. 10. Comparison of mcRoSuRe and mcDTSR residues for frame 150
of video 41 in VDAO-200 database: (a) Reference frame; (b) Target frame;
(c) mcRoSuRe-A residue |E|; (d) mcDTSR residue |E′|. In this case, the
mcDTSR method compensates for frame misalignment removing most of false
alarms regions.

than mcRoSuRe. Having a close look at some of these cases,
it is possible to see that mcDTSR captures not only the
presence of abandoned objects, but also indirect visual artifacts
caused by them, such as shadows and reflections, which were
not considered in the ground-truth annotation for the VDAO
database. This is illustrated in Fig. 11, which shows how
the mcDTSR captures the shadow that the box casts in the
lower pipe (Fig. 11(d)) yielding a false alarm region, which
is ignored by mcRoSuRe-A method (Fig. 11(c)). Indeed, in
most practical applications, this behavior, besides not being an
issue, is even desirable. This is so because the goal is to find
abandoned objects or anomalies, and therefore the detection
of indirect artifacts caused by them is useful.

It is important to point out that the mcDTSR algorithm
performs a sequence of convex optimizations in order to
correct the geometric differences between the reference and
target domains. In practice, a more misaligned case tends to
take more steps to yield the correct alignment, and conse-
quently, requires more processing time. Although real-time
performance was not in the scope of this work, it is important
for real-world applicability. One form to address this issue
is to develop an accelerated version of mcDTSR along the
same lines that mcRoSuRe-A [20], an accelerated version
of mcRoSuRe, has been developed. Further acceleration of
mcDTSR can be provided by taking advantage of the expected
sparsity of the W matrix, which can reduce significantly the
amount of computation in the optimization loops.

(a) (b)

(c) (d)
Fig. 11. Comparison of mcRoSuRe and mcDTSR results for frame 1 of
video 1 in VDAO-200 database: (a) Reference frame; (b) Target frame; (c)
mcRoSuRe-A detection mask; (d) mcDTSR detection mask. In this case,
the shadow cast by the box, which does not have a bounding-box ground-
truth counterpart, is ignored by the mcRoSuRe-A method but is successfully
detected by the mcDTSR algorithm.

VI. CONCLUSION

A new algorithm was described for anomaly detection in
video sequences acquired from moving cameras. The proposed
system is based on the low-rank/sparse representation of target
videos using a corresponding similar decomposition performed
on an anomaly-free reference video. Both video representa-
tions are performed in a geometrically-transformed domain
in order to compensate possible camera trepidations along its
natural path. An iterative two-stage optimization procedure is
employed to implement the modified optimization problem:
the inner loop estimates the best geometric transformation,
whereas the outer loop, given the current transformation esti-
mate, determines the best matrix factorization. This provides
a better registration between reference and target videos, re-
ducing the amount of false alarms in the subsequent detection
stage, which becomes robust to camera trepidations. Results
obtained on a large database for abandoned object detection
indicate superior performance of the proposed system against
several state-of-the-art alternatives.

The proposed method expands the capabilities of low-
rank sparse representation methods, such as mcRoSuRe-A,
by incorporating, in a simple and elegant way, domain trans-
formations that enable such methods to find more precise
correspondences between different parts of the data matrix.
The final algorithm has proven to be a powerful tool, in a
way that it is able to outperform state-of-the-art methods in
the detection of anomalies in videos acquired with a moving
camera, as the results of the extensive experiments in a very
challenging dataset show. The better alignment of the frames
from reference and target videos allows our method to present
improved true positive detection while having very few false
detections.

The optimization proposed here takes inspiration on other
well established domain transformation techniques, but goes
further using convexification tools that reach faster conver-
gence, which allows the method to operate in challenging
scenarios.
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Although other recent works have proposed the use of
domain transformations to improve background subtraction
methods, none of the previous algorithms was able to perform
in the challenging scenario considered here. This opens a path
for new applications in trending areas such as video stabiliza-
tion and anomaly detection with freely moving cameras, that
currently lack simple tools that can be incorporated into the
optimization algorithm to handle large misalignment between
frames.
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