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Abstract
This work presents a novel approach to automatically detect the position of dark fringes in birefringence images obtained
during the flow of polymers through slit dies. The determination of these positions is important for rheology, as it allows one
to obtain the principal stress difference (PSD) profile along the flow centerline. The developed approach uses mathematical
morphology techniques to find the patterns that characterize the birefringence fringes and to detect their center position. The
proposed method was compared with other fringe center detection methods, revealing the superior accuracy of our method,
and the results were compared with the semi-automated measurements obtained with the GIMP software in a previous work.
In addition, the statistical analysis performed showed that the difference of the average obtained with the two methodologies
can be considered irrelevant to the application at hand for most of the fringes observed in the experiments.
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Introduction

To understand a process which involves the flow of molten
polymers, it is necessary to concentrate great effort in
the modeling of the flow. It is also important to evalu-
ate the experimental techniques used to obtain the different
material functions to characterize the nonlinear response
of these materials. In attempt to address this challenge,
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rheo-optical techniques for determining the flow birefrin-
gence stress patterns can be coupled with sophisticated
experimental apparatus, such as the multipass rheomoter
(MPR) developed by Prof. Mackley and co-workers (Mack-
ley and Hassell 2011; Lord et al. 2010; Hassell and Mackley
2009; Hassell et al. 2008; Collis and Mackley 2005; Lee
and Mackley 2001). In this device, it is possible to map the
stress field during the flow, when it is equipped with an
optical cell designed to fit the different geometries. Besides
the rheological characterization, these data are especially
useful for the differentiation of grades (Farias et al. 2014),
evaluation of molecular weight distribution (Collis and
Mackley 2005) and branching of polymers (Hassell et al.
2011). Furthermore, flow-induced birefringence is used for
the validation of constitutive models for the simulation of
viscoelastic fluid flow with complex rheological behav-
ior (see, for example, Hassell and Mackley (2009), Lord
et al. (2010), Agassant and Mackley (2015), and Harrison
et al. (2002)). Flow-induced birefringence is an interesting
technique to identify the viscoelastic behavior of molten
polymers. However, the birefringence index during flow
needs to be suitable. Very low index results in a very small
number of fringes, even at high flow velocities, whereas a
very high index, as in the case of polystyrene studied, drasti-
cally limits the possible flow velocities investigated because
of the large number of fringes observed.
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The experimental procedure is based on inducing a
birefringence in a fluid as a result of orientation of the
polymer chains during its flow. The obtained patterns of
bright and dark fringes, which provide information about
the spatial evolution of the stress in the molten polymer, can
then be converted into the principal stress difference (PSD)
profile using the semi-empirical stress optical rule (Castro
et al. 2018; Farias et al. 2014; Collis and Mackley 2005; Lee
and Mackley 2001; Ahmed et al. 1995; Macosko and Larson
1994; Harrison et al. 2002). Along the flow centerline, the
PSD is equal to the first normal stress difference, that is,

|PSD| = |σ11 − σ22| = |τ11 − τ22| = kλ

| C | d
, (1)

where σ11 and σ22 are the first principal stress values, τ11

and τ22 are the first normal stress values, C (stress optical
coefficient) is − 4.5 × 10−9 Pa−1 for polystyrene (Collis
and Mackley 2005; Farias et al. 2014), k = 0, 1, 2, . . .

is the fringe order, λ is the wavelength of the polarized
light which hits the birefringent medium, and d is the
anisotropic medium length, which corresponds to the depth
of the sample through the light propagates, assuming a
2D-deformation flow.

Using Eq. 1 with the values of the parameters given by
the experiment and knowing the geometry length and the
position of the center of each dark fringe, the PSD along
the centerline can be determined by counting the relative
retardation of the fringe order k (see for example Lord et al.
(2010), Hassell and Mackley (2009), Hassell et al. (2008),
Collis and Mackley (2005), Lee and Mackley (2000), and
Castro et al. (2018)).

Several aspects related to the processing of different
types of polymer tested in the MPR rheometer have been
discussed and presented during the last years (Lee and
Mackley 2001; Hassell and Mackley 2009; Lord et al. 2010;
Mackley and Hassell 2011; Hassell et al. 2011; Reynolds
et al. 2018). However, in general, the available information
is still insufficient to allow an effective understanding
on how the determination of the dark fringes centers is
performed.

In general, many methods studied fringe detection,
specially in the context of light interference fields (Farooq
et al. 2015; Ye and Wei 2012; Yu and Andresen 1994;
EL-Morsy 2012; Sokkar et al. 2007; Poon et al. 1993;
Huntley 1998; Fulong and Wang 1999; Wang and Han
2004; Meyer 1979). For example, a method based on
image binarization creates a centerline of each fringe
by employing morphological approaches like thinning or
skeletonisation (Farooq et al. 2015). In other works, the
periodic characteristics of the fringes are modulated by a
signal (EL-Morsy 2012).

Some of the most successful techniques to detect light
interferometric fringes (Yu and Andresen 1994; Zhang et al.

2002) rely on the estimation of an orientation map for each
image, which is used with an adaptive median filter to
remove noise. By measuring the changes in the gradient
component along the direction given by the orientation map,
one can define the positions of maxima and minima in the
image, which characterizes the centerline for each light or
dark fringe.

However, most of the methods developed for light
interference fields tend to fail when applied to the case of
birefringence images. In this scenario, the fringe patterns
in the images are related to the flow and geometry of the
experiment and some assumptions about the periodicity of
the image do not hold. In addition, due to experimental
problems such as impurities in the material and difficulties
in the image acquisition, the resulting images are often
corrupted by noise.

For the specific case of MPR optical images, Agassant
et al. (2002) mentioned the application of a morphological
analysis that considers a skeleton birefringence pattern to
detect the position of the fringes. However, no further details
are provided about the adopted approach.

Recently, Thomaz et al. (2016) proposed a group of
mathematical morphology techniques to find the patterns
that characterize the birefringence fringes obtained in the
MPR4 (Collis and Mackley 2005; Hassell et al. 2008;
Mackley and Hassell 2011; Farias et al. 2014). Their
approach to detect the center position of each fringe
contains five steps: (i) input image enhancement, (ii)
minima contour detection with watershed, (iii) skeleton
creation and center detection, (iv) post-processing, and (v)
inflection points detection. The authors showed that the
method has great potential for detecting dark fringes in
birefringence images with accuracy prediction comparable
to a manual marking while minimizing the need of human
interaction with the images.

In a preliminary work (Castro et al. 2018), a semi-
automated methodology was presented for PSD analysis
from flow-induced birefringence images using the GIMP
(GNU Image Manipulation Program) open-source software.
The position of the centers of dark fringes obtained through
the flow-induced birefringence images of two polystyrene
samples processed in the MPR4 was determined with
greater accuracy and with shorter processing time when
compared with the standard manual technique. The main
advantage of using the cited approach is that it does not
require any prior knowledge of advanced image processing
techniques nor the use of expensive computational pack-
ages. However, in such scheme, the user still performs the
fringe processing and analysis one image at a time, resulting
in a time consuming process.

Within the above context, this work aims to present
a novel approach using mathematical morphology tech-
niques that expands the work of Thomaz et al. (2016)
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to identify the patterns that characterize the birefringence
images presented by Castro et al. (2018). In addition, it
also performs the automatic detection of the dark fringes
centers, allowing the collection of measurements to be
obtained in a faster and more accurate way. To introduce
such methodology, the remaining of this paper is
organized as follows: Section “Processing of birefrin-
gence images using mathematical morphology techniques”
presents a step-by-step description of the fringe position
detector based on mathematical morphology techniques.
Section “Comparison with other fringe center detection
methods” assesses the proposed methodology by comparing
its results with the ones obtained with the manual tech-
nique, with the GIMP software, and with other methods
adapted to the context of birefringence images (Lee and
Mackley 2001; Collis and Mackley 2005; Fuller 1995; Lord
et al. 2010; Castro et al. 2018). Finally, the conclusions
are presented in “Conclusions” emphasizing the paper main
technical contributions.

Mathematical morphology

Mathematical morphology is the study of the shape of
spatial structures, often used to remove imperfections or
identify patterns (Serra 1983). It provides tools to analyze
the relationship between the pixel values of an image,
considering their spatial ordering and a small template
called structuring element. These interactions between an
image and a structuring element are explored using two
basic operations, namely erosion and dilation (Soille 2003).

The erosion of an image f using a structuring element B
can be defined as follows. One starts assuming that f and B
exist in the same two-dimensional Euclidian space, where f
is a grayscale image and B is a structuring element that is
defined as a binary set.

The eroded value of f for each pixel x is the
minimum intensity value inside the window delimited by
the structuring element B. If b is a translation belonging to
the structuring element, the eroded image εB(f) is equal to
the following:

Erosion: [εB(f)](x) = min
b∈B f(x + b) (2)

Similarly, the dilation operation of f by B, which is the
dual operation of the erosion, is defined for each pixel x
as the maximum value of the image intensity value in the
window defined by the structuring element B, leading to the
following:

Dilation: [δB(f)](x) = max
b∈B f(x + b) (3)

Examples of the erosion and dilation operations are
depicted, respectively, in Fig. 1c, d, where it can be observed

that the erosion shrinks the objects while the dilation
enlarges them.

The erosion and dilation operations can be used to
define more complex morphological operations, among
which we can mention the opening and closing operations,
widely used in morphological processing (Soille 2003).
The opening consists of an erosion of f by the structuring
element B, followed by a dilation using the same structuring
element. The following equation describes it as follows:

Opening: γB = δB[εB(f)]. (4)

The closing operation is the dual to the opening
operation, and is performed by applying a dilation of f by the
structuring element B followed by a erosion using the same
structuring element. It is equivalent to applying the opening
to the complement of the original image, and then taking
the complement of the result, as shown in the following
equation:

Closing φB = εB[δB(f)]. (5)

Figure 1e and f show, respectively, examples for the
opening and closing operation. One can see that the opening
removes the image tips while the dilation fills the image
holes (which is equivalent to removing the tips on the
complement of the image).

Geodesic morphology

The basic morphology operations consider only an input
image and computes its relation with a structuring element.
Geodesic transformations (Soille 2003) consider instead
two input images: the original input image, called marker,
and a second image which acts as a mask. A morphological
transformation is applied to the marker image, using a
simple structuring element. However, if for a given position,
the result is bigger or smaller than the mask, depending on
the operation, it is set as the value of the mask.

A geodesic erosion of size 1 consists of a morphological
erosion of a marker image f using an elementary isotropic
structuring element B, such as the one given by Fig. 1b,
followed by a pointwise maximum between the result and
the mask g, as follows:

Geodesic erosion: ε(1)
g (f) = ε(1)(f) ∨ g, (6)

where a∨b represents the maximum value between a and b.
This operation is depicted in Fig. 2d, e, which show that the
geodesic erosion uses the mask to limit the shrinkage effect
caused by the erosion (see Fig. 1c).

A geodesic dilation of size 1 consists of a morphological
dilation of a marker image f using an elementary structuring
element B, followed by a pointwise minimum between the
result and the mask g, as follows:

Geodesic dilation: δ(1)
g (f) = δ(1)(f) ∧ g, (7)
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Fig. 1 Erosion, dilation,
opening, and closing operations.
a Original image. The pixel
values for a section of image are
represented as gray bars. b
Structuring element defining a
window for the maximum and
minimum operations, consisting
of one pixel to the left, the
current pixel, and one pixel to
the right. c Erosion: the object is
reduced (the regions with low
gray levels are enlarged). d
Dilation: the object is enlarged
in the borders (the regions with
high gray levels are enlarged). e
Opening: the holes in the gray
level are removed. f Closing: the
holes in the gray level are filled.
In (c)–(f), the solid lines
represent the values of the
original image before the
morphological operations and
the gray rectangles show the
result after each operation

where a ∧ b represents the minimum value between a and
b. An example of this operation is shown in Fig. 2b, c,
where one can see that, when compared to the dilation seen
in Fig. 1d, the geodesic dilation forces the dilation process
to propagate the image only to regions delimited by the
mask.

Processing of birefringence images using
mathematical morphology techniques

In this work, we propose a method to automatically
detect the dark fringes in the birefringence patterns,which
is an improvement to the four-step approach that was
introduced in Thomaz et al. (2016). This approach differs

from other, more traditional, methods as it works strictly
on the geometrical domain, avoiding the use of more
complex tools that can also be more error prone, such as
frequency-domain techniques and transformations (Farooq
et al. 2015; Yu and Andresen 1994; Zhang et al. 2002). A
block diagram summarizing the workflow of the proposed
method is presented in Fig. 3. The first step consists of an
image enhancement that removes some of the image noise,
providing a sharper version of the input image that allows
a more precise detection in the subsequent steps. In the
second step, the minima contours are detected through the
application of the watershed (Beucher and Lantuéj 1979)
method, further detailed. A skeleton (Haralick and Shapiro
1992) of the dark fringes is created from the previous step
output and the center of the image, which is the region of
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Fig. 2 Geodesic erosion and
dilation operations. a Original
image - marker image. The pixel
values for a section of image are
represented as gray bars. b Mask
image used in the geodesic
erosion, whose values are given
by the solid black lines. The
gray rectangles show the marker
image, for comparison. c
Geodesic erosion: erosion of the
marker image. The mask
prevents the decrease in the
marker (the enlargement of
regions with low gray values)
caused by the erosion, when
compared to Fig. 1c. d Mask
image used in the geodesic
dilation, whose values are given
by the solid black lines. The
gray rectangles show the marker
image, for comparison. e
Geodesic dilation: dilation of
the marker image. The mask
prevents the growth in the
marker (the enlargement of the
regions with high gray values)
caused by the dilation, when
compared to Fig. 1d

interest for the fringe position detection, is selected in the
third step. Finally, in step four, post-processing is performed
to increase the precision on the dark-fringe final detection.
A detailed explanation of each of those steps is given in the
subsections that follow.

Input image enhancement

To obtain a improved version of the image, thus improving
the detection algorithm results, this section describes an
image enhancement method that is applied in the proposed
algorithm as a pre-processing step (Fig. 4).

Due to a noisy acquisition process, the birefringence
images often have a cracked appearance, as can be seen in

Fig. 5. There it can be observed that neither their white nor
their dark fringes are well defined, having many gaps that
can connect consecutive dark fringes. They make the task of
correctly identifying the fringes position very difficult for
the image processing algorithms. One way to approach this
hard problem is to apply some morphological operations
on the input images as a pre-processing step (Fig. 4) that
aims to highlight the fringe silhouettes, thus making the
algorithms less prone to errors.

In this paper, we propose to use two morphological
operations in succession to improve the image quality,
namely white top-hat and black top-hat. The white top-hat
operation (Soille 2003) aims to obtain the peak grayscale
values of the image by applying morphological operations
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Fig. 3 Block diagram of the proposed method

over it. In order to do so a modified version of the
image, obtained via the morphological opening operation
defined in “Mathematical morphology” is subtracted from
the original image, as described by the following:

White top-hat: WTH(f) = f − γ (f), (8)

where γ () represents the opening operation.
The idea behind this operation is that, as shown in Fig. 1e,

the opening removes the peaks in the shape of the objects,
keeping the parts of the object that do not contain peaks.
The white top-hat operation then takes the original image
and subtracts from it a version of the image with the peaks
removed, so after the subtraction only the peaks remain.

In the opposite way, the black top-hat operation (Soille
2003) is responsible for extracting the valleys of the gray
level images. To perform this operation, the original image
is subtracted from a modified version of the image, after
going through a closing operation, is given by the following:

Black top-hat:BTH(f) = φ(f) − f, (9)

where φ() represents the closing operation.
This equation means that first the closing operation is

applied to create a version of the image with all valleys
filled, such as the one seen in Fig. 1f. Afterwards, by
subtracting this result from the original image, only the
filled valleys remain, so the result of the black top-hat
operation is an image containing only the valleys of the
original image.

The resulting images after the described procedures, that
are the white top-hat image containing the peaks and the
black top-hat image containing the valleys, are added to the
original image, emphasizing the peaks and valleys of the
grayscale image, therefore enhancing its contrast. The use
of these techniques yields a better distinction between the
bright and dark fringes, as illustrated in Fig. 6.

Minima contour detection with watershed

Since the current state of the image is still not easy to
process, in order to locate the minima contours of the
pre-processed image, we apply the watershed operation as
described in this section.

In order to detect the center of each dark fringe
(Fig. 7), a different mathematical morphology method
was used, namely the watershed (Beucher and Lantuéj
1979) algorithm. This method aims to detect local maxima
positions in a given grayscale image. The intuition behind
the method is the following: the method considers the image
topology to be a succession of peaks and valleys; in the
bottom of the valleys, it is assumed to exist holes. If a liquid
would enter the valleys through these holes, at the same
time for holes at the same depth, there would be an instant
when the liquids in two consecutive valleys would merge.
The position where those liquids merge is considered to be
a local maximum, as depicted in Fig. 8.

The loci of the maxima can be used to detect the center
of each one of the dark fringes. To do so, one initially needs
to obtain the complement of the image, therefore making
each peak a valley and each valley a peak. After that, one
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Fig. 4 Input image enhancement

Fig. 5 Highlight of the gaps of
the fringes connecting
consecutive dark and bright
fringes. The dark regions have
lower pixel values, whereas the
bright regions have higher pixel
values

Fig. 6 Example of birefringence
images before and after the
enhancement step based on the
white top-hat and black top-hat
operations. Its effect is best
observed at the consecutive
bright and dark fringes in the
modified image: a original
image; b enhanced image with
increased contrast. c Detail of
the original image. d Detail of
the enhanced image. The
contrast between the fringes and
the background is greatly
enhanced in panel (d) in
comparison to panel (c); it can be
better observed in the electronic
version of these figures
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Fig. 7 Minima contour detection with watershed

should apply the watershed method to the inverted image.
An example of the result, obtained with this procedure, can
be seen in Fig. 9a, where the resulting analysis still present
some detection artifacts.

Although this result seems to be initially encouraging,
one can readily see that it is not enough to solve the problem
of detecting the position of the dark fringes, as this simple
application of the watershed method creates an image with

Fig. 8 Watershed peak detection
method. The inner peaks are
detected and marked as the red
vertical lines
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Fig. 9 Contours of the dark fringes obtained with the use of the
watershed method. a Without minima imposition. b With initial
minima imposition (marked as a red diamond). The blue ellipses and
the red rectangles show, respectively, regions where there is over-
segmentation and undetected fringes in the version without minima
imposition

under- and over-segmentation, both missing boundaries or
displaying undesired boundaries. This can be improved by
feeding the algorithm with some prior knowledge, like the
approximate positions of the maxima (or minima). In our
proposed approach, a human user must input the location of
every bright fringe (the minima points in a inverted image).
The imposition of those minima locations (Soille 2003)
creates a mask fm whose values are tmax (the maximum
value allowed to the pixel) except where the minima were
imposed (where the mask value is set to 0), as given by the
following:

M =
{

0, if a minimum was imposed
tmax, otherwise

, (10)

where tmax is the largest possible pixel value in the grayscale
image. This process is detailed in Fig. 10.

We then take the minimum between each pixel value and the
value of the mask in that position, whose result is called
(f + 1) ∧ fm in Fig. 10b. After that, the signal fm is con-
sidered the marker and the signal (f + 1) ∧ fm the mask of
a geodesic erosion, as defined in “Geodesic morphology.”
Successive geodesic erosions are performed (Fig. 10c–g)
until the image becomes unchanged by further erosions
(Fig. 10h). Note that, when you perform the minima impo-
sition, the imposed minima will be the only local minima in
the resulting image, lending to it a smooth appearance.

After the minima imposition, we then apply the
previously described watershed method to the resulting
image to obtain the maxima contours, avoiding in this
case under- and over-segmentation issues. An example of
the results after the minima imposition can be seen in
Fig. 9b, which improves upon the results shown in Fig. 9a.
One can see in the region highlighted by a blue ellipse
that the minima imposition technique reduces some over-
segmentation artifacts while, as seen in the region delimited
by the red rectangle, and also increases the amount of
successfully detected fringe contours.

Skeleton creation and center detection

After we obtain the minima contour with the watershed
operation, we need to further process it in order to
produce 1 pixel-wide contours. To do so, we employ the
skeletonisation technique described in this section.

The result of the watershed method is a binary image
that indicates boundaries that separate each bright region,
so it should represent a centerline for the dark fringes. In
order to select the exact position of the fringe centers, it is
necessary that the contour lines are exactly one pixel wide.
Sometimes, after using the watershed method, the contour
lines are thicker than one pixel, thus lowering the accuracy
of the method. To deal with this problem, we propose
(Fig. 11) the use of a skeletonisation method (Haralick and
Shapiro 1992). A morphological skeleton of a binary image
such as the contours in Fig. 9 is defined as the locus of
the center of the maximal disks completely contained in the
image. Figure 12 shows the step-by-step procedure to obtain
the skeleton of an image. This procedure creates thinner
segments with a thickness of one pixel, which is mandatory
for the next steps.

Post-processing

After obtaining the pixel-thin contours, we proceed to the
estimation of the fringe center position, as well as removing
the false detections. This section describes the post-processing
methods (Figs. 13 and 14) employed in this task.
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Fig. 10 Minima imposition
method. a Original figure f and
mask fm. The pixel values for a
section of image are represented
as gray bars, and the values of
the mask are given by the solid
black lines. b Pixel-wise
minimum between fm and
(f + 1), which is defined as
(f + 1) ∧ fm. c Morphological
erosion of fm. d Maximum
between (f + 1) ∧ fm and the
result of the morphological
erosion of fm. The red-dashed
line shows the values that were
changed in the maximum
operation. e The final result of
the first geodesic erosion of fm

is represented by the values in
solid black lines. f Second
geodesic erosion of fm. g Third
geodesic erosion of fm. h Fourth
geodesic erosion of fm. The
signal remains unchanged after
any other geodesic erosion, so it
is considered the reconstruction
via successive erosions of
(f + 1) ∧ fm from the mask fm

Fig. 11 Skeleton creation and center detection
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Fig. 12 Skeletonisation using
maximal disks. The union of all
maximal disk centers defines the
skeleton. a Original image. b
Some maximal disks and the
initial construction of the
skeleton. c Maximal disks
covering the whole image. d
Complete skeleton

Fig. 13 Post-processing
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Fig. 14 Detailed block diagram of the post-processing

At this point, the contour lines, which we expect to
be present only in the dark fringes, may also erroneously
appear in a bright fringe. As can be seen from Fig. 15, the
contours have some segments that do not belong to the dark
fringes and should not be used to estimate their position.
This figure also shows that those segments have a shape
similar to a vertical line, being perpendicular to the fringe
variation. The algorithm uses this fact to detect and remove
flaws in the contours by separating it in small segments and
removing those that have a vertical orientation. In addition,
one is not interested in identifying the whole dark fringe but
only the position of its center; therefore, the contours can

Fig. 15 Detail of the contours of the dark fringes obtained with the use
of the watershed method showing some flaws in the detection, with
parts of the contour highlighted by a red square appearing in the bright
fringe

be further processed in order to extract only the required
information. The post-processing pipeline is depicted in
Figs. 13 and 14 and is described in the next sections.

Removal of values in borders

In the first step, only the center columns of the image are
kept, which contain the region of interest for the detection
of the fringe positions.

Fig. 16 Detail of the branching points removal method, where the
circles show the points to be removed. The branching points are
considered as the points connected to three or more points. a Before
branching point removal; b after branching point removal
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Removal of branching points

At this point, we only want to detect the center of the dark
fringes, which in our database are horizontally oriented and
often elongated in the images. Therefore, we can split the
detected skeleton in smaller segments in order to detect the
segments that are also horizontal and elongated (and thus
likely to belong to the desired dark fringes).

The branching points, which are points connected to
three or more points, are removed from the remaining
skeleton that, after this operation, will be just a set of
unconnected segments, as seen in Fig. 16. It is important to
notice that the branching point removal step applies only to
the fringes skeleton (as can be seen in Fig. 16), and not to the
actual fringes. Thus, this process do not affect the geometry
of the fringes if they present ramifications.

Removal of small segments

After this step, several spurious segments may still remain.
Since it is expected that the dark fringes are horizontal
and elongated in the region of interest, we count for each
segment the number of points contained in it, and the
segments that have less than a given number of points are
removed from the structure.

Removal of vertical segments

For the same motivation as in the previous step, we also
analyze each segment and measure its horizontal length.
This is done by counting the number of columns that it
occupies, removing those that have a horizontal length
smaller than a threshold (in other words, are “too vertical”).
This is done because they, most likely, do not correspond
to the desired center position of the fringes. An example of
segments that remain after these cleaning steps can be seen
in Fig. 17.

It is important to notice that, for different sets of images,
such fringes may present different orientations, due to
different geometries of the experiments. For example, if
such fringes happen to be mainly vertical, this procedure can
be adapted by removing instead the horizontal segments.

Identification of horizontal parts

In this step, we want to determine the vertical position
for the center of each dark fringe. Comparing Figs. 9 and
17, one can see that due to the shape of the dark fringes
the remaining segments have a parabolic shape with a
vertical orientation, whose peak indicates the position of
the center of the fringe. Therefore, in order to identify this
center, we detect the peaks in the segments by using a

Fig. 17 Final selection of the segments after the spurious segments
are removed: a before segment removal; b after segment removal. The
removed spurious segments are marked as light blue in the figure. This
figure can be better understood when observed on a screen
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Fig. 18 Selection of the horizontal part of the segments. a Wrong
region—few points. b Correct region—largest number of points

horizontal window to select for each segment the part that
has the largest number of horizontal points. As illustrated
in Fig. 18, when sliding the horizontal window along
the vertical direction, the position that yields the largest
segment corresponds to the location of the peak (within a
certain accuracy given by the window width).

Estimation of central positions

Finally, the center position of each fringe is selected as
the mean of the vertical coordinates of each skeleton pixel
within the horizontal window. If after this step more than
one center position is detected between two consecutive
maximal points manually input, only the one with the
greater number of points is kept. This step is illustrated in
Fig. 19a, and the final result is shown in Fig. 19b.

Inflection points detection

After selecting the correct segments to represent each fringe,
we proceed to the detection of the inflection point of the
image. This section describes the employed procedure.

A final important point for the characterization of the
flow is an inflection point (Fig. 20). As reported by Castro
et al. (2018), this point helps to characterize the geometry of
the experiment and is defined with the maximum retardation
order in the flow, despite not being associated to the
horizontal part of any dark or bright fringe in the images,
as one can see in Fig. 21. In order to estimate this point,
the algorithm described in “Input image enhancement”–
“Post-processing” is applied in the transposed images to
detect the two vertical dark fringes around the inflection
point , and its position is defined as the average of the center
of the two vertical fringes. An example of this detection is
show in Fig. 22.

Fig. 19 Detected positions for each segment. The red X marks in the
center column the vertical coordinates for the segment that has the
largest number of horizontal points, which represents the center for
each dark fringe according to the procedure described in “Estimation
of central positions.” a Result before the elimination of double
detections. b Final result, after the elimination of double detections.
The ambiguous segments, marked as light blue, were also removed.
This figure can be better understood when observed on a screen
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Fig. 20 Inflection points detection

Comparison with other fringe center
detectionmethods

In this section, we will analyze the algorithm performance,
starting from a description of the experimental framework,
followed by a performance assessment to calibrate the
algorithm. The results of the proposed algorithm are first
compared to other methods found in the literature and then
compared to the reference method.

Experimental framework

The algorithm described in “Processing of birefringence
images using mathematical morphology techniques” was
developed in MATLAB© (MATLAB 2012) environment
using morphological function implementations present on
the Image Processing Toolbox. The results were obtained

Fig. 21 Fringe retardation order (k) of sample GPPS1 at 1 mm/s. The
inflection point is reported by Castro et al. (2018) as the one with a
retardation order k = 8 and is related to the geometry of the experiment

using a computer with a Xeon E3-1270 v5 3.6GHz
processor and 32GB of RAM.

The flow-induced birefringence images acquired during
a steady state for two polystyrene samples were presented
in Castro et al. (2018), as was also the determination of
fringes order (k). Images of flow-induced birefringence
analyzed in this work were obtained from a previous
work by Farias et al. (2014), using two samples of
polystyrene, GPPS1 (Mw = 180000 g/mol) and GPPS2
(Mw = 280000 g/mol), in the multipass rheometer (MPR4)
available at the University of Cambridge, Department
of Chemical Engineering and Biotechnology (UK). The
single-pass operation mode was used, which consists of
moving both pistons up or down at a single speed, which
forces the material to flow through the slit die. The slit die

Fig. 22 Example of the detection of the inflection point. The center
of the white contours associated to each vertical fringe is marked as a
cross and the estimated inflection point is marked as a circle
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Fig. 23 Configuration of the
MPR with the birefringence
setup and schematic outline of
slit-die. The polymer flows
upwards along the centerline
represented by the red dashed
line

geometry used in the experiments has a 5-mm length and
1.3-mm width. The width is very small in order to limit the
side effects on the glass. The flow direction through the slit
was upward at different velocities (0.5; 1 and 2 mm/s in the
experiments using GPPS1 sample and 0.2; 0.5 and 1 mm/s
in the experiments using GPPS2 sample).

Optical birefringence set up (light source and monochro-
matic filter, polarizer, quarter wave plates, analyzer and
camera) and schematic outline of slit die geometry are
shown in Fig. 23.

It is important to note that the algorithm proposed here
is not entirely automatic because it requires that, for each
different experiment, an operator inputs a point in any
position inside each bright fringe. The set of point thus
generated, which is shown as the red diamonds in the

example of Fig. 28b, is used for the minima imposition
operation described in “Minima contour detection with
watershed.” In the results that follow, a set of input points
was defined for each experiment and used for all images of
the same experiment.

Performance assessment

In this section, the proposed algorithm is thoroughly
analyzed. In the first experiment, the pre-processing step
described in “Input image enhancement,” which includes
image enhancement and minima imposition, is enabled and
disabled to show its effectiveness. Then, two parameters
present in “Post-processing” have their value adjusted,
namely the threshold that controls the removal of spurious

Fig. 24 Mean square error
(mm2) for several values of the
window width. a Without
pre-processing. b With
pre-processing
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Fig. 25 Mean square error
(mm2) for several values of the
minimum length threshold. a
Without pre-processing. b With
pre-processing

elements (see Fig. 17) and the width of the window
that selects the horizontal part for each segment, which
represents the center of each dark fringes (see Fig. 18).

In order to define an objective evaluation, the measure-
ments obtained by Castro et al. (2018) were considered as a
ground truth, and for each algorithm setup, the mean square
error between the obtained fringe positions and the ground
truth was computed. For this evaluation, only the experi-
ment obtained with the GPPS1 flow at 1 mm/s was used,
since it shows a pattern where the fringes are neither too few
nor too thin.

Determination of the fringe center

As described in “Identification of horizontal parts,” the
detected contours have a shape similar to a noisy parabola
positioned inside the dark fringes, and the center of each
dark fringe is identified by the vertex of this parabola. A
simple way that has been devised to find the position of
the vertex is to use a moving horizontal window, analyzing
for each position the part of the contour that fits entirely
inside this window and identifying the one with the largest
length. In order to do so, we must define the optimal width
of the horizontal window. A window that is too thin may

lead to a false detection due to noise. If it is too wide, the
algorithm is able compensate the noise but it loses precision.
In this experiment, we analyze different window widths and
determine the one that provides the lowest average error for
the algorithm.

Figure 24 shows an evolution of the mean squared error
obtained by the algorithm for several values of the window
width. In the figure, the multiple curves represent the results
for a fixed value of the other parameter, the length that
separates spurious, and accepted elements. In Fig. 24a, the
pre-processing is disabled while in Fig. 24b it is enabled. It
is important to notice the range of the error values, since in
the curves with the pre-processing disabled, the minimum
observed error is higher than the maximum error with the
pre-processing enabled. Comparing only the best results for
each case, the pre-processing step reduces by up to 20 times
the error in the proposed algorithm.

In Fig. 24b, the curves reveal the two cases where the
error tends to be higher: if the window is too restrict,
so it is more likely to contain small peaks in the data,
and too big, so the window contains larger segments that
may not represent the fringe centers. There seems to be a
region for some intermediate values where the error reaches
its minimum and is less sensitive to the variation of this

Fig. 26 Detection rate for
several values of the minimum
length threshold. a Without
pre-processing. b With
pre-processing
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parameter. To determine a compromise in the algorithm
configuration, the window was defined to have a width of 5
pixels.

Removal of spurious elements

In the detected contours, part of the noise is due to
impurities in the experiments, which create undesirable
contours inside the bright fringes. As described in
“Removal of vertical segments,” a post-processing step
separates the contours in segments and removes from the
final detection the ones with a length smaller than a
threshold. There is an optimum value for this threshold.
If it is too big, it is possible that all segments associated
to a fringe are removed and no position estimate can be
provided. In this experiment, we evaluate the impact of
the threshold that removes undesirable segments in the
detection of the fringe centers.

In Fig. 25, one can see the relation between the mean
square error and the minimum segment length for a few
fixed values of the window width. Another important aspect
in this experiment is the detection rate, that is, the amount of
fringes where there is at least one detected segment and the
algorithm can estimate a fringe center. This characteristic is
exemplified in Fig. 26.

Comparing Figs. 25a and 26a, one can see that the
error increases with a bigger threshold. This behavior can
be explained by the fact that without the pre-processing
step, the algorithm creates spurious segments that are
indistinguishable from the true segments (the ones that
follow the fringe pattern), so any attempt to remove wrong
segments also removes the true ones, and the detection rate
drastically falls when the threshold is increased. With the
inclusion of the pre-processing step, a different behavior can
be seen, as shown in Figs. 25b and 26b. With bigger values

for the acceptable segment length, more spurious segments
are removed while still keeping an amount of accepted
segments, since the detection rate shows a smaller decrease,
and the mean square error is in fact reduced. In order to
provide an algorithm able to detect the fringe positions for at
least 95% of the cases with the smallest error, the threshold
value was defined as 5 pixels.

Comparison with other methods

Two other methods were evaluated in comparison with the
proposed method. Those methods were developed to detect
fringes on images originated in different experiments and
were adapted to context of birefringence images.

The method of Farooq et al. (2015) separates the bright
and dark fringes by binarizing the images using a threshold
that can be constant or adaptive, and then applies a
skeletonisation technique to find the central position for
each fringe. Due to impurities in the experiments, the image
has a cracked appearance. A simple constant threshold is
not able to distinguish every bright and dark fringe in the
images, as can be seen in Fig. 27a. However, by manually
selecting two levels of threshold to be used in different
parts of the image, a good compromise between algorithm
performance and model overfitting can be found, as shown
in Fig. 27b.

The works of Yu and Andresen (1994) and Zhang
et al. (2002) described a technique to detect fringes
in light interferometric experiments. First, it estimates a
local orientation map for each pixel (Yu et al. 1994),
and pre-processes the images by applying a directional
median filtering that uses the estimated orientation in
order to remove the noise tangent to fringe orientations
while also keeping sharp transitions perpendicular to the
fringe orientations. Afterwards, the method computes the

Fig. 27 Birefringence image
binarization. a With a constant
threshold. b With two levels of
threshold
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Fig. 28 Contours of the dark
fringes obtained with: a Farooq
et al. (2015) and b Yu and
Andresen (1994) and Zhang
et al. (2002)

directional derivatives of the pre-processed images, also
using the orientation map. Then, it binarizes the directional
derivatives and considers the fringe centers as the edges of
this binarized image, that is, the positions where there is a
fast transition between a positive and a negative gradient.

However, also due to the characteristics of the bire-
fringence images, the estimation of an orientation map is
likely to produce a noisy result, so instead, this imple-
mentation uses only a horizontal median filtering, since it
corresponds to the expected orientation of the fringes in
the center of the images, which is the region of interest

Table 1 Mean square error (mm2) obtained with the proposed method,
the method based on the image derivative (Yu and Andresen 1994;
Zhang et al. 2002) and the method based on image binarization (Farooq
et al. 2015)

Pre-processing Proposed Derivative Binarization

No 0.086 0.029 0.019

Yes 0.013 0.043 0.019

for the detection, and computes only the vertical deriva-
tive to be used in the binarization and detection step. An
example of the implementation of the methods in Farooq
et al. (2015) and Yu and Andresen (1994) and Zhang et al.
(2002) applied to the birefringence images can be seen in
Fig. 28.

The same objective evaluation used to setup and
validate the algorithm is employed in the comparison
with the aforementioned methods. Since those methods
only provide a basic skeleton of the fringe image, no
precise central position is extracted. In order to properly

Table 2 Detection rate obtained with the proposed method, the method
based on the image derivative (Yu and Andresen 1994; Zhang et al.
2002) and the method based on image binarization (Farooq et al. 2015)

Pre-processing Proposed Derivative Binarization

No 0.85 1.00 0.93

Yes 0.95 1.00 0.93
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compare with the proposed method, the post-processing
step described in “Post-processing” and optimized in
“Performance assessment” is also applied.

In Table 1, one can see a comparison of the mean squared
error obtained with each method. For the method of Farooq
et al. (2015), no pre-processing step is defined, so in order
to provide a fair comparison the proposed pre-processing
was also tested with this method. The works of Yu and
Andresen (1994) and of Zhang et al. (2002) already include
a median filtering to enhance the image, and for this reason,
two cases were considered. In the first one, the algorithm
was tested using only the median filter, which is labeled
as no pre-processing in Table 1. In the second one, the
algorithm was tested with the median filter in addition to the
presently proposed pre-processing, which is labeled as with
pre-processing in Table 1.

Table 2 shows the detection rate for the same methods
and configuration. Comparing the performance of the mean
square error and the detection rate, one can see that the
proposed method, with the correct configuration, produces
a result with the lowest error while providing the second-
best detection rate, being better than the binarization method
in both metrics. In addition, while it produces a detection
rate lower than the one of the derivative method, its mean
squared error is twice as small. In addition, one can also
see from the results in Table 1 that the works of Yu and
Andresen (1994) and Zhang et al. (2002) have a loss of
performance in the presence of the pre-processing step.
The reason for this behavior is that, as a by-product of the
minima imposition technique, the resulting image loses its
original local minima, presenting only the imposed minima,
as discussed in “Minima contour detection with watershed.”

Fig. 29 |PSD| as a function of
distance along the centerline
depicted as the red-dashed line
in Fig. 23. a GPPS1 flow at
0.5 mm/s. b GPPS1 flow at
1 mm/s. c GPPS1 flow at
2 mm/s. d GPPS2 flow at
0.2 mm/s. e GPPS2 flow at
0.5 mm/s. f GPPS2 flow at
1 mm/s
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Fig. 30 Standard deviation S as
a function of distance along the
centerline for the sample
GPPS1. The centerline is
depicted as the red-dashed line
in Fig. 23. a Manual method
(GIMP). b Proposed
morphological approach

Comparative evaluation with referencemethod
GIMP

The results obtained using the approach presented in
“Processing of birefringence images using mathematical
morphology techniques” after processing 15 images for
each experiment were compared with those disclosed
in Castro et al. (2018), in which a semi-automatic
methodology based on the GIMP software was proposed.
For this purpose, we chose to consider the flow direction
through the slit at three different velocities (0.5, 1, and
2 mm/s in the experiments using GPPS1 sample and
0.2, 0.5, and 1 mm/s in the experiments using GPPS2
sample). Note that the flow-induced birefringence images
acquired during a steady state for two polystyrene samples
were presented in Castro et al. (2018) together with the
determination of fringe order (k).

Figure 29 shows a comparison for GPPS1 and GPPS2
samples of the measurements obtained with the GIMP
software and also those acquired with the proposed
morphological approach. The values for the principal stress
difference module along the flow centerline, which is
depicted as the red-dashed line in Fig. 23, were calculated
using Eq. 1.

As mentioned previously (Castro et al. 2018; Farias et al.
2014), the flow in the slit die is characterized by two regions:
(i) the inlet in which PSD values reach the maximum and

(ii) the exit region in which the PSD value is zero. These
regions correspond, respectively to the maximum value of k

next to fringe position = 0 mm, which is the spatial region
where molten polymer reaches the geometry channel, and to
the value of k = 0 that corresponds to channel length (fringe
position = 5 mm). In this point, the change in the main flow
direction occurs and consequently, the signal inversion of
the PSD values is observed, justifying the minimum point
of the |PSD| in the value equal to zero (Castro et al. 2018;
Lord et al. 2010). For a visualization of the geometry of the
experiment, one can refer to Fig. 23.

According to the figures, it is possible to observe
that the results obtained with the proposed methodology
presented good agreement with the results obtained with the
GIMP software, and the proposed methodology was able
to determine the points with maximum retardation order,
which are related to the fringe position = 0 mm, for all the
experiments, with the exception of the experiment for the
sample GPPS2 carried out at 0.2 mm/s (Fig. 29d). In this
case, the proposed methodology was not able to properly
detect the fringe k = 8, due to the overlap of fringes k = 7,
and k = 8 in the image.

The standard deviation (S) of the fringe positions for both
techniques is presented in Figs. 30 and 31. It is possible
to observe in Figs. 30b and 31b, which represent the pro-
posed image processing-based approach via mathematical
morphology, a more predictable behavior of the standard

Fig. 31 Standard deviation S as
a function of distance along the
centerline for the sample
GPPS2. The centerline is
depicted as the red-dashed line
in Fig. 23. a Manual method
(GIMP). b Proposed
morphological approach
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deviation. For these cases, the highest values of standard
deviation are between the middle and the exit of the slit,
that is, approximately between fringe position = 2 and
4 mm. Also, experiments with lower velocities, therefore
with larger fringes and a lower number of fringes per image,
show, in general, larger values of standard deviation. On
the other hand, for the GIMP approach, there is no sim-
ple pattern for the standard deviation since it also depends
on subjective factors. These observations suggest that the
morphological approach helps to increase reproducibility of
the results. In addition, the full processing of 15 images,
together with the statistical treatment of the results, takes
around 30 s. With the GIMP software, the processing must
be performed for one image at a time, taking around 8 min
for determination of the dark fringe centers for the 15
images tested.

At this point, it is important to analyze the results more
closely, particularly in the cases of large deviations, where
the values for distance of dark fringe centers are less
accurate. These are observed in the following cases for the
proposed automatic technique:

1. Inflection points for the fringe order
2. Fringes without definition, which is related to image

quality
3. Fringes stretched along the slit-die, a deformation that

happens in reported region between the middle and the
exit of the slit

4. Fringes superimposed, which is the case when two
fringes may appear visually indistinguishable

5. Fringes in the border, when the dark fringe is in the
image border and does not always appear surrounded
by bright fringes

In order to determine whether the observed differences
in fringe positions obtained with the two techniques are
significant or not, a statistical analysis was performed, based
on the f -distribution, aimed at evaluating variances and
unpaired Student’s t distribution (Montgomery and Runger
2013) , considering that there is no dependence between
methodologies. The analyses were done with confidence
level of 95% in the R software (R Development Core Team
2008). In this way, the difference between the average of
the fringe positions (Dx̄) obtained by the GIMP and the
proposed morphological approach, as well as the respective
confidence interval were determined. Figure 32 presents the
results obtained for the experiment carried out at 0.5 mm/s
for GPPS1 sample, in which the numbers 2, 3, 4, 5, 4, 3,
2, 1, 0, 1, 2, 3, and 2 represent the fringe retardation order
(k) indicated in Fig. 33, which is related to an ordering and
counting of the dark fringes. The results indicate that Dx̄ is
very close or equal to zero for all fringes. Additionally, the
calculated confidence interval crosses a region of difference
equal to or close to zero.

The analyses for the experiments performed at 1 and
2 mm/s with GPPS1 sample and at 0.2, 0.5, and 1 mm/s
for the GPPS2 sample can be found in the supplementary
material (http://www02.smt.ufrj.br/eduardo/birefringence/).
There one can also find the detailed measurements with
their respective standard deviations, as well as a list of

Fig. 32 Statistical analysis for
GPPS1 0.5 mm/s based on
Student’s t distribution:
difference between the average
distance of fringe centers
obtained by the manual marking
(GIMP) and the morphological
approach, in function of the
fringe order, together with the
corresponding 95% confidence
interval

http://www02.smt.ufrj.br/~eduardo/birefringence/
http://www02.smt.ufrj.br/~eduardo/birefringence/
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Fig. 33 Fringe retardation order
(k) of sample GPPS1 at
0.5 mm/s (Castro et al. 2018)

occurrences of large deviations in the results. In all cases,
Dx̄ is in a region close to zero for most of the fringes,
showing that in general, the proposed method is able to
provide result consistent with the one given by the GIMP
approach.

Conclusions

In this work, a novel approach to the problem of detecting
the position of dark fringes in flow-induced birefringence
images obtained during the melt flow in the multipass
rheometer was presented and applied for a sample of
polystyrene. The proposed methodology allows fast and
accurate measurements of the dark fringe centers. In
addition, it is an automatic method, which provides the
minimum human intervention in the image processing, in
contrast to the semi-automatic methodology using GIMP
software, presented in previous work, in which the user
must interfere directly in the measurements. The obtained
results have been shown to be consistent with those of
semi-automatic detection using the GIMP software, with the
advantage of a smaller variance of the measurements.

One should also bear in mind that the amount of
time taken to correct those easily identifiable mistakes
of the algorithm is still much smaller than the one
it takes to perform all the measurements using the
GIMP methodology. The obtained results indicate that the
proposed method is a reliable alternative to the manual (and
semi-automatic) methods currently in use, as it is able to
perform the detection of the positions with high confidence
and in a faster way than the alternative methods.

It should be noted that most of the deviation observed
is due to problems in the image acquisition, which causes
some fringes to have a low contrast and also make
consecutive fringes to appear mixed in the recorded image.
This problem can be solved with improvements in the
experiments, such as lens adjustments in which the passage
of polarized light is changed, thus enhancing the quality of
the images, allowing clearer and more defined fringes. It
is important to point out that the technique developed in
this paper is able to provide information about the fringe
positions even in the case where the images are polluted by
impurities, providing an even better performance in higher
quality images. This, in our opinion, is a strong indication
of the potential advantages of the proposed methodology.
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