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A B S T R A C T

This papers deals with the automatic detection and classification of faulty events during the practical operation
of oil and gas wells and lines. The events considered here are part of the publicly available 3W database
developed by Petrobras, the Brazilian oil holding. Seven fault classes are considered, with distinct dynamics
and patterns, as well as several instances of normal operation. A random forest classifier is employed with
different statistical measures to identify each fault type. Three experiments are devised in order to evaluate
the system performance in distinct classification scenarios. An accuracy rate of 94% indicates a successful
performance for the proposed system in detecting real events. Also, the system’s time of detection was on
average 12% of the transient period that precedes the fault steady-state.
. Introduction

Recent advances in data acquisition, transmission, and storage
ave led many companies to develop large databases associated with
heir entire production and management chains. Such databases can
ntegrate several kinds of data acquired from all sorts of sources,
uch as equipment sensors, economic series, human resources, and so
n (Segaran and Hammerbacher, 2009; Hilbert and López, 2011). This
rend becomes a two-edged knife when the amount of data surpasses
ts processing capability, making it difficult to extract useful informa-
ion from it. Recent developments in the fields of machine learning,
omputational intelligence, and data mining, however, have devised
fficient algorithms for processing large and diverse databases, capable
f providing meaningful insights from underlying patterns (Bishop,
006; Theodoridis and Koutroumbas, 2009; Abu-Mostafa et al., 2012).

Condition-based monitoring (CBM) is a strategy that verifies the
rue condition of a system or equipment during its continuous op-
ration. Thus, in contrast to planned and preventive maintenance,
BM can efficiently anticipate production chain problems. CBM has
he following advantages (Jardine et al., 2006): it does not interrupt
roduction to evaluate equipment behavior; it promotes a safer envi-
onment for production chain workers; it minimizes costs related to

∗ Corresponding author.

activity planning. According to Jardine et al. (2006), a CBM system
may be structured into three main phases: data acquisition, data pro-
cessing, and maintenance decision making. The first phase is usually
the CBM bottleneck, since it requires an existing infrastructure for the
acquisition of reliable data. In the second phase, the data is received
and processed in order to better suit the next stage (Witten et al., 2016).
The third and final CBM stage is the phase in which most researchers
spend their time pursuing innovative solutions (Liu et al., 2015; Grall
et al., 2002).

Machine learning is the most explored approach for
decision-making. For instance, in this context, Yam et al. (2001) used
recurrent neural networks to develop an intelligent predictive decision
support system for CBM, where Xavier and Seixas (2018) applied a sim-
ilar algorithm to analyze a chemical process. Widodo and Yang (2007)
and Helmy et al. (2010) also used machine learning approaches based
on support vector machines to model the decision-making process.

This work proposes a CBM system for oil and gas (O&G) wells
and production/service lines that acts as a support tool to decision-
making systems. The proposed system attempts to detect and identify
an anomalous behavior as early as possible, so the operator, given
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the fault inherent criticality, can intervene accordingly to reduce the
associated production losses. The work has been developed using a
database developed by Petrobras comprising about 2000 events. They
describe the normal operation (Class 0 in this work) and eight different
types of fault (Classes 1 to 8) in well operation (Vargas et al., 2019). Our
CBM system is an ensemble of machine learning techniques, from the
pre-processing phase until the decision-making. The proposed system
starts by extracting nine different statistical features from each avail-
able tag, and then performs a principal component analysis (Bishop,
2006) to reduce the problem dimension as well as the associated com-
putational complexity. This is followed by a random forest classifier,
that is used to detect and classify the faulty conditions, aided by a
Bayesian approach (Snoek et al., 2012) employed to tune the classifier
hyperparameters.

Three different classification scenarios are devised: fault detector,
single-fault detector/classifier, and multi-fault classifier. Results in each
experiment reach up to 90% of system accuracy, indicating its ability
to detect and classify most of the fault types properly. In order to
introduce its technical contributions, this paper is organized as follows:
Section 2 describes the general problem of detecting faulty behaviors
in O&G wells and production/service lines; Section 3 introduces the
proposed CBM system and Section 4 details the database employed in
this work, the so-called 3 W database; Sections 5 and 6 present the
experimental methodology and results, respectively, detailing and ana-
lyzing the performance of the proposed system in the problem at hand.
Finally, Section 7 closes the paper emphasizing its main contributions.

2. Problem description

The production of O&G from underground reservoirs involves chem-
ical and mechanical processes that affect well drilling and operation.
Many of these processes may eventually cause a problem with the
well, resulting in a decrease in production or in equipment failure. The
majority of serious problems can be avoided or postponed by preventive
maintenance techniques, or recognized at an early stage by means
of regular analysis of production rates, fluids, and the mechanical
condition of the well. Such practices can prevent expensive workovers
that may be necessary to restore well production and can also prevent
total well losses.

2.1. O&G general fault assessment

Since 2010, Petrobras has been developing a large database aimed
at describing all of its O&G losses within its operational unit in Rio
de Janeiro (OU-Rio). The so-called loss integrated management (LIM)
platform congregates several complementary databases describing a
production loss by a series of up to 85 different features such as:
initial/final loss date, platform, affected equipment, equipment oper-
ator, related sensor tags, original cause, secondary cause, estimated
loss, required initial/secondary actions, subsequent activities, and so
on (Santos et al., 2018a,b). Fig. 1, for instance, shows the relative
cumulative volume loss and number of failures between 2014 and 2017
of Petrobras OU-Rio which comprises 298 production/injection wells.
From this figure, one can observe the significant amount of loss (23.8%)
caused by reservoir- and well-related issues. A breakdown of these
losses is depicted in Fig. 2, indicating the main origins of the faults
associated with such losses.

2.2. Well/Line-related fault description

In mid-2017, Petrobras conceived a project, entitled monitoring of
specialized alarms, to develop a new automated system for detecting
and classifying eight types of undesirable events in offshore naturally
flowing wells (see the 3 W database described in Section 4). The
selected types of events are (Vargas et al., 2019):
2

g

Class 1 – Abrupt Increase of Basic Sediment and Water (BSW):
The BSW is the ratio between water and sediment flow rate and the liq-
uid flow rate, both measured under normal temperature and pressure,
providing an insight on the amount of water in the produced oil. During
the life cycle of a well, it is expected that the BSW increases due to
water production from either the natural reservoir aquifer or artificial
injection. An abrupt increase of BSW, however, is often associated with
multiple problems related to flow assurance, lower oil production, oil
lifting, incrustation, and so on. Early identification of this type of event
helps to avoid these undesired conditions.

Class 2 – Spurious Closure of the Downhole Safety Valve
(DHSV): The DHSV is installed in the production tubing of wells to
ensure their closure in emergency scenarios or physical disconnection.
Sometimes the closure function fails in a spurious manner without
any indication on the surface. Production losses can be avoided if
this spurious closure is detected as precociously as possible, allowing
corrective operational procedures at an early stage.

Class 3 – Severe Slugging: Stratified gas–liquid flow, which occurs
in scenarios of low liquid and gas flow rate, and a declined production
line tend to cause liquid accumulation at the bottom of the riser, which
blocks the gas flow until sufficient upstream pressure causes a surge of
liquid and gas. After this sudden surge, some of the liquid in the riser
returns to the base blocking the flow once again thus restarting the
cycle. This transient cyclic phenomenon is called severe slugging and,
depending on its periodicity and intensity, may become critical as it
leads to stress or even damage to well equipment. Early detection of
this type of event allows preemptive actions to reverse the situation
before it becomes critical.

Class 4 – Flow Instability: This type of undesirable event is also
characterized by spurious surges of liquid and gas, as is the case of
severe slugging, with the difference that it less intense and does not
involve the complete cycle of liquid blockage followed by a gas surge.
If not dealt with accordingly, flow instability can evolve to severe
slugging.

Class 5 – Rapid Productivity Loss: Productivity of a naturally
flowing well (as opposed to fluid injected wells) depends on several
conditions. When the system energy is less than the minimum necessary
to overcome energy loss, for instance, the oil flow slows or even
stops. Therefore, early detection of this undesired condition reduces
production losses.

Class 6 – Quick Restriction in the Production Choke (PCK): The
CK installed in the production unit is responsible for controlling the
ell from the surface. Manual operation of this type of valve can lead

o unwanted quick restrictions, affecting the oil production directly.
Class 7 – Scaling in PCK: Another PCK-related undesirable event

s the scaling due to inorganic deposits along time, which can severely
educe oil production. Early identification of this type of event is also
esired, as special actions can be taken, such as injection of scale
nhibitors, to avoid additional production losses.

Class 8 – Hydrate in Production Line: As shown in Fig. 2, the
resence of hydrate in wells and in production/injection lines is one
f the biggest problems in the O&G industry, including Petrobras.
ydrates are crystalline compounds, resembling ice in appearance,

ormed by the reaction of natural gas to water. Early detection of this
ndesirable event means avoiding production losses for long periods,
s unblocking production lines is costly and sometimes a long process.

During the well operation, it is possible that these faults interact
ith each other. For example, two or more faults can coincide, for

nstance, a Spurious Closure of DHSV (Class 2) suddenly occurs during
Scaling in the PCK (Class 7), which is a very slow event. In this case,

he scaling should be detected before the closure occurs; otherwise, it
ould be impossible to detect it until the production restarts.

It is also possible that a fault triggers another fault from a differ-
nt class. For instance, Flow Instability may precede Severe Slugging
ecause these two faults often occur in scenarios of low liquid and

as flowrates and wavy flowlines. When the well starts to oscillate,
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Fig. 1. Breakdown of cumulative oil-volume loss (blue bars) and corresponding number of failures (green bars) between 2014 and 2017 in Petrobras OU-Rio for different production
systems. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Breakdown of cumulative oil-volume loss (blue bars) and corresponding number of failures (green bars) between 2014 and 2017 in Petrobras OU-Rio for different fault
auses. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
epending on the line geometry and the flow characteristics, this
nstability can evolve to a more dangerous scenario of severe slugging.

Also, Severe Slugging (Class 3) and Flow Instability (Class 4) can
e caused by faults related to partial flow area blockage, such as Rapid
roduction Loss (Class 5), Scaling and Quick Restriction in PCK (Class
), and Hydrate in Production Line (Class 8). All these events may cause
reduction of the production flowrate without completely stopping the
ell production, leading to slugging and instability.

In this paper, a CBM system is proposed for automatically detecting
nd classifying the above event types using machine learning tech-
iques. The data-driven approach learns underlying patterns during
aulty well operations and identifies such anomalous behaviors in
ubsequent system operations, as detailed in the following section.

. System overview

The proposed system is represented in Fig. 3, which shows the
ata flow starting from its raw version all the way down to the sys-
em classification output, passing through the feature extraction, data
ransformation, and classification modeling stages. The first two blocks
xtract information in a compact form, whereas the last block associates
he classification labels with the related characteristics according to the
ask at hand. Details of each system stage are provided in the three
nsuing subsections.

Every system block was implemented using Python, which has be-
ome one of the standard programming languages for machine learning
lgorithms, due to its readability, growing community, and available
ibraries. In particular, in this work, we use two of these major libraries:
andas (McKinney, 2010), for data analysis, and Scikit-Learn (Pe-
3

regosa et al., 2011), for handling the basic algorithms.
3.1. Feature extraction

Feature extraction is commonly concerned with highlighting impor-
tant information to help the classification task. In the proposed system
we process the raw input data from the available tags, all collected
at a rate of one sample per second, and extract 𝑛𝑓 features from each
𝑁-sample data window for each tag. Given an 𝑁-sample tag window
𝐱 = [𝑥1, 𝑥2,… , 𝑥𝑁 ]𝑇 , the 𝑛𝑓 = 9 extracted features in the proposed
system are the following statistical measurements:

• Mean value:

𝜇 = 1
𝑁

𝑁
∑

𝑖=1
𝑥𝑖; (1)

• Standard deviation:

𝜎 =

√

√

√

√
1

𝑁 − 1

𝑁
∑

𝑖=1
(𝑥𝑖 − 𝜇)2, (2)

which provides information on how the data is spread around its
mean;

• Skewness: The third standardized moment of a random vari-
able (Kokoska and Zwillinger, 1999),

𝑠𝑘 =
𝐸[(𝑋 − 𝜇)3]

(𝐸[(𝑋 − 𝜇)2])
3
2

, (3)

quantifies the asymmetry of the given data distribution: 𝑠𝑘 = 0
stands for a symmetric distribution, where the mean is equal to
the median;

• Kurtosis: The fourth standardized moment of a random vari-
able (Decarlo, 1997),

𝑘 =
𝐸[(𝑋 − 𝜇)4]

− 3, (4)

(𝐸[(𝑋 − 𝜇)2])2
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Fig. 3. Block diagram of the proposed CBM system for O&G wells and production/injection lines.
measures the tails of the distribution, which are related to the
presence of outliers. Positive and negative kurtosis indicate
heavy-tailed and light-tailed distributions, respectively.

• 5-number summary: The last five features are given by the
minimum, maximum, median, and first and third quartiles values
of the data window (Hoaglin and Mosteller, 2000). The minimum
and maximum values provide the range of the data distribution
within a given window, the median is the center of the distribu-
tion, and the first and third quartiles show how the data is spread
within its extremes.

In summary, the feature-extraction block receives an R𝑀×𝑛 data
matrix, with 𝑀 time samples of 𝑛 input tags, and transforms it into
an R𝑚×𝑛𝑓 matrix, where 𝑚 = ⌊

𝑀−𝑁
𝑠 ⌋ is the total number of 𝑁-sample

ata windows, 𝑠 denotes the shift in samples between two consecutive
indows, and 𝑛𝑓 = 9 is the number of features extracted from each
ata window.

.2. Data transformation

The concept of data transformation is to represent data features
n a more appropriate space. In our context, its purpose is twofold.
irst, it avoids range divergence among the extracted features. Second,
t mitigates the ‘‘curse of dimensionality’’ problem, which means that
lthough high dimensionality is expected to provide more information
rom the data, it also affects negatively its discriminative capability (Ag-
arwal et al., 2001). The first goal is achieved by performing 𝑧-score
ormalization on the data, and the second one by employing principal
omponent analysis (PCA) on the result of the 𝑧-score normalization.

The 𝑧-score or standardized normalization (Feng et al., 2014) tends
o equalize the features ranges and is performed as follows:

𝑖 =
𝑋𝑖

𝑓 − 𝐸[𝑋𝑖
𝑓 ]

𝜎𝑓
, (5)

here 𝑋𝑖
𝑓 is a random variable representing one of our data features,

𝑓 is its standard deviation, and 𝑍 𝑖 is the normalized version of 𝑋𝑖
𝑓 .

PCA (Bishop, 2006) is a technique for reducing the data dimension-
lity while keeping most of its energy, that is in general equivalent to
eep most of its representative information. Assuming a centered data
atrix 𝐗𝑓 = [𝐱1𝑓 ,… , 𝐱𝑚𝑓 ]

𝑇 ∈ R𝑚×𝑛𝑓 , with a sample covariance matrix
= (𝑚 − 1)−1𝐗𝑓𝐗𝑇

𝑓 , the PCA formulation is given by

𝐒 = Λ𝐕, (6)

here Λ = 𝑑𝑖𝑎𝑔(𝜆1,… , 𝜆𝑚) is the diagonal matrix of eigenvalues 𝜆𝑖
f 𝐒 and 𝐕 = [𝐯1,… , 𝐯𝑚]𝑇 is the orthonormal matrix of eigenvectors
𝑖, also known as principal components, of 𝐒. The PCA transformation
𝑚
𝑓 = 𝐕𝐗𝑓 performs a data projection into a new set of coordinates

hat are sorted in decreasing order of variance directions (i.e., 𝐯1 and
𝑚 represent the maximum-variance and minimum-variance directions,
espectively).

The dimensionality reduction consists in selecting only a small
umber 𝑝 < 𝑚 of principal components 𝐕𝑝 = [𝐯1,… , 𝐯𝑝]𝑇 , which
etain a large fraction (99%, for instance) of the original data informa-
ion/energy, thus reducing the feature matrix dimensions from R𝑚×𝑛𝑓

o R𝑝×𝑛𝑓 .
4

3.3. Classification modeling

In the past few years, deep neural networks (DNN) have been
applied in several O&G-related problems, including failure classifica-
tion during drilling operations (Ambrus et al., 2019). However, when
compared to other ML algorithms, DNNs have several disadvantages
such as the requirement of a large and adequately labeled dataset, the
vast choices for the hyperparameter tuning (number of layers, number
of neurons in each layer, type of nonlinear activation function, and so
on), the complexity of its training procedure (due to a large number
of internal coefficients), and its sensitivity to outliers or missing input
data.

In this paper, we adopted the random forest (Breiman, 2001) al-
gorithm, which is a supervised machine-learning approach suitable
for both binary and multiclass problems such as the ones considered
here. The random forest technique has already been applied to many
distinct problems, such as gene selection (Díaz-Uriarte and Alvarez de
Andrés, 2006), remote sensing (Belgiu and Drăgut, 2016), prediction of
proteins (Jia et al., 2016), and so on. The main characteristics of this
algorithm are:

• it is robust to noise and outliers;
• it is faster than bagging and boosting methods (Bishop, 2006;

Abu-Mostafa et al., 2012);
• it can provide useful error information (strength, correlation, and

importance of the variable);
• it is simple to deploy (as it has a small number of hyperparameters

to be tuned);
• it is easy to parallelize;
• it can handle missing data.

The random forest algorithm is an ensemble of decision trees,
known as weak learners, for having low computational cost and low
discriminative capabilities. Training a random forest classifier is equiv-
alent to training several independent decision trees. When training
each of these trees, distinct subsets of the input data and the extracted
features are randomly drawn, so that each tree learns from a differ-
ent partition of the data, as depicted in Fig. 4. Properly combined,
these trees can generate strong classifiers using the idea of wisdom of
the masses (Bishop, 2006; Theodoridis and Koutroumbas, 2009; Abu-
Mostafa et al., 2012). After the learning procedure a new input data
sample is labeled as the class that the majority of the decision tree
classifiers voted for.

The vote distribution of all trees within a random forest can be
interpreted as a probabilistic distribution for the system output. For
example, if we use 100 trees to analyze a given input sample, which
80 trees estimate as Class 0 and the rest as Class 1, we can say that
the classifier has 80% and 20% of certainty that this sample belongs
to Classes 0 or 1, respectively. This property can be used to establish a
threshold 𝜏𝑖 for each output class, with a given sample only belonging
to that class if the certainty is above the corresponding threshold. In
the context of decision-making systems, these classification thresholds
allow one to balance the number of false positives and undetected faults
according to the system priority: increasing the threshold values lowers
the number of fault misclassifications at the cost of a reduction in the

fault detection rates.
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Fig. 4. General schematic diagram of the random forest classifier.
able 1
ist of tags in 3 W database, including tag names, descriptions, and measuring units.
Name Description Unit

P-PDG Pressure at permanent downhole gauge (PDG) Pa
P-TPT Pressure at temperature/pressure transducer (TPT) Pa
T-TPT Temperature at temperature/pressure transducer (TPT) ◦C
P-MON-CKP Pressure upstream of production choke (CKP) Pa
T-JUS-CKP Temperature downstream of production choke (CKP) ◦C
P-JUS-CKGL Pressure downstream of gas lift choke (CKGL) Pa
T-JUS-CKGL Temperature downstream of gas lift choke (CKGL) ◦C
QGL Gas lift flow rate m3/s

4. The 3 W database

The development of the proposed machine-learning CBM system
was based on the 3 W dataset introduced in Vargas et al. (2019) (see
also Sections 1 and 2). This database is composed by approximately
2000 operational events representing different states of the well, vary-
ng from normal operation (Class 0) to the eight distinct faults (Classes
to 8) described in Section 2. Each event is a time-series data composed
y 𝑛 = 8 tags acquired by 8 different sensors, chosen according to their
vailability and relevance to the faults at hand, as given in Table 1.

Three event types are included in the 3 W database: real, simulated,
nd sketched.1 Real events are described by sensor data acquired
hrough the PI System (OSI Soft, 2019) during real well operations.
ignals of simulated origin were obtained through the OLGA sys-
em (Schlumberger, 2020), vastly used by the industry for dynamic
ultiphase flow simulation. Sketched signals were created through a

ool designed by 3 W database creators, which uses expert knowledge
o sketch the profile of a particular unwanted event. Table 2 contains
he quantitative description of 3 W dataset per event type.

When building the 3 W database, besides the faulty periods, the
uthors have indicated for each event instance a period when the
amples are not faulty (referred to as normal) and a period of fault
ransient before the actual steady-state fault consolidation, as depicted
n Fig. 5. Such annotation procedure allows one to detect a given
ault during its initial transient stage. This is the behavior intended

1 In Vargas et al. (2019), the authors named the sketched events as
and-drawn events.
5

Table 2
Quantitative description of 3W database per event type.

Class Description Real Simulated Sketched Total

0 Normal 597 0 0 597
1 Abrupt BSW Increase 5 114 10 129
2 Spurious DHSV Closure 22 16 0 38
3 Severe Slugging 32 74 0 106
4 Flow Instability 344 0 0 344
5 Rapid Productivity Loss 12 439 0 451
6 Quick PCK Restriction 6 215 0 221
7 Scaling in PCK 4 0 10 14
8 Hydrate in Prod. Line 3 81 0 84

Total 1025 939 20 1984

in the proposed system, in order to minimize maintenance costs and
production losses.

5. Experimental methodology

In this work, three experiments were devised in order to evaluate
and understand the capability of the proposed CBM system:

Experiment 1 — One-class classifier: This scheme consists of
a single classifier to discriminate only between normal and faulty
operations. Therefore, in this case, all faults are combined into a unique
class which is compared against the normal-operation class.

Experiment 2 – Multiple binary classifiers: This strategy consists
in designing several classifiers, each one specialized in discriminating
an individual fault against the normal-operation mode. In this strategy,
one can infer which faults are the hardest to be identified, as opposed
to the previous scheme which analyzes the faulty conditions altogether
in a single class.

Experiment 3 – Single multiclass classifier: This scheme employs
a single system to identify all different classes individually. In this case,
each class (normal operation or any specific fault) is discriminated
against all the remaining classes, thus providing more information
to the system operator but posing a much harder problem to the
machine-learning algorithm.

As described in Section 4, each annotated event in the 3 W dataset
has three phases: normal, transient, and steady state. Our main research
goal was building a CBM system capable of anticipating a fault as much
as possible, in order to give as much time as possible for the operator to
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Fig. 5. Example of (normalized) tag values of a Class 2 event where the background color indicates the normal (green), transient (yellow), and faulty (red) stages. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 3
Number of instances in both training and test (between parenthesis) sets employed in
the development of the proposed CBM system. Notice the absence of any Class 7 and
sketched events.

Class Description Real Simulated Total

0 Normal 468(129) 0 468(129)
1 Abrupt BSW Increase 3(2) 78(36) 81(38)
2 Spurious DHSV Closure 15(7) 11(5) 26(12)
3 Severe Slugging 22(10) 55(19) 77(29)
4 Flow Instability 260(84) 0 260(84)
5 Rapid Productivity Loss 8(4) 340(99) 348(103)
6 Quick PCK Restriction 4(2) 170(45) 174(47)
8 Hydrate in Prod. Line 0(3) 56(25) 56(28)

Total 780(241) 710(229) 1490(470)

intervene and minimize the losses. For this reason, in all experiments
we have opted to use only the normal and transient phases of the event
to train the random forest classifier. Also, for a more realistic scenario,
the sketched instances were ignored and Class 7 was disregarded as it is
under-represented in the 3 W database. After all these considerations,
the 3 W database was split into the training and test sets, following a
70%/30% ratio, as indicated in Table 3.

5.1. Training, validation, and test

Building a system with a wide variety of hyperparameters demands
a robust and reliable training routine. In this work, we performed a
cross-validation (Hastie et al., 2001) using 𝑘 = 5 folds. In order to
avoid contamination during this procedure, all samples of a given event
belong to the same fold. Also, we kept the same class proportions in the
training set throughout every cross-validation iteration.

In our experiments, we have considered a hyperparameter to evalu-
ate the amount of balance between normal (including 𝑛0 samples from
Class 0 and 𝑛N samples from the initial normal phase in the faulty
instances) and faulty samples. We refer to this parameter as 𝑏, and,
given 𝑛0 and 𝑛N, we have 𝑏 = 𝑛0∕𝑛N. So, the total number of normal
and faulty samples used during training becomes

𝑛normal = 𝑛faulty = (𝑏 + 1)𝑛N. (7)

Even though 𝑏 is not mandatory when training a random forest
classifier, incorporating it to our hyperparameter search enables us
to increase the performance on the samples from the initial normal
phase in the faulty instances. Increasing 𝑏 makes 𝑛N less relevant in
comparison to 𝑛faulty, feeding the model with less information about
those 𝑛 samples.
6

N

Many hyperparameters have a direct impact on the system architec-
ture, and thus can influence its overall performance. In the proposed
system, for instance, we considered, for the PCA stage, the minimum
number of components that guarantee a 99% threshold for the accumu-
lated energy. A fixed sliding window step of 𝑠 = 50 samples was also
employed.

The strategy applied to assess the best set of the remaining hy-
perparameters was a combination of the traditional grid search and
a Bayesian optimization method. The Bayesian method applied here
(Snoek et al., 2012) is a non-convex optimization algorithm that sam-
ples the objective function according to a Gaussian process. In each
optimization iteration, the algorithm considers all past observations to
evaluate which parameter regions are worth exploring, thus narrow-
ing the hyperparameter search space following a probabilistic-based
strategy.

For choosing the sliding window size and the balance ratio, we
performed grid search using the following sets of values: 𝑀 = {100, 200,
300,… , 900, 1000} and 𝑏 = {1, 2, 3, 4, 5}. As for the number of trees 𝑁𝑡
and the maximum depth 𝑀𝑑 of each tree in the random forest algo-
rithm, we applied 50 iterations of a non-convex optimization algorithm
based on Bayesian sampling of the objective function, as described
in Snoek et al. (2012). The following parameter ranges have been used:
50 ≤ 𝑁𝑡 ≤ 250 and 5 ≤ 𝑀𝑑 ≤ 70.

5.2. Metrics employed for performance assessment

In this work we evaluate the classifier models through three differ-
ent metrics:

• Accuracy (ACC): considering all normal and faulty samples, the
ACC can be computed as:

ACC = 𝑇𝑃 + 𝑇𝑁
𝑛total

, (8)

where 𝑇𝑃 and 𝑇𝑁 are respectively the number of true positives
and true negatives, in samples, and 𝑛total is the overall number of
samples;

• Faulty-normal accuracy (FNACC): is the accuracy computed when
considering only the normal samples preceding a faulty instance;

• Real faulty-normal accuracy (RFNACC): is the accuracy computed
when considering only the normal samples preceding a real faulty
instance.

While the standard ACC addresses the overall model performance, it
does not evaluate its capability of discriminating between the transient
phases in the faulty events and the normal samples preceding them.
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Table 4
Characterization of best classifiers in Experiment 1, each one according to a specific
accuracy metric, along their validation performances: window length 𝑀 , normal-class
alance ratio 𝑏, random forest number of trees 𝑁𝑡, and maximum tree depth 𝑀𝑑 .
Model 𝑀 𝑏 𝑁𝑡 𝑀𝑑 ACC FNACC RFNACC

1.1 700 5 179 70 0.986 0.935 0.660
1.2 600 1 86 53 0.979 0.965 0.733
1.3 500 2 118 38 0.983 0.961 0.773

Table 5
Model 1.3 test accuracy results for each separate sample type, including simulated/real
events. The empty entry indicates the absence of data for that particular event type.

Event Class 0 Initial normal Transient Steady-State Overall

Simulated – 0.990 0.995 0.958 0.971
Real 0.995 0.673 0.822 0.972 0.971

Overall 0.995 0.938 0.982 0.960 0.971

Therefore, in order to assess the system false-alarm rate, the FNACC
and RFNACC are more indicated, with the later proving insight only of
the performance for real faulty events.

6. Experimental results and discussion

In this section, we present the results for all three classification
strategies described in Section 5. This provides a comprehensive assess-
ment of the final system performance, under different fault-detection
scenarios.

6.1. Experiment 1

After evaluating 2500 different binary models (following 50 runs of
the Bayesian optimizer, for ten different values of window size 𝑀 and
five values of balance ratio 𝑏), the best classifiers according to the three
distinct evaluation metrics are shown in Table 4, along their average
validation performance.

For the evaluated configurations, we may state that larger values of
𝑏 are associated to larger values of ACC and smaller values of RFACCC,
as depicted in Fig. 6. This happens because a larger 𝑏 leads to an
increased Class 0 sample representation in comparison to the normal-
phase samples preceding faults in the training datasets. From Fig. 6, one
may also notice that the window length 𝑀 and the number of trees 𝑁𝑡
do not have a strong impact on the final results, whereas the maximum
tree depth 𝑀𝑑 may hinder the final performance in this experiment if
one chooses 𝑀𝑑 < 15.

From a practical perspective, analyzing the model performance in
the real instances is far more critical than analyzing its performance in
the simulated ones. Moreover, the model must avoid false positives,
as each time this happens, the operator loses confidence in using
the system. For these reasons, we chose to analyze Model 1.3 test
performance. The breakdown of the test result is shown in Table 5,
including its performance in classifying the steady-state phase of the
faults (which were not used in training).

Although Model 1.3 was able to reach a very large overall accuracy
of ACC = 0.971, Table 5 results show its difficulty in detecting properly
the normal samples preceding faults in real events, what may lead to
an undesired large number of false alarms. One of the possible causes
for this poor behavior is the system difficulty in modeling the distinct
dynamics of all different faults combined into a single class. The next
experiment avoids this issue by designing individual classifiers for each
7

separate fault.
Table 6
Experiment 2 test results for each classifier model and for each fault type (Classes 1
to 8, except Class 7). Empty entries indicate the absence of data for that particular
event type. The models are named as 1.X_Y, where X corresponds to the model chosen
in Experiment 1 and Y to the fault class index.

Fault class Model ACC FNACC RFNACC

1 1.1_1 0.992 0.932 0.170
1 1.2_1 0.994 0.975 0.704
1 1.3_1 0.994 0.982 0.787

2 1.1_2 0.999 0.994 0.992
2 1.2_2 0.998 0.985 0.970
2 1.3_2 0.998 0.981 0.963

3 1.1_3 1.000 – –
3 1.2_3 1.000 – –
3 1.3_3 1.000 – –

4 1.1_4 0.990 – –
4 1.2_4 0.989 – –
4 1.3_4 0.989 – –

5 1.1_5 0.984 – 0.503
5 1.2_5 0.962 – 0.965
5 1.3_5 0.968 – 0.875

6 1.1_6 0.966 0.976 0.999
6 1.2_6 0.963 0.967 0.923
6 1.3_6 0.962 0.977 1.000

8 1.1_8 0.969 0.994 1.000
8 1.2_8 0.968 0.998 1.000
8 1.3_8 0.969 0.992 1.000

Table 7
Characterization of best classifiers in Experiment 3, each one according to a specific
accuracy metric, along their validation performances: window length 𝑀 , normal-class
balance ratio 𝑏, random forest number of trees 𝑁𝑡, and maximum tree depth 𝑀𝑑 .

Model 𝑀 𝑏 𝑁𝑡 𝑀𝑑 ACC FNACC RFNACC

3.1 500 5 102 24 0.973 0.936 0.515
3.2 400 1 86 27 0.962 0.963 0.715
3.3 800 2 238 30 0.970 0.962 0.719

6.2. Experiment 2

In this experiment, we select the three configuration models chosen
in the previous experiment (that optimize each of the three distinct
performance measures), as given in Table 4, and retrain them under
the new circumstances. In this case, we use a different classifier to
distinguish between the normal and faulty operations for each fault
type. Table 6 summarizes all the test results for each model and for each
fault type (Classes 1 to 8, except Class 7). As one can notice, in general,
Models 1, 2 and 3 yield larger ACC, FNACC, and RFNACC values, as
each model tends to prioritize each of these metrics, respectively.

These results show that the proposed system can properly detect
and classify all faults, particularly the ones of Classes 2, 3, 4, 6, and
8, where the accuracy levels reached 0.9 or higher for every metric.
Even Classes 1 and 5 yielded good accuracy values but presented lower
RFNACC when compared to other classes.

This experiment shows that the developed system can identify prop-
erly all individual faults against the normal operation, even when using
the same model parameters for all classes. As pointed out in Section 2,
different faults can occur at the same time or even evolve to other
fault types. Therefore, in the next experiment, we tackle these scenarios
altogether using a multiclass strategy.

6.3. Experiment 3

In this scenario, a new hyperparameter search for the multiclass
system was performed considering the same ranges explored in Ex-
periment 1. Table 7 brings the results for the three system models

considering the different accuracy metrics as before.
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Fig. 6. ACC × RFACC relationship for all 2500 classifier configurations evaluated in Experiment 1, indicating that larger balance ratios 𝑏 correspond to larger ACC and smaller
RFACC values.
When comparing Tables 4 and 7, one readily notices the similar
performances achieved in each case, despite the different classification
problem. This can be explained by the difficulty posed in Experiment 1
for grouping all fault types into a single class, not respecting their
distinct natures and dynamics, what can be inferred from the results
obtained in Experiment 2.

A breakdown of all classification test results obtained by Model 3.3
is provided in Table 8. These results correspond to an overall system
accuracy of 0.94 and excellent classification rates specially for Classes
3, 4, 5, and 6.

We can also notice that classes with less samples have worst per-
formances, as less data hinders the learning process during the system
training. This culminates in Class 8, which had no real samples in the
training set and presented the lowest test accuracy, indicating that the
simulated instances do not emulate properly the real cases. To verify
this hypothesis, an experiment was conducted where Model 3.3 was
retrained with the number of Class-4 events reduced to only 10% of the
available instances. In that scenario, the overall test accuracy dropped
to 92.3% and the accuracy within the Class 4 dropped from 95.5% to
only 51.4%, as explained above.

Also, an overall confusion matrix is shown in Fig. 7, which shows
that the model successfully identifies almost all fault cases. The mis-
classification of type-8 into type-3 faults, as seen in this matrix, can be
explained by the fact that severe slugging (Class 3) often results from
hydrate in the production line (Class 8), which is an example of flow
area blockage, as mentioned in the end of Section 2

These error patterns may be mitigated in a real scenario by provid-
ing additional side information to the system operators, thus enabling
them to sort out the system output based on their own practical
knowledge.

6.4. Event-based assessment

Regarding the system operating in a real scenario, its main goal
is detecting an event as soon as possible despite misclassifying some
time samples. Therefore, the goal of this subsection is to analyze the
performance of Model 3.3, which focuses on real events, at the event
level.

We consider that an event is correctly detected and classified if
the model obtains an accuracy rate higher than a given threshold on
the samples of that particular event. In this paper, we have opted for
a conservative accuracy rate of 0.9 at the sample level to consider
an event properly classified. In Table 9, we present the classification
results for each fault type, discriminating the number of correctly
classified events, for each event phase. Even though the classifier was
8

not trained with steady-state samples, we used Model 3.3 to predict
Table 8
Model 3.3 test accuracy results for each separate sample type, including simulated/real
events. Empty entries indicate the absence of data for that particular event type.

Event Type Initial normal Transient Steady-State Overall

Class 0 Real – – – 0.994

Class 1 Real 0.719 0.454 0.000 0.508
Simulated 1.000 0.996 0.944 0.978

Class 2 Real 0.982 0.882 0.817 0.888
Simulated 0.978 0.849 0.035 0.234

Class 3 Real – – 0.791 0.791
Simulated – – 0.956 0.956

Class 4 Real – – 0.954 0.954
Simulated – – – –

Class 5 Real 0.443 0.953 – 0.833
Simulated – 0.997 0.940 0.949

Class 6 Real 0.832 0.153 0.146 0.710
Simulated 0.994 0.983 0.873 0.908

Class 8 Real 0.000 0.000 0.000 0.000
Simulated 0.998 0.985 1.000 0.989

Overall Real 0.615 0.511 0.901 0.930
Simulated 0.998 0.992 0.918 0.944

Overall – 0.934 0.955 0.916 0.940

Table 9
Event-level successful detection/classification results (and total number of events
between parenthesis) for each event phase and fault class. Column ‘‘All’’ includes the
events where the model detected the fault during its transient phase or during the
steady-state period, and correctly identified the initial normal phase preceding the fault.
Blank entries indicate lack of particular data in 3 W dataset. The classifier used was
the one of the model 3.3.

Class Initial normal Transient Steady-state All

0 127(129) – – –
1 37 (38) 36 (38) 30 (38) 36 (38)
2 10 (12) 8 (12) 1 (9) 7 (12)
3 – – 23 (29) –
4 – – 74 (84) –
5 1 (4) 99 (103) 85 (101) 0 (4)
6 45 (47) 44 (47) 36 (47) 43 (47)
8 25 (27) 24 (27) 17 (20) 24 (27)

it, considering the label of the same fault transient label. The column
‘‘All’’ represents the scenario where the model detected a fault during
its transient or during the subsequent steady-state period, and correctly
detect the initial normal phase. These event-level results show a quite
satisfactory performance for the proposed system, with low false-alarm
rates and high true-positive identification/classification rates.
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Fig. 7. Confusion matrix showing final test results (in percentages) for Experiment 3.
Fig. 8. Example of a real instance of Class 2 alongside the system classification (red crosses) for each window sample: ‘0’ and ‘1’ outputs correspond to normal and faulty states,
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
In Fig. 8, we have an example of a sample-level classification
(red crosses), where the ‘0’ and ‘1’ outputs correspond to normal
and faulty states, respectively. Two new time-intervals (in seconds)
are also defined in this figure: the time of detection, 𝑡1, between the
beginning of the transient phase and the fault detection provided by
the system (as confirmed by 120 consecutive correct detections); and
the time to take action, 𝑡2, between the system fault detection and the
fault consolidation (beginning of steady-state phase). According to the
definitions of 𝑡1 and 𝑡2, the value of (𝑡1 + 𝑡2) is constant and represents
the duration of the transient phase. So, as 𝑡1 decreases (which indicates
less time to detect faults), 𝑡2 decreases.

The average values of 𝑡1 and 𝑡2 for each fault class in the test set are
shown in Table 10, as well as the average percentage values of these
9

parameters with respect to the total transient-phase duration. Classes 0,
3, and 4 are omitted here as their transient phase is not specified in the
3 W database. These results show that the system can not only act as
a fault classifier, but it can also anticipate the failure during its early
stage. In the worst scenario, the system detects the failure within 12%
of its transient duration, giving an additional time for the operators to
intervene and prevent major production losses.

7. Conclusion

This paper described a full methodology for detecting and classi-
fying faulty events during the practical operation of O&G production
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Table 10
Average delay (𝑡1) and anticipation (𝑡2) intervals, in seconds, for the
proposed multiclass Model 3.3 system. The number designated in
parenthesis is the percentage of the corresponding time interval with
respect to the total transient-phase duration. Classes 0, 3, and 4 are
omitted here as their transient phase is not specified in the 3 W
database.
Class 𝑡1 [s] 𝑡2 [s]

1 293 (2.76%) 39 804 (97.24%)
2 267 (8.77%) 4063 (91.23%)
5 6 (0.19%) 4966 (99.81%)
6 27 (3.69%) 6895 (96.31%)
8 2865 (11.09%) 15 742 (88.91%)

wells and lines. Seven fault types were considered along with the
normal operation state. The developed system uses a classifier based on
the random forest algorithm and a Bayesian non-convex optimization
strategy to tune the system hyperparameters.

Three experiments were devised to evaluate system capability and
robustness in different fault detection/classification scenarios: Experi-
ments 1 and 2 consider the binary normal × faulty conditions, where
the faults are treated altogether and individually, respectively; Experi-
ment 3 addresses the multiclass scenario, where the system performs si-
multaneous fault detection and classification, which is best for practical
usage.

In the multiclass configuration, for instance, overall accuracy results
above 94% indicate successful performance of the proposed system
in detecting and classifying all faults types, thus reducing risk and
production losses in a real operation scenario. Alongside the high
accuracy, the system also achieved a short detection delay, identifying
the fault before completing 88% (in average) of its transient period,
thus providing additional time to the operator to mitigate associated
damages.
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