Reliability Engineering and System Safety 212 (2021) 107614

journal homepage: www.elsevier.com/locate/ress =

Contents lists available at ScienceDirect

Reliability Engineering and System Safety

w
fﬁ' RELIABILITY
ENGINEERING
& SYSTEM
SAFETY

ey

Check for

A fault detector/classifier for closed-ring power generators using machine o

learning

Igor M. Quintanilha?, Vitor R.M. Elias?, Felipe B. da Silva?, Pedro A.M. Fonini 2,
Eduardo A.B. da Silva?, Sergio L. Netto?, José A. Apolinario Jr.", Marcello L.R. de Campos ",

Wallace A. Martins »9, Lars E. Wold ¢, Rune B. Andersen ¢

2 Electrical Engineering Program, COPPE/Federal University of Rio de Janeiro, Brazil
b Department of Electrical Engineering at the Military Institute of Engineering, Brazil
¢ Siemens Norge AS, Oslo, Norway

d Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg

ARTICLE INFO ABSTRACT
Keywords:

Condition-based monitoring

Detection

Classification

Machine learning
Principal components
Random forests

Condition-based monitoring of power-generation systems is naturally becoming a standard approach in
industry due to its inherent capability of fast fault detection, thus improving system efficiency and reducing
operational costs. Most such systems employ expertise-reliant rule-based methods. This work proposes a
different framework, in which machine-learning algorithms are used for detecting and classifying several fault
types in a power-generation system of dynamically positioned vessels. First, principal component analysis is
used to extract relevant information from labeled data. A random-forest algorithm then learns hidden patterns

from faulty behavior in order to infer fault detection from unlabeled data. Results on fault detection and
classification for the proposed approach show significant improvement on accuracy and speed when compared
to results from rule-based methods over a comprehensive database.

1. Introduction

Dynamic positioning (DP) is used in vessel stabilization when anchor-
ing is not feasible, or desirable, e.g., in floating drilling platforms. It is a
well established primary method for vessel positioning, particularly in
deep water applications [1]. DP is performed by automatically control-
ling propellers and thrusters according to various sensor measurements
related to the vessel position [2]. As positioning is crucial and greatly
dependent on power availability and on the proper operation of pro-
pellers and thrusters, faults that affect the DP system are critical.
For this reason, the Maritime Safety Committee issued guidelines for
international operation of DP vessels [3], establishing that a DP3-class
vessel shall not lose position in the event of a single fault in any active
or static component.

Failures in power-generation systems can be catastrophic, and their
effects are often mitigated with comprehensive protection systems that
involve redundancy [4] and condition monitoring [5-7]. Although
the two strategies are expected to work in tandem, modern system
designs, such as closed-ring power systems [8], tend to rely more on
the protection offered by condition-based monitoring and less on the
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expensive and inefficient use of fallback spare parts [9]. Improved
reliability in redundant systems comes at the cost of increased capital
and operating expenses, decreased efficiency, and large footprint. If
good monitoring is available, autonomous and automatic reaction can
quickly set off alarms, isolate the problem, and prompt the system
for further action. Moreover, employing a reliable autonomous system
reduces the actuation-error probability when a human operator is
present [10]. In this context, this work proposes a machine-learning
(ML) condition-based monitoring (CBM) solution for ancillary fault de-
tection and classification in power-generation systems of DP-based
vessels.

DP vessels generally have an on-board power plant which produces
the electrical energy required to feed DP-related equipment. The basic
power-generation structure used is a triad composed of an electric
generator, a combustion engine, and an automatic voltage regulator
(AVR) [11,12]. A power plant may contain multiple power-generation
blocks with properly coupled digital sensors capable of measuring sig-
nals related to several mechanical and electrical variables. Traditional
rule-based protection systems employ a combinatorial logic from these
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variables and judiciously chosen thresholds to set off an alarm in the
event of a hazard. In contrast, ML techniques can learn hidden patterns
from data enabling detection and classification of abnormal operation.

In order to address power-system faults, many techniques have been
considered, which may involve vibration and acoustic detection, elec-
trical measurements, and a posterior analysis of these characteristics.
Among the methods for such analysis, three of them can be men-
tioned, viz.: (i) rule-based approach; (ii) signal processing approach;
and (iii) ML approach. The first one relies on physical and theoretical
knowledge about the system, is highly dependent on the particular
implementation, and usually does not cope well with changes in pa-
rameters. A range of techniques can be found in the literature for fault
detection, location, and classification in different segments of power
generation/distribution systems [13,14]. For instance, a rule-based
methodology that tracks voltage displacement is proposed in [15]. With
a similar approach, [16] uses cumulative sums to improve resilience to
noise. In [17], the authors present a real-time method for detection of
faults in frequency control loops based on robust fault detection filter
(RFDF) design, whereas in [18], the method relies on the voltage level
to detect open circuit faults in insulated-gate bipolar transistors (IGBT).

Signal-processing-based approaches may employ, e.g., discrete
wavelet transform (DWT) [19], as used in [7] for CBM of steam turbine
generators. Observer residuals are used for fault detection in different
scenarios, such as manufacturing machinery [20], and in photovoltaic
power generation systems [21,22]. Residuals are also employed in [23]
using a graph-based modeling approach for fault detection and location
in power systems. Another signal-processing tool commonly employed
to analyze power-system signals and detect and diagnose possible faults
is the principal component analysis (PCA) [24,25]. These methods
may offer increased robustness to noise and better signal visualization,
which can enhance results. In [26], non-technical losses in power
systems are detected using DWT combined with random undersampling
boosting. In [27], faults are located in large power networks using a
small number of sensors and a constrained compressed sensing method.
The work in [28] proposes a modular approach allowing for the use
of different techniques, such as multirate signal processing, residuals
monitoring, and artificial neural networks (ANN).

ML techniques are more data-driven, if compared to the aforemen-
tioned methods, and the system parameters are learned in an initial
training stage. Several ML-based algorithms are suitable for the task
of fault detection and their applications can be found in the litera-
ture [29-35]. In [6], a variety of ML-based methods are employed
and compared in the CBM of naval propulsion systems. Additionally,
we may cite, e.g., ML-based works which use support vector machine
(SVM) to detect line-to-line faults in photovoltaic arrays [34] and
to classify anomalies in the systems of a nuclear power plant [35].
Deep learning (DL) architectures are employed to detect and classify
faults in high-voltage applications [36] and in hydraulic pumps [37].
A generic framework for DL-based CBM and failure prognostics is
presented in [38]. Nonetheless, DL techniques require a huge amount
of data to train the models properly, which is not always feasible.
Other applications of fault detection methods based on ML found in
the literature include ANN [39,40] and self-organizing maps [41]. The
works in [32,33] propose ML-based approaches for fault detection in
medium-voltage direct current shipboard power systems. We note that
this work uses a three-phase alternating current system.

Our approach consists of using the random forest (RF) [42-44]
algorithm, which does not require as much data as DL, yet yields
solid detection and classification results. For condition monitoring of
DP vessels, there are works using neural networks to model diesel
engines and predict faults using rule-based approaches [45], and those
focusing on ML techniques to detect faults on control systems [46].
In [47], the authors propose an electrical system fault simulator in
order to investigate new power plant control strategies and new power
sources, whereas [48] focuses on the design of such systems. However,
to the best of our knowledge, none aims to detect and classify faults in
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Fig. 1. Engine-room diagrams employed in our experiments: (a) two thrusters shared
by four generators. Each generator is fed by an AVR and a diesel engine simulator
(speed governor and motor); (b) details of the connections between generator, motor,
and AVR, and some relevant signals for the proposed methodology.

closed-ring power systems of DP vessels using the RF technique. This
application is particularly important as DP3-class vessels have increased
safety requirements, and can readily benefit from the advantages of ML
techniques.

In this work, we target the detection and classification of 12 types
of faults that may occur in power-generation systems used in DP
vessels. These systems differ from those in conventional vessels by
having increased redundancy, leading to several generators connected
in a configuration that allows for fault isolation, in order to deliver
a reliable power supply. We show the usefulness of artificial intelli-
gence algorithms for achieving faster response time and, consequently,
increased situational awareness against traditional protection methods.
We also provide information on feature relevance for the detection
of different faults. For comparison purposes, we use a generator per-
formance controller (GPC) developed by Siemens to protect electrical
power systems for DP3-class operations [49].

2. Energy-generation and protection systems

In a redundant system, engine rooms usually comprise at least
two electric generators, along with their corresponding combustion
engines and AVRs. In the three-phase power-generation system consid-
ered in this work, the load is shared among four generators running
simultaneously, as illustrated in Fig. 1.

2.1. Fault description

A total of 12 different types of anomalies are considered here. These
faults correspond to predefined scenarios tackled by the previous pro-
tection system, the GPC, and were kept to allow comparison between
methodologies. They are grouped as AVR-related faults (TO1 to T06)
and engine-related faults (TO7 to T12), despite the fact that they may
occur due to internal errors in these blocks, or due to problems in
the feedback system [9,50]. Relevant interconnections between the
generator and the AVR, and between generator and speed governor
(engine) are depicted in Fig. 1b.
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T01 — loss of voltage sensing. The voltage sensing, which serves as a
feedback for the AVR, is lost for the three phases. This results in an
AVR over-excitation, as its control system tries to compensate for the
detection of a zero-valued voltage at the generator output.

T02 — internal AVR fault. It is caused by internal AVR issues, resulting
in incremental steps of over-excitation.

T03 — non-functioning AVR. In this fault, the AVR stops providing
excitation current for the generator.

T04 — faulty AVR gain. This fault results from an improper gain
design for the proportional-integral-derivative (PID) controller inside
the AVR [51,52], which causes oscillations on the excitation signal
around its reference level.

TO5 — faulty AVR derivation gain. It arises from an improper design of
the derivation gain for the PID controller inside the AVR, also causing
oscillations on the excitation signal.

T06 — partial loss of voltage sensing. This fault is associated with a
single wire breaking, resulting in zero-valued feedback from one of the
three generator phases, yielding over-excitation, similar to TO1.

TO7 — loss of speed sensing. In this fault, the speed sensing, which
serves as a feedback for the engine’s governor [12], is completely
lost, yielding over-production, forcing the diesel engine to work at
full-power.

T08 — overproduction. This fault is usually caused by problems in the
fuel actuator [53], which may get stuck in an overproduction position,
resulting in oscillations in the generator’s output frequency.

T09 — underproduction. Similarly to T08, this fault is usually caused
by problems in the fuel actuator, which may get stuck in an underpro-
duction position, also resulting in oscillations in the generator’s output
frequency.

T10 — non-functioning speed controller. In this faulty scenario, the
speed controller stops working and the corresponding engine ceases to
provide mechanical power to the generator’s rotor.

T11 — faulty speed controller. In this fault, a high derivation gain in the
PID device inside the speed controller causes oscillations in the engine’s
output.

T12 — frozen fuel rack. Similarly to TO8 and TO09, this fault occurs
when the fuel rack that dictates the fuel flow to the diesel engine gets
stuck.

2.2. Traditional protection system

In the rule-based protection mechanism developed for this applica-
tion, the generator performance controller [49] (GPC) is divided into
two levels with separated logics, namely GPC level 1 and GPC level
2, which are responsible for performance control over the AVR and
the diesel engine, respectively. These logics are composed of sets of
rules whose inputs are analog signals observed in the power-generation
system. These rules are based on thresholds that once compared to the
values of the observed signals would trigger, as output of the GPC,
a detection flag for one of the 12 fault types. The rules may also
consider signals that are not directly observed, but can be derived from
those. Examples of directly observed signals are three-phase voltage
and current signals, and of non-directly observed signals are estimated
frequency and power factor.
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2.3. Fault-detection via machine learning

Different CBM approaches may be considered in practice, ranging
from methods built upon human knowledge to methods completely
based on artificial intelligence. At the human-knowledge end lies the
most intuitive CBM idea, in which an expert analyzes an equipment
through sensor signals and determines its current operating condition
based on his/her professional experience. Halfway through the CBM
spectrum, one can find the rule-based methods such as the one im-
plemented by the GPC (see Section 2.2). These methods, despite still
relying on human knowledge to create the rules, are automatically
executed.

In this work we propose an approach heavily based on supervised
ML methods, that are composed of two stages: training and inference. In
this scenario, the RF algorithm was chosen due to its low complexity,
simple tuning, and good generalization capabilities [42,54]. The en-
semble learning [55,56] method employed by the RF algorithm carries
most of the advantages from decision trees [57-60], such as being
able to handle several types of input without requiring intensive data
preparation, and the ability to provide evidence of feature importance.
Each decision tree inside an RF algorithm yields a probability for each
of the possible labels for a given input. By using the outputs of several
independent decision trees, the RF generates a probability for each
label, thus avoiding overfitting an improving stability and robustness
to data variation.

3. Database development
3.1. Data acquisition

The database employed in this work was collected from real ex-
periments in a laboratory used for simulating a large scale power-
generation system of a dynamically-positioned vessel. The lab equip-
ment consists of a test room with four generation blocks (G1 to G4)
and two thrusters, as seen in Fig. 1. Each generation block is composed
of an electric generator, an AVR, and a diesel engine simulator. The
thrusters represent the system load. Two of the generators, namely
generators G3 and G4, are equipped with an individual protection
system comprised of a relay with a programmable logic controller (PLC)
where fault-detection and signal-recording logics are implemented.
This system provides the rule-based solution against which we compare
the proposed ML-based CBM.

Each of the faults presented in Section 2.1 was introduced separately
in the system. Automatic recording took place only when a fault
was detected by the rule-based GPC. Manual recording was employed
otherwise. The total duration of the recording could be set up to at most
80 s.

Five different configurations were considered for each fault. Faults
were induced on a single generator, chosen randomly between G3 or
G4, but signals were recorded on both generators. The load L was
adjusted by setting the speed of the thrusters, therefore real power
ratings may have small deviations from the values given below:

Configuration 1: Running G3 & G4 with L = 0% with no thruster
connected;

Configuration 2: Running G3 & G4 with L = 25% with thruster 2
connected;

Configuration 3: Running G3 & G4 with L = 50% with thrusters
1 and 2 connected;

Configuration 4: Running G2 & G3 & G4 with L = 0% with no
thruster connected;

Configuration 5: Running G1 & G2 & G3 & G4 with L = 35% with
thrusters 1 and 2 connected.
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From the 120 sets of signals (from 2 generators, with 5 different
configurations, for 12 faults), 115 were successfully collected. For T09,
only data from the faulty generator could be collected using automatic
recording. Given time constraints, TO9 was not recorded using manual
recording, thus five sets of signals are missing. Moreover, additional
data were recorded for TO1: for each of the five TO1 configurations,
five slightly different sub-experiments were considered, in which the
power rating was increased in steps of 5%. In addition, in order to
simulate the effects of sea waves on thrusters, four normal-operation
recordings were conducted with the load varying according to a sine
wave. These yielded 48 extra sets of signals, leading to a total of 163
sets. Signals were recorded in the COMTRADE (IEEE Std C37.111-1999)
file format [61].

For the specific problem treated in this work, the generator’s signals
usually consisted of an initial segment where the system was working
properly, with no fault. At a given instant, referred to as fault onset and
labeled onset, a fault was introduced. After the fault onset, there is a
transient period preceding the stabilization at a faulty steady state. The
stabilization instant is referred to as fault stabilized (labeled stable). Not
every fault type has a well-defined stabilization instant, so the stable
label is used to indicate the end of the first transient period, which is
defined, for instance, by the first signal overshoot or knee region after
the beginning of the fault. The third (and last) relevant time instant is
when the fault cause is turned off, referred to as fault end or fault offset.

Given these three time instants, each signal was divided into three
parts: healthy steady state, fault transient, and faulty steady state. For
each signal the fault type was known, but the exact time instants when
the fault was introduced, or stabilized, was unknown. Therefore, label-
ing was carried out manually by visual inspection of the waveforms.
This process was performed independently by four different people. For
each labeled time instant, the four instances were compared, and any
outliers caused by human error during visual labeling were relabeled.
This process was repeated until the standard deviation of the four
instances was significantly less than the duration of the fault transient.

3.2. Data analysis

For each generator, 18 sensor measurement signals, listed in
Table 1, were recorded. These are mainly three-phase plus neutral cur-
rent and voltage signals acquired at the generator, the speed-governor
output, and the AVR output, all driven by the same clock.

The sampling frequency was set to 2 kHz during the data-processing
phase. All acquired time series were windowed, that is, each signal was
divided into segments of a given number of samples. From these raw
windowed data, features were calculated, extracting relevant statistical
and physical information.

For each of the 18 signals in Table 1, the following nine statistical
features were calculated from each data segment: minimum value
(min); maximum value (max); first quartile; median; third quartile;
mean; standard deviation (std); skew; kurtosis. Additionally, 10 other
features that carry physical information about the system were also
employed: active power; derivative of active power; reactive power;
derivative of reactive power; apparent power; frequency; derivative of
frequency; power factor; RMS voltage; derivative of RMS voltage. All
derivatives were computed with respect to values from the previous
segment. The above process yields a total of 172 features (9 statistical
features for each of the 18 signals + 10 overall physical features) per
data segment.

Large redundancy among different features has been observed and,
in order to deal with such redundancy, principal component analysis
(PCA) was used [62,63]. PCA is a mathematical procedure that decorre-
lates data; it uses an orthogonal transformation to project the original
highly-correlated data into a set of sample-wise orthogonal variables
called principal components. After the transformation, the information
that is spread along many of the correlated features becomes concen-
trated in few principal components, allowing dimensionality reduction.
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Fig. 2. Block diagram of the complete ML-based procedure.

The explained variance is a measure of how much a given principal
component contributes to the total data variance. By applying the PCA
to our 172-feature dataset, 99.7% of the total variance is concentrated
in only 20 principal components, which then become the input to
the random-forest fault classifier described in the next section. The
principal components carry information about all features, as opposed
to other feature-selection methods, such as selecting the top-ranked
features from the RF algorithm.

4. Fault detection/classification methodology

The first step in building the proposed fault detection system was
to process and prepare the data for the ML training. In this process,
for each generator, the 18 signals labeled as relevant in Table 1 were
selected. From each of those signals, associated with the several sensors
and represented as time series with 2000 samples per second, data
segments of w = 128 samples were generated. In this work, we used
sliding windows, i.e, consecutive windows having an overlap of w —
1 = 127 samples (hop size equal to only » = 1 sample). For each
synchronized set of 18 segments, 172 features were extracted and used
as the input for the fault detector block in Fig. 2.

When preparing data to train the ML model, we used only a portion
of the signal closest to the onset label, namely the 5000 samples
immediately before and the 5000 samples immediately after the onset.
After the onset, there is a transient period in which signals change from
a steady normal operation to a steady faulty operation. Using data
from the steady faulty operation for training tends to worsen detection
results, as samples may look healthy, but are marked as faulty, which
tends to increase the number of false detections. In addition, using
data predominantly from the beginning of the fault is not detrimental,
because in practice the algorithm should detect the fault before the
system reaches the steady faulty operation. In cases where faults have
a slow transient, it is expected that healthy and early faulty samples
are similar, which can result in slower detection.

The model proposed in this work, as given in Fig. 2, consists of
two main ML stages, designated as fault detector and fault classifier.
Considering that detecting a fault is simpler than categorizing it among
the 12 fault types under consideration, the main objective of the fault
detector is just to provide a fault or not-fault flag.

4.1. Fault detector

As also shown in Fig. 2, the fault detector developed in this project
is composed of two sub-detectors. The alarm indicating a fault is set
off if either of the outputs of the sub-detectors indicates the occurrence
of a fault. The RF algorithm employed in the ML-based sub-detector
provides a fault probability according to the trees’ outputs for each
input sample, whereas the rule-based sub-detector provides a binary
output of fault or not-fault. An alarm generation block, comprised of two
simple operations, namely calibration and voting, was inserted after the
RF model to make it binary and also to take into account its inherent
temporal structure.

Since the T08 and T09 faults can be detected by a simple rule-based
model on the reactive power and frequency signals, these faults were
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Table 1

Relevant signals from the test room data.
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Comtrade name

Description

Line CT (-T1 & -T90):I A
Line CT (-T1 & -T90):I B
Line CT (-T1 & -T90):I C
Line CT (-T1 & -T90):IN
Busbar VT (-T15):V A
Busbar VT (-T15):V B
Busbar VT (-T15):V C
Busbar VT (-T15):VN

Gen CT (-T10 & -T91):I A
Gen CT (-T10 & -T91):I B
Gen CT (-T10 & -T91):I C
Gen CT (-T10 & -T91):IN
Line VT (-T5):V A

Line VT (-T5):V B

Line VT (-T5):V C

Line VT (-T5):VN

Switchboard current transformator phase A for generator
Switchboard current transformator phase B for generator
Switchboard current transformator phase C for generator
Switchboard current transformator phase Neutral for generator
Switchboard voltage transformator phase A for Busbar
Switchboard voltage transformator phase B for Busbar
Switchboard voltage transformator phase C for Busbar
Switchboard voltage transformator phase Neutral for Busbar
Generator current transformator phase A (stator)

Generator current transformator phase B (stator)

Generator current transformator phase C (stator)

Generator current transformator phase Neutral (stator)
Switchboard voltage transformator phase A for generator
Switchboard voltage transformator phase B for generator
Switchboard voltage transformator phase C for generator
Switchboard voltage transformator phase Neutral for generator

Analog units:MT fast:Governor output: Speed governor output

Analog units:MT fast:Field current:

AVR excitation current

detected separately, improving the RF ability to detect all other faults.
The ML-based sub-detector employs an RF algorithm trained with
signals related to all but TO8 and T09 faults. The RF hyperparameters,
such as number of trees and maximum tree depth, were chosen via
stratified cross-validation [64]. This process consists in splitting the
training set into k smaller sets (folds), ensuring that each fold contains
the same number of samples of each fault. After that, the RF model
is trained using the set of k — 1 folds, where the validation set is
represented by the remaining fold. Therefore, the hyperparameters are
set from the model that achieved the best performance, considering all
combinations of training and validation sets, in terms of a predefined
metric, e.g., accuracy, and recall.

Since the system can function healthily under different opera-
tion points, healthy data from a given operation point can be miss-
interpreted as a fault on another operation point. Thus, a calibration
operation is used to increase the confidence level of the output signal
from an ML algorithm [65,66]. This process widens the gap between the
probability levels associated with the normal and anomalous operating
modes by distorting the fault probability p through a sigmoid function,
such that the new probability p’ is
, 1

1 +eAprtB’

P (€Y)

with A and B obtained by minimizing the log-likelihood function for
the training dataset [67].

The voting operation is performed after calibration and its function
is to make the output of the calibration block binary. It is necessary
given the noisy fault probability signal from the calibration output.
The voting process occurs within a window containing a sequence of
current and past calibration outputs. It counts the number of instances
in which the probability is larger than a first fault-probability threshold.
Then, it compares this number to a second threshold associated with
the number of faulty samples inside a window. These two thresholds
are hyperparameters chosen by optimizing the hit rate in the training
set using grid-search.

4.2. Fault classifier

The last stage in the proposed system is the fault classifier, whose
function is to classify the already-detected fault into one of the 12 fault
types. It consists of a second RF block, with 12 output classes associated
with fault types and trained with faulty data only.

Pre-processing for classification is the same as that used for de-
tection: the system is fed with projections of features over the same
20 principal components. The outputs of the classifier are 12 fault
probabilities associated with the 12 types of fault.

5. Experimental results

This section presents the experimental results obtained with the
proposed RF-based fault detector/classifier in comparison to the results
obtained by the standard GPC logic.

5.1. Fault detection

The original dataset was split into two parts, namely training and
testing datasets, using the following procedure: first, the total dataset
was divided randomly into 70% of the overall data for training and 30%
for testing. Due to the imbalance among faults, these sets were strati-
fied, which means that the proportion (70, 30)% is guaranteed for every
fault. The training data were further reduced so that each fault was
represented by only three experiments, whereas the remaining training
data were then used for calibration. For cross-validation, we set k = 3
folds, and employed the Cohen-Kappa [68] metric to evaluate their
performance. The voting procedure used windows of 180 samples and
a vote in favor of a fault was counted when the calibrated probability,
defined in Eq. (1), was larger than 0.4. The alarm was triggered if at
least 108 votes equal to one were counted for each data segment.

Results from the testing dataset are summarized in Table 2, compar-
ing the proposed method against the rule-based algorithm used in the
GPC. Table 2 also shows the total number of detection problems (either
false alarm or miss detection) that occurred when using the proposed
system and the GPC.

The detection results may be summarized as follows:

TO1 was the fault case with the most testing data available, with a
total of 20 generator recordings (10 from healthy + 10 from faulty
generators). For most cases, the proposed detector outperformed
the GPC logic. Four false alarms occurred in the proposed system
for this fault.

For T02, there were two experiments and four generators avail-
able for tests. For this fault, the proposed detector was consider-
ably faster than the GPC logic and no detection errors occurred.
There was only one experiment for testing T03, with recordings
for two generators. The GPC was not able to detect the fault. So
T03 was manually recorded, and there was no information about
the GPC trigger. Detection was correct and fast.

Two experiments and a total of four generators were used to test
TO04. The proposed RF model improved detection when compared
to the GPC logic. Detection delays indicated that the fault had a
slow dynamic. For one of the generators used in the test, the alarm
of the proposed system was triggered before the onset.

TO5 was tested with one experiment, composed by the recordings
of two generators, for which the proposed detector performed
better than the GPC logic.
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Table 2
Summary of fault detection results for proposed and GPC systems.

Reliability Engineering and System Safety 212 (2021) 107614

Total number Number of Number of Number of Average Average delay Average delay Average interval of
of signals problems detections before problems (GPC) uncertainty (GPC) [ms] (proposed) [ms] detection before onset
(proposed) onset (proposed) [ms] (proposed) [ms]
TO1 20 4 false alarms - - 8 134 126 -
TO2 4 - - - 85 6347 174 -
TO3 2 - - 2 misses 8 - 119 -
TO04 4 - 1 103 4242 1172 274
TOS 2 - - 78 5853 1043 -
TO6 4 - - 7 194 112 -
TO7 2 - - - 34 159 104 -
TO8 4 1 miss 2 4 misses - - 8605 3420
T09 1 - 1 - - 1211 - 186
T10 4 - - - 157 2576 172 -
T11 2 - - 13 8989 101 -
T12 2 1 miss - - 439 15247 17449 -
Confusion matrix Lo Confusion matrix Lo
T01,/T06 0.00 0.00 0.00 0.00 0.00
_ T01-T06 08
g 0 To2/T03 | 0-00 0.08 0.00 0.04 0.00 0.00 08
g 0.4 To4/T05| 0:05 0.07 0.01 0.00 0.03 0.07
& rori2|  0.00 1.00 z 0.6
0-2 = pgr[0.01 0.00 0.01 0.01 0.03 0.00
[}
3 > o a 0.00 0.00 0.00 0.00 04
N > T08/T09 |~ : : :
Y N
© © 0.00 0.00 0.00 0.01
Predicted label T10/T11) ™ ’ ’ ’ 0.2
Fig. 3. Confusion matrix for classification considering two groups of faults in T12 0.00 0.00 0.00 0.00 0.00 0.00
Experiment 1: T01-T06 (AVR) and T07-T12 (speed). - 0.0
N O $ O SN2
\&Q \&Q \@3 & <@ KLY
&Q\ &Qq' &9% &9% &\Q

+ Two experiments and four generators composed the testing
database for T06. Detection results were good and fast for both
systems, with the proposed system being able to detect TO6 faster
than the GPC logic.

For T07, one experiment with two generators was available for
testing. Both systems detected the fault correctly, with the pro-
posed system being able to detect TO7 faster than the GPC logic.
Two experiments with a total of four generators were available for
testing the detection of T08. The GPC trigger information was not
available in this case. The proposed scheme missed the fault for
one faulty generator. For the two healthy generators, detection
happened before the labeled onset, but it must be highlighted
that a fault actually occurred before the onset label, which marks
the sample where reactive power becomes negative. In fact, the
rule-based detector for TO8 guarantees that if the RF detector
misses detection, the trigger will be activated anyway whenever
the reactive power becomes negative.

Only one faulty generator was available for testing T09. Similarly
to TO8, detection occurred before the onset, which corresponds to
the instant where reactive power becomes negative. This means
that the RF detector is detecting TO9 in the same way as T08.
T10 was tested with two experiments and four generators. Results
show that the proposed detector was much faster than the GPC,
although the difference in detection delay was not as significant
in the faulty generators.

One experiment with two generators was used to test T11. The
fault was detected correctly on both generators, and detection was
much faster than the one from the GPC.

Detection of T12 occurred in the generator where a fault was
introduced. Our detector was slower than the one from GPC.
Also, our system was not able to detect the fault in the parallel
(healthy) generator.

Predicted label

Fig. 4. Confusion matrix for classification of seven groups in Experiment 2.

5.2. Fault classification

The training for classification employed only data samples from
faulty generators, and the testing was only considered after an alarm
was triggered by the detection stage. We note that some faults have
similar behavior, but are classified differently according to the cause of
the fault. For instance, loss of voltage sensing for (T01) and partial loss
of voltage sensing (T06) generate similar signals. Thus, five different
experiments gathering faults into groups were devised for the fault
classification problem.

Experiment 1. This experiment grouped all faults into only two
classes: AVR-related faults (T01-T06) and speed-related faults (T07-—
T12). Fig. 3 shows the results when those two groups were considered
separately. These results show that 96% of AVR-related fault samples
were correctly classified as such, whereas practically all speed-related
samples, considering round-offs, were correctly classified. These results
represent average classification values along all samples and do not
indicate a final post-processing result.

Experiment 2. In this case, the two classes considered in Experi-
ment 1 were further split into seven more specialized classes: loss or
voltage sensing (T01/T06), AVR operation (T02/T03), AVR oscillation-
related (T04/T05), loss of speed sensing (T07), overproduction/
underproduction (T08/T09), speed controller (T10/T11), and frozen
fuel (T12) faults. Fig. 4 shows the confusion matrix considering the
seven fault groups described above. In this experiment, classification
hit rate was above 70% for all cases and above 86% for most cases.
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Confusion matrix
To1 ().(][J 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00

1.0

T02(0.00 0.18 0.00 0.13 0.00 0.00 0.06 0.00 0.00 0.00 0.00

T03]0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.8
To4 [0-01 0.03 0.01 g6 0.11 0.00 0.01 0.00 0.00 0.00 0.02 0.06
To5[0-20 0.14 0.00 0.44 0.04 0.00 0.01 0.00 0.00 0.00 0.05 0.11

N 0.6
g TOG(),UU 0.00 0.00 (1.01’0.48‘0,00 0.00 0.00 0.00 0.00 0.00

£ 707(0.00 0.00 0.00 0.00 0.01 0.010.01 0.00 0.01 0.02 0.00

Tos |0-00 0.00 0.00 0.00 0.00 0.00 0.00 041 0.24 0.04 0.10 0.20 04
709 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00
T10/0-00 0.00 0.00 0.00 0.00 0.00 0.01 0.21 0.00 0.30 0.41 0.06 02
T11/0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.03

T12(0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TS ESEESS S

Predicted label

Fig. 5. Confusion matrix for classification of the 12 faults in Experiment 3.
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Fig. 6. Hit rate as a function of the number of samples after trigger. Results for
s =1,2,3 top probabilities in Experiment 4.

Experiment 3. In this experiment, all 12 faults were considered
individually, constituting the most challenging classification case. Fig. 5
shows the classification results considering every fault individually. In
this case, it is possible to observe that half of the faults (T01, T04, T07,
T09, T11, and T12) were classified with probability larger than 70%,
while some presented a considerable level of confusion due to similar
behavior. Some examples include TO1 and TO06 (loss of voltage sensing),
T02 and TO3 (problems in the AVR operation), and T04 and TO5 (AVR
setup with bad configuration).

Experiment 4. In this last analysis, a simpler version of Experiment 3
was considered, where the classifier provided the one, two or three
(s = 1, 2, or 3) most probable faults in a given situation. In a semi-
supervised operational mode, an experienced human operator, based
on his/her professional knowledge and on the information provided by
the proposed system, might be able to identify the correct fault among
these s possible alternatives. In order to test the classifier using the
post-processing approach based on the RF output, we conducted a final
temporal analysis of the hit rate. In this new experiment, if the actual
fault type was among the s fault types with highest corresponding
probabilities at the RF output, it was considered a hit. In Fig. 6 we
considered the s highest probabilities among the RF-algorithm outputs,
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Table 3
Hit rate for a frame 300 ms after trigger or onset (in case of no trigger), considering
the s = 3 highest probabilities in Experiment 4.

Total signals Detection issues Hit rate (Trigger) Hit rate (Onset)

TO1 20 4 false alarms 100% 100%
T02 4 50%

TO3 2 100%

T04 4 50%

TOS 2 0%

T06 4 100%

TO7 2 100%

TO8 4 1 miss 100% 0%
T09 1 100%

T10 4 100%

T11 2 100%

T12 2 1 miss 100% 100%

for s = 1,2,3. In this case, by increasing s the overall classification
hit rate improves considerably, especially when one also increases the
number of delay samples after trigger. Table 3 contains the hit rate per
fault if classification was conducted 300 ms after the trigger instant.
In cases where the proposed system was not able to detect faults and
there was no trigger, the onset is used as reference. For 8 fault types,
the hit rate is 100%, meaning that the correct classification was always
among the s = 3 faults with highest probabilities. TO2 (Internal AVR
fault causing overexcitation) and T04 (Faulty voltage regulator — high
gain causing oscillations) were correctly classified in half of the testing
signals. TO5 (Faulty voltage regulator — high derivation gain causing
oscillations) was not among the top three at 300 ms for any of its testing
signals. Note that all TO1 cases are correct.

6. Conclusion

In this paper, a hybrid ML-based approach was proposed as an
alternative for rule-based models to be employed in the detection and
classification of faults in the power generation system of DP vessels.
The proposed method is built upon experimental data that are repre-
sentative of the fault cases considered, and for which the target labels
(such as fault or not-fault) are known. The data and target labels are
used to train the algorithm which, then, infers probabilities for labels
on new and unlabeled data. This approach yields a fault-detection
system independent of expert knowledge and of easy adaptation if new
conditions are imposed on the data. Data were collected from a small-
scale engine room and an analysis of the signals and corresponding
features was presented in the paper. A pre-processing methodology
based on PCA was employed to deal with high correlation between
collected signals. Post-processing of the probability signal (output of
the RF algorithm) for both fault detection and fault classification stages
were also proposed and tested.

The proposed framework uses mostly ML blocks for detection and
classification, but embeds a rule-based block in order to further im-
prove results, given the limited availability of data. The system was
tested on a portion of the data collected and results show improvement
of detection speed and reliability, albeit presenting some false alarm
cases, for 10 of 12 fault types considered, when compared against
the rule-based model employed by the GPC. Two post-processing ap-
proaches were tested for classification: results for the first approach
show that the system is able to classify reliably faults into similarity
clusters. For the second approach, results show that the system infers
with high probability the fault type.
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