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A B S T R A C T

This work addresses the problem of extracting events from human-written daily drilling reports (DDRs) in
an automated way. Two distinct approaches based on an expert system and artificial intelligence techniques
are proposed: rule-based language processing (RBLP) and deep neural networks (DNN). The RBLP employs
regular expressions that are manually constructed, during the so-called building process, in order to identify
the events of interest. The novelty of the present approach is to deal with multi-label classification of DDRs
using RBLP and transformers, which provide a powerful DNN architecture. The events of interest are drilling
failures such as ‘bump’, ‘drag’, ‘kick’, ‘loss of circulation’, and ‘stuck pipe’. Both algorithms are developed
based on a training data set of 4,355 DDRs and evaluated on a test data set of 300 DDRs, all of them written
in Brazilian Portuguese but can be readily adapted/replicated to any other language. Average true positive
rates (TPR) of 97.30% for RBLP and 85.61% for transformers-DNN were obtained, with average false negative
rates (FNR) of 2.70% and 14.39%, respectively. The corresponding false positive rates (FPR) were 4.90% and
13.52%. Transformers-DNN has superior performance if the underrepresented classes are disregarded. In this
case, the average TPR was 96.79% for RBLP and 97.32% for transformers-DNN, with an average FNR of 3.21%
and 2.68%, respectively. The corresponding FPR changed to 2.37% and 1.81%. The test results indicate that
the two proposed approaches can lead to very significant improvements in the efficiency of the otherwise
manual annotation processes, which are typically error prone and very time consuming.
. Introduction

Current oil-drilling operations generate a large volume of data
or safety and efficiency purposes (Antoniak et al., 2016; Arnaout
t al., 2014; Castiñeira et al., 2018; Kowalchuk, 2019; Noshi and
chubert, 2018; Sousa et al., 2018). Continuous drilling monitoring
inimizes process interruptions and equipment damage, thus reducing
on-productive time and associated losses accordingly (Sidahmed et al.,
015), which contributes to the clean development mechanism (CDM)
eported in Alizadeh et al. (2014), and to more efficient resource
sage as analyzed in Alizadeh et al. (2020b) and Williams et al.
2020), increasing the total factor productivity (TFP) (Soltanisehat
t al., 2019). Thus, modern monitoring techniques also provide future
ompetitiveness and sustainability for oil companies (Alizadeh and
oltanisehat, 2020), being key even for biomass-derived fuels (Alizadeh
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et al., 2020c). The collected data serve other relevant tasks in the
petroleum industry, such as lithofacies modeling (Tewari and Dwivedi,
2019).

Intelligent systems for automatic fast failure detection and classi-
fication are essential components of modern monitoring schemes (Al-
izadeh et al., 2019). Such systems learn from experience (a list of
previous failures and related sensor data) and attempt to detect anoma-
lous behaviors as early as possible in order to mitigate their con-
sequences, as depicted in Sidahmed et al. (2015). In general, deep
technologies are increasingly being deployed in real-world applications
and will be the driving force behind progress for the next couple of
decades (Soltanisehat et al., 2020).

Historical data related to oil drilling operations can usually be found
in drilling data logs (DDLs) and daily drilling reports (DDRs). DDLs
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contain drilling measurements (depth, pressure, and torque level, for
example), whereas DDRs detail noticeable events (such as drill bit
replacement, bump, and drag) on a daily basis. By combining these two
data sources properly, one can get good patterns of all past events of
interest, a fundamental step for training an accurate failure detector
and classifier (Bello et al., 2016; Castiñeira et al., 2018). Besides, the
collected data may steer modern data-driven approaches to engineering
design that employs surrogate models to replace computationally costly
simulations (Alizadeh et al., 2020a; Jia et al., 2020) with more efficient
components and processes.

DDRs, however, are often written in an unstructured format, making
the retrieval of information a challenging and time-consuming task
(Kowalchuk, 2019; Ma et al., 2018). The need for information extrac-
tion (IE) (Small and Medsker, 2014) has driven the development of
many algorithms, and previous works in the literature have attempted
to address this issue by means of neural networks (Castiñeira et al.,
2018; Hoffimann et al., 2018; Kowalchuk, 2019; Ribeiro et al., 2020),
or random-forest algorithms (Sousa et al., 2018), obtaining reasonable
event-identification performances.

The authors in Castiñeira et al. (2018), for instance, employ nat-
ural language processing solely to extract information such as hole
depth and casing size for subsequent sensor measurement analysis of
productive/non-productive time. In Hoffimann et al. (2018), the au-
thors study the usage of a small convolutional neural network and long
short-term memory (LSTM) network to classify the DDRs as describing
an event, a symptom, or an action. Taking neighboring sentences into
account for event classifications in DDRs yields good results since
well-drilling operations are ordered in time (Ribeiro et al., 2020).
However, the authors in Ribeiro et al. (2020) propose a complex well-
specific model involving word embedding, recurrent neural networks,
conditional random fields, and evolutionary algorithms, all at once.
The work in Ma et al. (2018) uses 1D convolutional layers coupled
with bi-directional LSTM for multi-class classification for both drilling
phase and event type prediction. However, it is only able to identify a
single failure during the non-productive time. In Zhang et al. (2020),
the authors evaluate the performance of several machine learning
methods on abnormal event detection in DDRs and claim to achieve
best results when pairing convolutional neural network with techniques
to overcome the inherent imbalanced data set issue.

Based on the critical evaluation of the literature, a significant gap
in IE from DDRs was identified: existing models address only a single
failure cause of non-productive time and/or tend to be very complex.
To bridge this gap, we posed the following research question: what kind
of data-driven multi-label model can perform automatic DDR event
identification and extraction in a reasonably simple way? To answer
this question, we investigate two distinct techniques for the automatic
processing of DDRs: rule-based language processing (RBLP) and deep
neural networks (DNN) (Goodfellow et al., 2016). Focus is given on the
identification of five event types (drill bit ‘bump’, ‘drag’, ‘kick’, ‘loss of
circulation’, and ‘stuck pipe’). Events other than those aforementioned,
such as problems in pumps, sudden increase or decrease in penetration,
communication failure with logging while drilling (LWD) tools, are
encompassed as ‘other’. The results are validated over a comprehensive
DDR database, achieving superior performance levels than competing
approaches. To the best of our knowledge, this is the first work to deal
with multi-label classification of DDRs. As said, while previous works
accept only a single failure mode as the cause of non-productive time,
ours embraces that multiple failure events can happen simultaneously.
Another notable feature of our work is the use of neural network
transformers (Vaswani et al., 2017), which are better suited to handle
long-range dependencies. We propose for them a fast and straightfor-
ward training procedure with few hyperparameters. The present work
compares the strengths of DNN and RBLP methods in terms of overall
performance in event extraction and identification over an extensive
2

database of DDRs.
This work is organized as follows: Section 2 presents some back-
ground on DDR content, preprocessing, and event extraction; Sections 3
and 4 describe, respectively, the proposed solutions for the automatic
analysis of DDRs based on RBLP and DNN techniques; in Section 5,
test results obtained with both techniques over a given DDR data
set are presented and compared; and Section 6 concludes the paper
emphasizing its main contributions.

2. DDR preprocessing

A typical excerpt of a DDR is given in Listing 1. It describes some
drilling maneuvers in unstructured language that dealt with dragging
conditions in this specific case. This listing will be used throughout the
text for illustrating the steps taken during DDR processing according to
our proposed methodology.

In order to facilitate its automatic analysis, the original DDR text
must be preprocessed through three sequential operations: misspelling
correction, lowercase conversion, and stop-word removal. It is impor-
tant to note that, although the language of the database used to develop
this work is the Brazilian Portuguese, the listing examples in this paper
are in English, in order to show that the proposed techniques can be
readily adapted to different languages.

The first procedure replaces all misspelled words with their correct
versions, thus avoiding that an event such as ‘drag’, for instance, is
missed because it was typed as ‘draag’ or ‘darg’. Note that, in this
process, some care must be taken. For example, ‘darg’2 is an existing
word, but completely out of the DDR context, and therefore must be
substituted by ‘drag’.

In the next stage, the corrected DDR texts are converted to low-
ercase and have some stop words removed. Stop words are simple
words like ‘the’, ‘a’, ‘an’, ‘of’, ‘by’, etc. that do not significantly change
text meaning. When doing this operation, care must be taken for not
removing words like ‘with’ and ‘without’ that give opposite meanings
to the expressions they precede (as, for instance, in ‘with drag’ and
‘without drag’).

The resulting preprocessed DDRs, as exemplified in Listing 2, serve
as the input to the RBLP- and DNN-based event analyzers described in
Sections 3 and 4, respectively.

3. A rule-based DDR analyzer

When an event recognition or extraction is based on a set of rules,
this is called a rule-processing algorithm (Thonhauser, 2004). The
general form of a rule is an if-then-else statement: if condition, then
do-something ; else do-something-else. A natural language processing al-
gorithm that employs regular expressions in a rule-based procedure is
proposed in this section to automatically identify drilling events within
a large DDR database.

The design of the proposed rule-based algorithm was such that it
performs, in general, three (primary, secondary, and tertiary) sequen-
tial searches for regular expressions in order to decide whether a DDR
describes or not a given event of interest. The primary group searches
for basic keywords or expressions for each event type, which, if found,
activates the corresponding event flag. If any event flag is activated
after the primary search, a secondary search looks for expressions
that cancel the ones in the first group (e.g., with keywords such as
‘without’). If one of these is found, the event flag is turned off, and a
tertiary search is performed. This tertiary search looks for expressions
that contradict the secondary search (such as ‘except’). If the tertiary
search is successful, the event flag is activated back again. The entire
search procedure is summarized in Algorithm 1. Note that the matching
state of each group of expressions has to be stored. This is so because
some events need a second round of primary, secondary, and tertiary

searches to confirm or not the decision made by the first group. In this
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Listing 1
Example of original DDR describing two drilling ‘drag’ events.

==================================================

Original DDR Text

==================================================

Open Well Pulling Drill String out of the Hole

Pulling drill string out of the hole DP 5 1/2" TT550 with 28" BHA #2 from 2411 -2143 m in an open well without >>

>> drag , except at:

- 2323 -2310 m with drag of 30-50 klbf.

- 2284 -2252 m with drag of 30-50 klbf.

Note:

- Total CADIT 9.9 ppg used for pulling drill string out of the hole , across the open well , equal to 1100 bbl.
Listing 2
Example of preprocessed DDR after misspelling correction, lowercase conversion, and stop-word removal.

==================================================

Preprocessed Text

==================================================

open well pulling drill string out hole

pulling drill string out hole dp 5 1/2" tt550 with bha #2 28" 2411 -2143 m in open well , WITHOUT DRAG , EXCEPT:

- 2323 -2310 m with drag 30-50 klbf.

- 2284 -2252 m with drag 30-50 klbf.

note:

- total cadit 9.9 ppg used pulling drill string out hole , across open well , equal 1100 bbl.
scenario, the first group is referred to as the master and the second one
as the slave.

In order to better understand how this whole process works, con-
sider the example of identifying an event in the DDR shown in Listing 2.
In this case, the primary search at the master level decides in favor of a
‘drag’ event, as it finds the word drag when using the regular expression

\bdrag(s|ging|ged)?\b.

The secondary search rejects the event by finding the expression pulling
drill string out (...) without drag, as a result of the search

\b(pulling drill string out).*(without drag)\b.

However, the tertiary group takes the final decision in favor of the
event by finding the text without drag, except as a result of matching
the regular expression

\b(without drag).*(except)\b.

This final decision seems the correct one as the DDR indicates that the
drilling column is being pulled out without drag, except at some specific
depths which characterize the event occurrence.

For some event types, however, such as ‘drag’, it may be necessary
to subsequently perform the slave search round, as summarized in
Algorithm 2. The slave step operates based on the result returned by the
master step, and can return an opposite evaluation of event occurrence
if the configured test condition is satisfied.

For events that require the slave round, the variables ValueP, Val-
ueS, and ValueT determine, respectively, when and how the primary,

2 Australian: a fixed or definite amount of work; a work quota.
3

secondary and tertiary conditions should be evaluated. The variable
ValueE determines whether the slave round will be activated or not,
depending on the value set in bHasEvent by the master round. If it is
necessary to activate the slave round when bHasEvent is set to true by
the master round, then ValueE is set to true. Likewise, if it is necessary
to activate the slave round when bHasEvent is set to false by the master
round, then ValueE is set to false.

If the slave step is executed, the variables ValueP, ValueS, and
ValueT determine how the results of matching primary, secondary and
tertiary regular expressions should be evaluated by the slaveCheckRules
function shown in Algorithm 2. If slaveCheckRules returns true, then
bHasEvent is set to its opposite value.

The slave action is exemplified in Listing 3. The master decided in
favor of the event ‘drag’ because it has found the text overpull after
matching the regular expression

\b(overpulls?)\b.

The slave step will be executed when master cycle returns true for
the ‘drag’ event because ValueE is preset to true in this case. Only
primary and secondary rules are available for the slave ‘drag’ step.
Then, 𝑉 𝑎𝑙𝑢𝑒𝑃 = 𝑡𝑟𝑢𝑒 and 𝑉 𝑎𝑙𝑢𝑒𝑆 = 𝑡𝑟𝑢𝑒 in order to evaluate the
condition
𝐢𝐟 (𝑝𝑟𝑖𝑚𝑎𝑟𝑦-𝑠𝑙𝑎𝑣𝑒-𝑚𝑎𝑡𝑐ℎ is 𝑡𝑟𝑢𝑒 𝐚𝐧𝐝 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦-𝑠𝑙𝑎𝑣𝑒-𝑚𝑎𝑡𝑐ℎ is 𝑡𝑟𝑢𝑒)

𝑏𝐻𝑎𝑠𝐸𝑣𝑒𝑛𝑡 = 𝑓𝑎𝑙𝑠𝑒.

Since there are no tertiary slave rules, bHasTerMatch is always set to
false. Thus, setting 𝑉 𝑎𝑙𝑢𝑒𝑇 = 𝑓𝑎𝑙𝑠𝑒 has the effect of ignoring this rule.
Back to the example, the slave round correctly detects that the overpull
is not related to a ‘drag’ event but to a ‘stuck’ event. An overpull force
is employed here to free the drill string. The ‘stuck’ event is correctly
detected by the corresponding stuck-rules as shown in Listing 3.

In our training database of 4355 DDRs, only 14 (0.32%) of these had
the master event status changed by the slave round.
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Listing 3
Example of slave algorithm in action.

==================================================

Original DDR Text

==================================================

Fishing / Unstuck

Connecting two pipes to allow moving Top Drive down and work on drill string.

Working on drill string with OP=50 klbf.

==================================================

Preprocessed Text

==================================================

fishing / unstuck

connecting two pipes allow moving top drive down and work drill string.

working drill string with overpull =50 klbf.

--------------------------------------------------

(X) Drag

Master Rules

Primary

Pat: \b(overpulls ?)\b

Cap: overpull

--------------------------------------------------

( ) Drag

Slave Rules

The master rules accepted the event but the slave ones refused it

Primary

Pat: \b(fishing).*(/) .*( unstuck)\b

Cap: fishing / unstuck

Secondary

Pat: \b(working drill string with).*( overpull)\b

Cap: working drill string with overpull

--------------------------------------------------

(X) Stuck

Master Rules

Primary

Pat: \b(fishing).*(/) .*( unstuck)\b

Cap: fishing / unstuck

==================================================

Preprocessed Text -- Event Highlighted

==================================================

FISHING / UNSTUCK

connecting two pipes allow moving top drive down and work drill string.

working drill string with overpull =50 klbf.
3.1. Obtaining the regular expressions

Finding out the the master and slave search groups’ regular expres-
sion is essentially a manual procedure performed in a developing stage.
From expressions that basically capture single words that compose the
set of the events of interest, such as

\bdrag(s|ging|ged)?\b,

the automatic event extraction algorithm is executed, and the re-
sults are compared with those of the manual event annotation made
previously. Then, counts are generated with the events that
4

• agreed with the manual annotation,
the true positives – TP;

• disagreed with the manual annotation,
should have been marked as a given event, but were not, the false
negatives – FN ;

• were added by the automatic identification and extraction,
should not have been marked as a given event, but they were, the
false positives – FP.

During the process of obtaining the event counts, lists are also gen-
erated with the DDR identifiers for all FN and FP results. With the
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Algorithm 1
Master algorithm for RBLP-based automatic event annotation. .

# Variables that indicate the match in each group.
bool bHasPriMatch;
bool bHasSecMatch;
bool bHasTerMatch;

# Flag to store event decision.
bool bHasEvent = false;

# Daily Drilling Report text to analyze.
String 𝑋B = 𝐷𝐷𝑅_𝑇 𝑒𝑥𝑡;

# Function to reset match flags.
function RESET( )

bHasPriMatch = false;
bHasSecMatch = false;
bHasTerMatch = false;

end function

# Function to match the regular expressions.
function MATCH( StringList 𝑃 , StringList 𝑆, StringList 𝑇 ,

String 𝑋B )
bHasPriMatch = HASMATCH( 𝑃 , 𝑋B );
bHasSecMatch = HASMATCH( 𝑆, 𝑋B );
bHasTerMatch = HASMATCH( 𝑇 , 𝑋B );

end function

# Master part.

# Function for checking master rules.
function MASTERCHECKRULES( )

bool bResult = false;

if ( true == bHasPriMatch ) then
bResult = true;

end if

if ( true == bHasSecMatch ) then
bResult = false;

end if

if ( true == bHasTerMatch ) then
bResult = true;

end if

return bResult;
end function

# Master regular expressions related to a given event.
StringList 𝑃 = 𝑃 1

ev; # Primary regular expressions.
StringList 𝑆 = 𝑆1

ev; # Secondary regular expressions.
StringList 𝑇 = 𝑇 1

ev; # Tertiary regular expressions.

RESET( );
MATCH( 𝑃 , 𝑆, 𝑇 , 𝑋B );

# Store master decision.
bHasEvent = MASTERCHECKRULES( );

aid of a graphical user interface, all incorrectly evaluated DDRs are
(re)examined, and a new set of regular expressions is derived. As a
result of this process, it was possible to establish regular expression sets
for all events registered in a training set of 4355 manually annotated
DDRs, as quantified in Table 1. These expressions were then tested
on an independent set of 300 DDRs, as detailed in the experiments in
Section 5.

4. A neural-network DDR analyzer

Deep learning is the common term for the class of
artificial-intelligence algorithms based on neural networks with many
layers. While it may seem trivial to use more layers, there are several
technical and computational challenges involved.

After the preprocessing stage described in Section 2, the sentences
5

are split into meaningful chunks, called tokens. This process, referred
Algorithm 2
Slave algorithm for RBLP-based automatic event annotation. .

# Master part, from Algorithm 1.

# Master regular expressions related to a given event.
𝑃 = 𝑃 1

ev;
𝑆 = 𝑆1

ev;
𝑇 = 𝑇 1

ev;

RESET( );
MATCH( 𝑃 , 𝑆, 𝑇 , 𝑋B );

# Store master decision.
bHasEvent = MASTERCHECKRULES( );

# Slave Part.

# Function for checking slave rules.
function SLAVECHECKRULES( bool bPriValue,

bool bSecValue,
bool bTerValue )

if ( bPriValue != bHasPriMatch ) then
return false;

end if

if ( bSecValue != bHasSecMatch ) then
return false;

end if

if ( bTerValue != bHasTerMatch ) then
return false;

end if

return true;
end function

# ValueE, ValueP, ValueS and ValueT below can be set true
# or false, depending on the event being analyzed.

if ( ValueE == bHasEvent ) then
# Slave regular expressions related to a given event.
𝑃 = 𝑃 2

ev; # Primary regular expressions.
𝑆 = 𝑆2

ev; # Secondary regular expressions.
𝑇 = 𝑇 2

ev; # Tertiary regular expressions.

RESET( );
MATCH( 𝑃 , 𝑆, 𝑇 , 𝑋B );

if ( true == SLAVECHECKRULES( ValueP, ValueS, ValueT ) ) then
# Change master decision.
bHasEvent = !bHasEvent;

end if
end if

Table 1
Number of regular expressions used for the RBLP algorithm per event type for each
search group (Pri = Primary, Sec = Secondary, Ter = Tertiary) and level(M = master,
= slave).
Event Pri M Sec M Ter M Pri S Sec S Ter S Total

Bump 3 0 0 0 0 0 3
Drag 11 63 15 2 3 1 95
Kick 3 8 0 0 0 0 11
Loss 3 60 6 2 3 0 74
Stuck 17 10 14 1 5 1 48
Other 403 22 2 0 0 0 427
Total 440 163 37 5 11 2 658

to as tokenization (Jurafsky and Martin, 2009), can happen at char-
acter, word, or subword level. While character-level tokenization is
too simplistic and requires the deep neural networks (DNNs) to have
significantly more parameters to deal with the conceptual grouping of
characters, word-level tokenization represents an exponentially large-
dimension space. Subword tokenization is a good compromise that
combines word and character level tokenization strengths while al-
leviating their drawbacks: it achieves a semantically meaningful space
while keeping dimensionality under control.
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The common bottleneck for algorithms based on DNNs is the lack
of sufficient annotated data for system training. Recent works in the
field of natural language processing have tackled this issue by using
the bidirectional encoder representations from transformers (BERT)
algorithm (Devlin et al., 2019).

In the context of NLP, a transformer is a type of DNN that relies
on an encoder–decoder structure that forgoes recurrent architectures
and enables significant parallelization. The encoder converts the input
sequence into an intermediate representation containing information
from a potentially vast context. Stacking multiple encoders allows
the DNN to learn more complex and relevant relationships through
training.

A key component of the BERT algorithm is the concept of self-
attention that is used to map one sequence into another (Vaswani et al.,
2017). Attention is a mechanism that determines which parts of an
input sequence are more relevant to a given task, and self-attention
uses the input sequence itself to determine its more relevant parts. In
this scheme, there are two steps in the system optimization process:
pre-training and fine-tuning.

The model is adjusted to unlabeled data over two different tasks
during pre-training: masked language model and next sentence predic-
tion. In the former, the model must predict randomly selected tokens
within the sequence (not the next or previous token). In the latter, the
model must predict if the two sentences stitched together are actually
contiguous or not. During the fine-tuning step, all model weights are
refined.

When employing the BERT algorithm in DDR analysis, the pre-
training for the Brazilian Portuguese language model was derived based
on the large text corpus described in Wagner Filho et al. (2018),
whereas the fine-tuning for drilling event identification was based on
the subset of 4355 manually annotated DDRs.

The general steps employed in the DNN-based text-processing algo-
rithm are text preprocessing as explained in Section 2, tokenization,
numericalization, embedding, and classification.

The present work uses SentencePiece (Kudo and Richardson, 2018),
a subword tokenizer specific for DNN-based text processing, coupled
with byte pair encoding (BPE) (Sennrich et al., 2016). In BPE, the
vocabulary starts with single characters, but after initially tokenizing
the text, the most frequent pairs of symbols are merged and included
in the vocabulary.

Numericalization consists of transforming the tokens into integers
according to the dictionary built during the previous step (Jurafsky and
Martin, 2009). The dictionary represents the set of all known tokens,
that is, the vocabulary. A special token replaces tokens outside the
vocabulary.

The embedding step maps the high-dimensional sparse one-hot
encoding of integers (Vidgen et al., 2019) onto computationally effi-
cient dense real-numbered vectors. The transformation is learned from
training on a large corpus. The optimization creates a structured space
where semantically similar tokens are mapped onto close vectors.

Finally, the embedding matrix, a concatenation of all embedding
vectors of a sample sentence, is fed to the DNN-based classifier, which
outputs a confidence value 𝑐𝑓 within the interval [0, 1] for each failure
ype 𝑓 . If the value is above a specified threshold 𝑡𝑓 , the input sample
s predicted as positive for the corresponding failure 𝑓 . If no failure is
redicted, the sample is considered ‘normal’.

The present work uses the same BERT base architecture defined in
evlin et al. (2019), with 12 layers, 12 attention heads, 768 hidden units
t each layer, and a total of 109 million trainable parameters. We used
he Portuguese pre-trained model made publicly available in Souza
t al. (2019). The training was performed for 1 million steps, which
mount to approximately 8 epochs over the training data set, a process
hat lasted 4 days on a TPUv3-8 instance. Their model builds on the
ultilingual BERT base weights, which was also trained for 4 days but

n 16 TPU chips instead. Hence, most of the hyperparameters have
6

lready been fixed, needing only to set a few, e.g., learning rate and
egularization strength. The vocabulary consists of about 30,000 cased
subword units and was extracted from a set of 200,000 articles from the
Brazilian Wikipedia (Souza et al., 2019).

We also fine-tuned the Portuguese base model for multi-label DDR
classification by training on 4355 DDR samples for 6 epochs, which
lasts around 14 min. As the loss function, we used the weighted binary
cross-entropy loss function

(𝐱, 𝐲) = − 1
𝑁

𝑁−1
∑

𝑖=0
𝑤𝑖

[

𝑦𝑖 log
(

𝜎(𝑥𝑖)
)

+(1 − 𝑦𝑖) log
(

1 − 𝜎(𝑥𝑖)
)]

, (1)

where 𝑤𝑖 are the class weights, 𝑥𝑖 and 𝑦𝑖 the predicted and target binary
output for class 𝑖, respectively, and 𝜎(𝑥𝑖) = 1∕(1+exp−𝑥𝑖 ) is the sigmoid
function.

Binary cross-entropy treats each output independently, so it is suit-
able for multi-label classification use cases. Since the training set is
heavily skewed with some classes being 10 to 100 times more frequent
than others, we use the inverse class frequencies as the 𝐰 class weights.

5. Experimental results

In this section, the results obtained by the RBLP- and DNN-based
algorithms are presented and compared. The advantages and disad-
vantages of both methods are also pointed out. All results that follow
were obtained by the systems trained with 4355 manually-annotated
DDRs from 55 different wells. The testing data set consisted of an
additional 300 manually-annotated DDRs from a single well apart from
the training set.

5.1. RBLP-based event identification

Table 2 shows the test results obtained by the RBLP-based DDR ana-
lyzer. In this table, one readily notices the good performances achieved
in automatically identifying all specific failure classes (different from
the class ‘other’), with a few FP cases except in the ‘other’ and ‘normal’
classes.

The RBLP method encompasses 36 types of events in the ‘other’ class
such as pump, top-drive, and drill bit failures. For each type, a group
of regular expressions was built that could properly match it. However,
in the ‘other’ class, there was no generic type that could simply report
that, in a given DDR, there are descriptions of failures and/or problems
other than those already contemplated in this set of 36 types. If a more
generic regular expression is adopted by adding

\bfailures?\b

and testing it only if the specific events ‘other’ are not found first, better
results for this class can be obtained with the TP rate (TPR) increasing
to 96.64% (115 out of 119 events) and the FN rate (FNR) decreasing to
3.36% (only 4 events instead of 94), as shown in Table 3. The overall
number of FN and FP has also decreased.

Note that this change was not introduced based on reading the
test sets’ DDRs, but conjecturing about the possible causes of worse
performance for the class ‘other’ obtained by the RBLP method.

Another relevant information is that only one out of the 300 DDRs
in the test data set had the master event status changed by the slave
round, indicating, once again, the low criticality of that stage.

5.2. DNN-based event identification

The neural network outputs confidence values in the [0, 1] range
for each failure class. The higher the value, the more confident the
model is in its prediction. It is, therefore, necessary to set, for each type
of failure, probability thresholds that, if exceeded, will characterize
a positive. The freedom to choose these thresholds enables the user
to establish the relative importance between FP and FN , implicitly
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Table 2
Performance breakdown for the RBLP event annotator in the test set.

Event Count TP (%) TP FN (%) FN FP (%) FP

Bump 4 100.00 4 0.00 0 0.34 1
Drag 47 97.87 46 2.13 1 5.14 13
Kick 2 100.00 2 0.00 0 0.00 0
Loss 28 89.29 25 10.71 3 1.10 3
Stuck 25 100.00 25 0.00 0 2.91 8
Other 119 21.01 25 78.99 94 10.50 19
Normal 96 85.42 82 14.58 14 39.71 81

Table 3
Improved performance breakdown for the RBLP event annotator in the test set.

Event Count TP (%) TP FN (%) FN FP (%) FP

Bump 4 100.00 4 0.00 0 0.34 1
Drag 47 97.87 46 2.13 1 5.14 13
Kick 2 100.00 2 0.00 0 0.00 0
Loss 28 89.29 25 10.71 3 1.10 3
Stuck 25 100.00 25 0.00 0 2.91 8
Other 119 96.64 115 3.36 4 19.89 36
Normal 96 85.42 82 14.58 14 1.96 4

Table 4
Performance breakdown for the DNN event annotator in the test set.

Event Count Threshold TP (%) TP FN (%) FN FP (%) FP

Bump 4 𝟣.𝟫𝟪 × 𝟣𝟢−𝟣 100.00 4 0.00 0 0.00 0
Drag 47 𝟤.𝟣𝟨 × 𝟣𝟢−𝟣 100.00 47 0.00 0 3.95 10
Kick 2 𝟥.𝟥𝟨 × 𝟣𝟢−𝟥 100.00 2 0.00 0 67.79 202
Loss 28 𝟨.𝟦𝟢 × 𝟣𝟢−𝟣 89.29 25 10.71 3 0.37 1
Stuck 25 𝟦.𝟨𝟥 × 𝟣𝟢−𝟣 100.00 25 0.00 0 2.91 8
Other 119 𝟫.𝟪𝟦 × 𝟣𝟢−𝟣 24.37 29 75.63 90 6.08 11
Normal 96 – 29.17 28 70.83 68 33.82 69

trading-off detection and false alarm rates. If the ultimate goal is a
semi-automatic procedure in which a human expert assesses the DDR
predicted with some failure, then the aim is to reduce DDR overload
without compromising overall assertiveness. Thus, one should opt for
high detection rates to the detriment of false alarm rates.

The adequate tool for analyzing the performance of methods with a
variable threshold is the receiver operating curve (ROC). This graphical
representation illustrates a binary classifier’s performance in terms of
its TP and FP predictions as its threshold varies. In the multi-label case,
in which the same DDR can simultaneously have different labels, one
ROC per label is used, as given in Fig. 1.

Table 4 exhibits the performance of the DNN-based event extractor
in the test set for the same TP level as RBLP-based DDR analyzer
discussed in the previous section. The model performs very well for
most types of failure, with the exception of those of the classes ‘kick’,
which has very few instances, and ‘others’, which includes several non-
targeted event types. The ‘normal’ class achieves a low performance
because it does not have a dedicated tag during training, as it simply
indicates a no-failure status.

5.3. Overall RBLP and DNN comparison

An overall comparison between RBLP and DNN results is presented
here. Tables 5 and 6 show the average results compiled from those
obtained in the previous two subsections. The rates on the first pair
of columns, RBLP and DNN, include all events of interest. The rates on
the second pair exclude the ‘normal’ event, and the rates of the last
pair exclude ‘kick’, ‘other’ and ‘normal’ events. This is done to take
into account the notes made in Section 5.2 for the worse performance
of DNN concerning these cases. As it can be seen in Table 5, if the
‘normal’ event is excluded, DNN has superior TPR and FNR, but worse
erformance in terms of FPR. In relation to the improved RBLP (de-
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oted herein RBLP*), shown in Table 6, DNN can only reach superior
Table 5
Average RBLP and DNN performance. The minus sign (–) means ‘excluding event’.

Rate
(%)

RBLP DNN RBLP
–
Normal

DNN
–
Normal

RBLP
–
Kick, Other, Normal

DNN
–
Kick, Other, Normal

TP 84.80 77.55 84.69 85.61 96.79 97.32
FN 15.20 22.45 15.31 14.39 3.21 2.68
FP 8.53 16.42 3.33 13.52 2.37 1.81

Table 6
Average RBLP* (improved RBLP) and DNN performance. The minus sign (–) means
‘excluding event(s)’.

Rate
(%)

RBLP* DNN RBLP*
–
Normal

DNN
–
Normal

RBLP*
–
Kick, Other, Normal

DNN
–
Kick, Other, Normal

TP 95.60 77.55 97.30 85.61 96.79 97.32
FN 4.40 22.45 2.70 14.39 3.21 2.68
FP 4.48 16.42 4.90 13.52 2.37 1.81

performance if the problematic ‘kick’, ‘other’ and ‘normal’ events are
not used to compute the rates, as already explained in Section 5.2.

The identification and extraction of events based on DNN offer
flexibility in terms of the trade-off between detection and false alarm
rates obtained via the threshold adjustment translated as different 𝑇𝑃 ×
𝐹𝑃 operating points in the ROC curve. However, flexibility means extra
model complexity and the accompanying requirement of more data
for training the network. This meant relatively poorer performance in
our system for detecting ‘kicks’ and non-targeted event types, treated
as ‘other.’ On the other hand, the RBLP approach designed upon a
carefully chosen master–slave iterative protocol could perform very
well even for the highly unbalanced data-starving training set. Its
overall good performance was achieved at the price of lack of flexibility
in terms of the trade-off between detection and false alarm rates, shown
as a single operating point instead of a full ROC curve.

Our results using real-life data indicate that the two approaches
can be employed to put together a powerful toolbox for the post-
drilling processing of DDRs, in which one can choose the desired
compromise between computational complexity and operating point
flexibility. Its use can greatly improve the efficiency of the otherwise
time-consuming and error-prone manual activity of going through large
log files, typically equivalent to finding needles in a haystack.

6. Conclusion

In this article, a significant gap in IE from daily drilling reports
(DDRs) was addressed: to develop a robust multi-label data-driven
model for automatic DDR event identification and extraction. To bridge
this gap, two new approaches were considered: a rule-based language
processing (RBLP) algorithm and a deep neural network (DNN). The
RBLP employs regular expressions that are manually constructed to
extract/identify the events of interest. To the authors’ best knowl-
edge, a method like this was never used to build a multi-label event
identifier with such a notably good performance. The DNN system
uses a pre-training stage based on a large (non-annotated) data set
and fine-tunes the algorithm on the same manually annotated DDR
data set as the RBLP system. Although there are works on multi-class
DDR classification using DNN architectures, such as LSTMs, this is the
first to use transformer, which carries several advantages, such as:
avoid recursion, are highly parallelizable, better capture long-range
dependencies, making them an excellent choice for text classification.

Both systems were tested and compared using a set of 300 manu-
ally annotated DDRs for five common events indicating failures. The
main results obtained reveal an average TPR of 97.30% for RBLP
and 85.61% for transformers-DNN with average FNR of 2.70% and
14.39%, respectively, and a corresponding FPR of 4.90% and 13.52%.
Transformers-DNN had superior performance when the problematic
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Fig. 1. ROC performances (solid orange line) for the DNN-based event annotator in the test set. The dashed orange line represents the threshold for each false positive value.
Performance of the RBLP-based annotator is represented by the black dot. The black star depicts the performance of the improved RBLP for the ‘other’ class. Since only this class
was affected by the improvement, only black dots appear on the remaining plots.
cases, with very few training samples, were excluded when computing
rates. In this case, the average TPR was 96.79% for RBLP and 97.32%
for transformers-DNN, with an average FNR of 3.21% and 2.68%,
respectively, and a corresponding FPR of 2.37% and 1.81%. Altogether,
such results indicate that the multiclass problem of automatic DDR
analysis has been successfully addressed by both proposed approaches.
8

As a future direction, one may consider employing pre-trained word
embedding models to leverage the domain knowledge onto the final
event extractors. Another possibility is to address the class imbalance
issue that hinders DNN optimization and negatively impacts classifica-
tion performance, as demonstrated in Zhang et al. (2020), by employing
synthetic minority over-sampling technique (SMOTE) (Chawla et al.,
2002) and focal loss (Lin et al., 2017).
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