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The massive growth of audiences eager for sport content has substantially increased work-
ers’ demand in this profitable segment. Highlight identification is vital for summarizing
football matches. Decision support tools can significantly reduce the number of company
employees required to tackle such a task, widely benefiting workforce resource allocation.
This paper discusses the development of an automatic football highlight detector. The pro-
posed system exploits discriminative low-level audio and video features extracted from a
compact set of irregularly time–spaced frames that integrate a long-term sliding window.
A new mixed wrapper-probabilistic algorithm leverages a cost-effective selection of the
most significant frames submitted to a robust multi-frame consensus classification
scheme. By considering a comprehensive database integrating 30 full matches, the pro-
posed approach achieves a highlight identification rate of 100% (including all annotated
goals), conjugated with a match-time compression rate of about 94%, when employing a
Random Forest classifier.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

Recent developments in the capture, storage, and video retrieval have substantially increased sports-related media avail-
ability, especially after the popularization of the over-the-top (OTT) media services. Motivated by the massive growth in
audience’s interest, many content providers have been expanding the number and types of sporting events broadcasted
globally through a range of platforms. As a result, the automation of video-related tasks, like production, tagging, annotation,
and highlight detection has become an urgent need, strongly affecting broadcaster’s workforce allocation [1], due to the ris-
ing number of releases with tight schedules.

In today’s football broadcasts, highlight annotation requires the assignment of one employee just for watching the whole
match, or as many, in case of multiple simultaneous transmissions. Automatic highlight detection systems (AHDSs) may sig-
nificantly reduce companies’ efforts in accomplishing this task. Such a tool makes it viable that a single operator carries off
several matches in parallel, as now in charge of the much simpler task of discarding misjudged events or fine-tuning the
starting and ending times of identified highlights.

It is worth mentioning that highlights in football broadcasts constitute long-term episodes, commonly described by slow
time-varying audio and video features, especially when considering typical frame rates (30 frames/s). Usually, the relevant
City, Rio
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information for accomplishing such a task is spread in a compact subset of frames integrating long-lasting frame windows,
which should be adequately identified and accessed, representing a hard task in most situations.

This work discusses the development of an automatic football highlight detector, solely exploiting low-level audio and
video features. Such a system was produced to attend a specific broadcaster company demand. The highlights of interest
are represented by any scoring attempt, no matter how feeble, including all times the players shoot the ball in the goal direc-
tion, even if it is deviated or blocked during its trajectory. Identifying highlights represent a priority task for game broadcast-
ers when summarizing game dynamics. Therefore, this kind of systemmay constitute a handy supporting tool for employees
of broadcast companies.

As compared to the state-of-the-art, the proposed work distinguishes by considering the dynamic behaviour of frame fea-
tures both in feature generation and decision-making. The feature extraction exploits a long-term sliding window, integrat-
ing past and future frames around the frame under analysis. To keep the learning process feasible, we propose a hybrid
wrapper-probabilistic approach that selects the most highlight distinguishing frames, according to a complexity hyperpa-
rameter. This process assumes a non-parametric frame relevance modelling, which may exploit any classification technique
with some intrinsic feature selection, in this work, an Adaboost [2] classifier. By wisely integrating the long-term behaviour
of frames features, the proposed approach reduces the false-positive highlight rate from 51:5% to 11:3%, as compared to a
single frame classification alternative, both assuming a decision threshold settled to a true-positive rate of 97:0%. Additional
system improvements, such as adopting a decision voting filter and a Random Forest classifier [2], can further reduce this
false-positive rate to 4:7%.

Another noteworthy model characteristic is the significant reduction in the number of video frames effectively involved
in highlight identification by a factor of 12, considering that it operates over a set only including 61 frames. These frames are
identified in long-term windows (24s) that, at a frame rate of 30 frames/s, contain 721 (1þ 2� 12� 30) frames. As a result,
since each frame produces 16 features, the feature vector considered for highlight classification has its dimensionality
reduced from 11536 (721� 16) to just 976 (61� 16) components. Such a number of features is readily manageable by most
classification algorithms. This means that by generating a concise set of highly discriminative features from such long-lasting
frame windows, the systemmay achieve satisfactory performance with a wide range of classifiers, thus becoming somewhat
‘‘agnostic” to the classifier choice. Besides, the best classification technique can still be selected by cross-validation. In addi-
tion, by including a consensus decision approach, the proposed system also reduces the false-alarms, only identifying a high-
light when the current frame as its corresponding neighbours are classified accordingly.

Experimental evaluation includes a fully-annotated comprehensive database, comprised of 30 full matches (total of 58 h
of video), covering many tournaments (consequently, different production patterns), game time (day, evening, or night), sta-
dia, and teams.

The paper is organized as follows: Section 2 conducts a brief review on football highlight detection. Section 3 introduces
the proposed system design approach, discussing the multi-frame classification scheme, the generation of discriminating
audio and video features (Subsection 3.1), and the processes of time aggregation and frame selection (see Subsections 3.2
and 3.3, respectively). Section 4 describes the database (Subsection 4.1) and the performance assessment strategy (SubSec-
tion 4.2). Finally, Section 5 reports the experimental results, and Section 6 summarizes the conclusions, emphasizing main
paper contributions.
2. Related work

In an AHDS, highlights of interest may include many sorts of match events, restricting to scenes of goals and goal
attempts, or consider a brother range of possibilities, such as the application of penalty cards [3,4], penalty faults, free kick,
corner moments [5], all types of boots [4], and periods of intense competition and emotion [3]. Relatively to system outcome,
this may restrict to the occurrence of a highlight or not, or include its classification in categories, such as goal, penalty fault,
yellow or red cards, among others [4,6,7].

Highlight prediction models often exploit video features. These may be classified as (i) low-level [7–9], such as the
dominant-colour, the camera motion, and some moving object information; (ii) mid-level [10,7], for instance, the presence
of straight white lines and the shot-type; and (iii) high-level, such as the presence of the goal frame, penalty-boxes, score-
box, spectators, the referee and players’ position [11,4,9,12], or even social media content [11]. The inclusion of audio infor-
mation, considering simple excitement measures, like signal energy and pitch, may be beneficial, especially in broadcasts to
which narrators become loud and very excited in imminent goal moments. Multimodal schemes represent a well-succeeded
trend in football highlight identification [11,13,1,14].

Motivated by the release of several open-access datasets, such as UCF101, HDMB51, Activity-Net, and THUMOS-14, the
action recognition in videos has attracted a lot of attention lately [15–19], especially considering Deep Learning solutions
[20–22]. In this direction, Transfer Learning (TL) was exploited by [23,24,14] for football highlight classification, aiming at
mitigating the computational efforts, dataset size requirements, time, and task complexity related to developing a deep
model from scratch. However, the scarcity of training data strictly covering the problem of interest (i.e., football highlights)
makes this approach being of questionable efficacy [14]. Moreover, typical action dataset scenarios radically differ from
those of interest in football matches, as including different sports [25], broadcasting dynamics [25], and highlight definitions
[26]. Consequently, in such restricted data scenarios [27], hand-feature engineered and compact machine learning models,
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developed by exploiting domain knowledge [28], represent competitive or better alternatives to more complex deep learning
techniques.

Up to the authors’ best knowledge, only a few works exploited models or strategies that include temporal information
when addressing this task. Some examples include hidden-Markov models (HMM) [10], temporal confusion networks [6],
video-density modelling [29], Recursive Neural Networks [23], and Long-Short-Time Memories (LSTM) [14]. Nonetheless,
these alternatives may not strictly represent highlight detectors but event classifiers instead. In contrast, others may assume
only a reduced number of matches, short excerpts, or attain low or regular performance.

Therefore, the primary motivation for this work is building an end-to-end high-performance plus computationally attrac-
tive football highlight detector, exploiting low-level audiovisual features to strengthen system robustness to different oper-
ational conditions, experimentally validating the proposed approach with a comprehensive dataset. For this purpose, this
work presents a new feature generation methodology that efficiently incorporates the past and the future behaviour of
highly discriminative multimodal features generated over long-term audio and video frame sequences, resulting in
moderate-size feature vectors. Such design achievement leads the highlight classification system being almost ‘‘agnostic”
to the classifier choice, as confirmed by an extensive set of experiments including AdaBoost, k Nearest Neighbours, Support
Vector Machines, Extreme Learning Machines, and Random Forests classifiers, the latter related to the best true-positive �
false-positive trade-off. Moreover, the system underwent a robust performance assessment process, including 30 full foot-
ball matches covering a wide range of game scenarios and highlight contents, in contrast to most previous works that solely
consider short game excerpts. The use of full matches also represents a new evaluation paradigm in this context, better emu-
lating the real operational scenarios of such a system, and contributes to more realistic performance results.

3. Proposed AHDS

Fig. 1 depicts a high-level view of the proposed automatic highlight detection system (AHDS). By aiming to improve deci-
sion robustness, the mth frame classification, denoted here as dm, considers the outcomes of several multiple-frame classi-
fication modules (MFCMs), operating in audio and video frame packs Pi (m� kl 6 i 6 mþ ku) integrating the set
E ¼ fdm�kl ; dm�klþ1; � � � ;dm; � � � ; dmþku�1;dmþkug; ð1Þ

where the individual MFCM decisions are represented by di 2 f0;1g, and the constants kl and ku are design hyperparameters.
Majority voting over E defines the system outcome d.

The pack Pi feeding the ith MFCM block is constituted by synchronized audio si and video Vi frames integrating a window
W defined around the ith frame (i� ll 6 i 6 iþ lu), with size equal to W ¼ ll þ lu þ 1, where the constants ll and lu represent
design hyperparameters. As illustrated in Fig. 2, MFCM includes the following stages:
(m+ku)th Multiple Frame
Classification Module

(m-kl)th Multiple Frame
Classification Module

(m-kl)th Multiple Frame
Classification Module

(m-kl)th Multiple Frame
Classification Module

(m-kl)th Multiple Frame
Classification Module

(m-kl)th Multiple Frame
Classification Module
mth Multiple Frame

Classification Module

m-kl+lum-klm-kl -1 m-kl+1...m-kl -ll

m-kl+lum-klm-kl -1 m-kl+1m-kl -ll

m+ku+lum+kum+ku-1m+ku-ll

m+ku+lum+kum+ku-1m+ku-ll

m+lumm -1 m+1ml -ll

...
...
...

... ...
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m+lumm -1 m+1ml -ll ... ...
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Pack of syncronized audio and video frames

...

...

 Decision Making (Voting)

Highlight or not ?
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Pm-kl
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d

Pm

Pm+ku

...

Fig. 1. Top level description of the proposed football highlight detection system..
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Fig. 2. Block diagram of the multiple frame classification module (MFCM)..

C.L. Bez, João B.O. Souza Filho, Luiz G.L.B.M. de Vasconcelos et al. Information Sciences 578 (2021) 702–724
1. Feature generation and time-aggregation: this first stage aims to extract highly discriminating highlight features from
W, as will be discussed in SubSection 3.1. Generally speaking, this stage is responsible for generating a total of Ns

A audio
and Nv

A video features, respectively represented by the scalars as
is
ðmÞ and aviv ðmÞ (1 6 is 6 Ns

A, 1 6 iv 6 Nv
A), for each frame

integrating the pack Pm. The audio fsðmÞ and video fv ðmÞ feature-frame vectors, defined as fsðmÞ ¼ ½as1ðmÞas
2ðmÞ � � � as

Ns
A
ðmÞ�

and fv ðmÞ ¼ ½av1ðmÞav2ðmÞ � � � avNvA ðmÞ�, summarize these features. This process is repeated to all frames included in W,

resulting in a set of audio as
is
ðmÞ and video aviv ðmÞ feature vectors related toW, such that as

is
ðmÞ 2 RW (W ¼ ll þ lu þ 1) inte-

grates the current value of as
is
ðmÞ plus ll past - asis ðm� llÞ; � � � ; asis ðm� 1Þ - and lu future - asis ðmþ 1Þ; � � � ; asis ðmþ luÞ - values,

according to as
is
ðmÞ ¼ ½as

is
ðm� llÞ � � � as

is
ðmÞ � � � asis ðmþ luÞ�. The vector aviv ðmÞ is defined similarly to as

is
ðmÞ. Finally, these vec-

tors are concatenated in the general feature vector aiðmÞ ¼ as
i ðmÞ as

i ðmÞ½ � 2 R
NA , satisfying NA ¼ Ns

A þ Nv
A , that is summa-

rized by the matrix of general aggregated features Am 2 R
W�NA , given by Am ¼ a1ðmÞ a2ðmÞ � � � aNA

ðmÞ½ �.
2. Frame selection: the third stage is responsible for selecting the U (U � W) most relevant frames, whose indexes are

given by S ¼ fm;mþ D1;mþ D2; � � � ;mþ DUg, �ll 6 Di 6 lu, where U represents a system hyperparameter. Section 3.3
discusses in more details the process for obtaining S. The matrix of selected frame features Sm 2 RU�NA is formed by
the lines of Am specified by S, being subsequently vectorized to produce the classifier input vector xm 2 RUNA .

3. Classification: since the proposed frame selection algorithm can identify a concise but representative subset S, MFCM
may consider most standard classification algorithms. The experiments conducted in this work included the AdaBoost,
k Nearest Neighbors (kNN), Support Vector Machines (SVM), Extreme Learning Machines (ELM), and Random Forests
(RF), which are briefly described below.
(a) AdaBoost: AdaBoost [2] represents an additive model that combines several ‘‘weak” classifiers, i.e., with low-

discriminative power, usually constituted by ‘‘shallow” classification trees (CTs), aiming to result in a highly-
discriminative classification system. CTs are hierarchical models that exploit sequential binary data space partition-
ing, realized by a set of variables identified as the most relevant for class prediction. During tree induction, new par-
titions are generated, targeting to solve local class confusions. Each tree is induced over a Bootstrap sample of the
training set [2], and optimally combined in a step-wise fashion.

(b) kNN: this algorithm has the premise that neighbour feature vectors are prone to belong to the same class, assigning to
a given testing set instance the most frequent class-label observed among its k-nearest neighbours, usually identified
using the Euclidean distance [30].

(c) SVM: this model exploits the kernel trick for implicitly mapping input data into a feature space, producing a binary
classifier based on a hyperplane that maximizes the margin of separation between two classes of interest [30].
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(d) ELM: this method consists of a single hidden-layer neural network, whose output neurons are linear. In contrast to
the standard multilayer perceptron (MLP), ELM hidden-layer neurons have random weights and may include non-
differentiable activation functions [31]. The much simpler and fast ELM learning process, as compared to MLP, solely
consists of estimating output-layer parameters by ordinary linear regression.

(e) RF: the Random Forest is a powerful ensemble technique that fuses multiple classification trees outcomes, induced
upon random data subspaces and bootstrap dataset samples [2], considering majority voting for decision making.

These development stages are detailed in the following.

3.1. Feature generation

Feature generation comprises of extracting audio and video frame attributes, like audio signal energy, pitch, dominant
colour, camera movement, and measures about their dynamics inside W, as described in the sequence.

For synchronising audio and video match contents, the discrete-time audio signal sðnÞ was split into M non-overlapping
frames smðn0Þ of N samples each, with m ¼ 1;2; � � � ;M and n0 ¼ 0;1; � � � ; ðN � 1Þ. Then, these frames were multiplied by a
Hamming window function [32], producing the set of audio-frame vectors sm ¼ smð0Þ; � � � smðN � 1Þ½ � associated with
the set of video-frames Vm. The window length was set to 33:3 ms to allow synchronization with the NTSC video frame-
rate of 29:97 frames/s, as will be detailed in SubSection 3.1.2.

3.1.1. Audio features
The vector fsðmÞ resumes the nine audio-features produced to the mth frame, including the simplified pitch frame esti-

mate g0ðmÞ, the short-time frame narrator voice energy estðmÞ, the Comb-filtered frame narrator voice energy ecstðmÞ, and
two dynamic behaviour measures for each audio attribute, indistinguishably refereed now as f for conciseness: the difference

on feature means lf
av ðmÞ and the feature’s mean ascending indicator lf

I ðmÞ. The first can be stated as
lf
avðmÞ ¼ lf

bðmÞ � lf
aðmÞ; ð2Þ
where lf
bðmÞ and lf

aðmÞ are the average values of a given signal attribute f, before and after, respectively, the mth frame, that
is,
lf
bðmÞ ¼

Xm�1

k¼m�Nb

f ðkÞ; lf
aðmÞ ¼

XmþNa

n¼mþ1

f ðkÞ; ð3Þ
with the values of Nb and Na corresponding to durations of 10s and 3s, respectively, as suggested in [33]. The second is
defined as
lf
I ðmÞ ¼ 1; if lf

aðmÞ � lf
bðmÞ P 0

0; if lf
aðmÞ � lf

bðmÞ < 0

(
: ð4Þ
The processes and rationales behind generating the previously mentioned features are discussed in the sequence.
Pitch. The main idea behind the pitch-estimation process is to exploit the almost-periodic behaviour during voiced inter-

vals of speech signals. Among the several pitch estimation algorithms, the autocorrelation method is quite reliable at a rea-
sonably low-computational cost. In such a technique, one computes the autocorrelation function RmðsÞ of a given audio
signal frame smðnÞ as
RmðsÞ ¼
XN
n¼1

smðnÞsmðn� sÞ; ð5Þ
and the corresponding pitch period T0 ¼ 1=f 0 can be determined by the first significant peak of RmðsÞ for s > 0, as illustrated
in Fig. 3.

To mitigate non-speech components, one may compute a simplified pitch estimate g0ðmÞ by discarding unusual pitch val-
ues, such as the ones outside the interval 50 < f 0 < 500 Hz [34]. Additionally, by restricting g0ðmÞ computation to audio-
frames whose energy is above certain level, one may avoiding including silent or unvoiced moments. Fig. 4 illustrates the
original f 0ðmÞ and the simplified g0ðmÞ pitch behaviour. One may observe how the narrator’s pitch increases and becomes
smooth during the highlight event between 9.5s and 12s.

Frame Energy. Football highlights are often associated with a higher energy level in the narrator’s voice. Therefore, one
may use the short-time energy function
estðmÞ ¼
XN�1

n0¼0

s2mðn0Þ: ð6Þ
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Fig. 3. Speech signal pitch-period T0 estimation using the autocorrelation method.

Fig. 4. An audio signal and the evolution of its pitch features in time, illustrating a pitch increase during a highlight event. Center plot: the pitch f 0ðtÞ of the
signal sðtÞ in the upper plot; bottom plot: the simplified pitch g0ðtÞ.
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However, since the audio signal carries sound components other than the narrator’s voice (such as background cheers),
the narrator’s signal can be emphasized by first applying a low-pass filter to mitigate noisy high-frequency components. Sub-
sequently, the resulting low-pass audio-frame filtered vector slp;m can be submitted to a Comb-filter Cmðf Þ, described by
Cmðf Þ ¼
Xd

k¼1

Wðf � kf0Þ; ð7Þ
where f 0 is the narrator’s pitch, d is the number of harmonics being summed up, and Wðf Þ represents a frequency-domain
window function. Fig. 5 illustrates the Comb filter effect over an arbitrary slp;m vector, which is emphasizing all audio com-
ponents around f 0 and its harmonics. Thus, the resulting comb-filtered signal energy is given by
eceðmÞ ¼
XN�1

n0¼0

s2ce;mðn0Þ; ð8Þ
with
sce;mðn0Þ ¼ F�1fCmðf Þ:Ffslp;mgg; ð9Þ
where F and F�1 denote the direct and inverse Fourier transforms, respectively. Based on [33], the low-pass filter cut-off
frequency was settled to 4400-Hz, Wðf Þ used a rectangular 50 Hz windows, and Eq. (7) adopted d ¼ 10.

Fig. 6 depicts the energy features estðmÞ and eceðmÞ from an arbitrary match excerpt. From this figure, one may observe a
strong association between a given highlight event (between 20 and 25s) and both features, noticing that eceðmÞ is seemingly
related to a better discriminating capability.

Algorithm 1 summarizes the generation of the mth frame audio-features for convenience.
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Fig. 5. Example of comb filter (dashed lines) applied to an audio signal to emphasize speech components against other audio sources.

Fig. 6. An audio signal (upper plot) and the corresponding energy features (from second-top to bottom: estðmÞ and eceðmÞ), showing a strong correlation
with the event of interest that is within the time interval 20 6 t 6 25s.
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Algorithm 1. Generating the mth audio-frame features

Inputs: the current audio-frame sm; the previous and subsequent audio-frames to sm: si, ðm� llÞ 6 i –m 6 ðmþ luÞ
Outputs: (1) the current frame pitch g0ðmÞ; (2) the current audio-frame energy estðmÞ; (3) the current Comb-filtered

audio-frame energy eceðmÞ; (4, 5, 6) the difference on pitch’s means lg0
avðmÞ, the difference on audio-frame energy

means lest
avðmÞ, and the difference on audio-frame Comb-filtered energy means lece

av ðmÞ; (7, 8, 9) the pitch’s mean
ascending indicator lg0

I ðmÞ, the audio-frame energy ascending indicator lest
I ðmÞ, and the Comb-filtered audio-frame

energy ascending indicator lece
I ðmÞ.

1: Compute RmðsÞ (Eq. 5)
2: Determine T0ðmÞ using RmðsÞ and compute f 0ðmÞ ¼ 1

T0ðmÞ (Section 3.1.1)

3: Compute g0ðmÞ (Section 3.1.1)
4: Estimate the audio-frame energy estðmÞ (Eq. 6)
5: Compute the Comb-filter Cmðf Þ using f 0ðmÞ (Eq. 7).
6: Produce the low-pass filtered audio-feature vector slp;m (Section 3.1.1).
7: Filter the vector slp;m using the Comb-filter Cmðf Þ (Eq. 9)
8: Estimate the Comb-filtered signal energy function eceðmÞ (Eq. 8)
9: Produce the before-frame lg0

b ðmÞ and after-frame mean pitch lg0
a ðmÞ (Eq. 3)

10: Compute the difference on pitch’s means lg0
av ðmÞ (Eq. 2)

11: Compute the pitch’s mean ascending indicator lg0
I ðmÞ (Eq. 4)

12: Produce the before-frame lest
b ðmÞ and after-frame mean audio-frame energy lest

a ðmÞ (Eq. 3)
13: Compute the difference on audio-frame energy means lest

avðmÞ (Eq. 2)
14: Compute the audio-frame energy mean ascending indicator lest

I ðmÞ (Eq. 4)
15: Produce the before-frame lec

b ðmÞ and after-frame mean Combo-filtered audio-frame energy lec
a ðmÞ (Eq. 3)

16: Compute the difference on Comb-filtered audio-frame energy means lec
avðmÞ (Eq. 2)

17: Compute the Comb-filtered audio-frame energy ascending indicator lec
I ðmÞ (Eq. 4)
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3.1.2. Video features
Fig. 7. Examples of screenshots: (a) Football field showing a dominant green colour; (b) Football field and sunny bleaches; (c) Football field and goalkeeper
close-up; (d) Supporters showing a yellow-jersey dominant colour.
Summarized by the vector fv ðmÞ, a total of seven video-frame features are produced for the mth frame: the dominant
colour mean hue �hðmÞ, the percentage of image pixels with a colour similar to the dominant one rSðmÞ, as well as the camera
movement estimates, defined by the magnitude DðmÞ, the direction hðmÞ, and the confidence qðmÞ values. This set also
includes inter-frame magnitude r2

DðmÞ and direction r2
h ðmÞ variances.

Dominant Colour. Traditional football broadcast shots contemplate not only a general view of the field but also close-ups
or even audience shots, as exemplified in Fig. 7. Except in extreme snowing conditions, one can assume that the field colour
is green. However, different lighting conditions, either natural or artificial, or even grass types, can significantly change the
field’s colour. What we denoted above by colour is, more precisely, the colour hue, which is the attribute that differentiates,
for instance, a violet colour from one that is yellow. For these reasons, when computing the dominant colour of a frame, it is
better to map the video signal from the RGB (red-green-blue) to the HSI (hue-saturation-intensity) domain, wherein similar/
distinct colours are associated with similar/different representations [35].

In the HSI domain, H stands for the colour hue, S denotes its saturation, i.e., how much the colour is diluted in white, and I
represents the associated intensity. This means that the hue of a pixel is defined in the HSI representation by the single com-
ponent H, as opposed to RGB domain, which exploits all three R;G, and B components. It is important to emphasize that HSI
representation characterizes black colour by a very low-intensity level. Similarly, low saturation corresponds to grey-level
descriptions, ranging from black to white.

To convert a colour from the RGB to the HSI domain, one should use the following definitions:
r ¼ R
RþGþB ; g ¼ G

RþGþB ; b ¼ B
RþGþB ; ð10Þ

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r � 1

3

� �2

þ b� 1
3

� �2

þ g � 1
3

� �2
s

; ð11Þ

B ¼ 2
3

r � 1
3

� �
� 1
3

b� 1
3

� �
� 1
3

g � 1
3

� �
; ð12Þ
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h ¼ arccos
B

A
ffiffi
2
3

q � 180
p

0
B@

1
CA; ð13Þ
to compute H; S and I components according to [36,37]:
H ¼ h; if g P b

360� � h; otherwise

�
; ð14Þ

S ¼ 1� 3minðr; g; bÞ; ð15Þ

I ¼ Rþ Gþ B
3

: ð16Þ
Following the approach described in [38], the dominant colour of a given video frame can be inferred from the peak value
of the hue histogram, as exemplified in Fig. 8. In this figure, Imax represents the maximum incidence value, achieved by a
value of H equal to Hmax.

As mentioned before, when performing this analysis, however, one must disregard the frame pixels with low saturation
or very low-intensity levels, which may lead to unreliable hue information. Therefore, the dominant colour hue mean �hðmÞ
should be estimated by assuming an interval around Hmax, with extremes given by Hleft and Hright, correspondent to the inci-
dence values Ileft and Iright, respectively, such as Ileft ¼ Iright ¼ KImax, where K 2 ð0;1Þ represents a design hyperparameter. In

this case, the value of �hðmÞ can be computed as
�hðmÞ ¼
P

i2½HleftHright �HiIiP
i2½HleftHright �Ii

; ð17Þ
thus corresponding to a weighted average of hue values observed inside the interval ½HleftHright�. In this work, some experi-
ments guided us to adopt K ¼ 0:2.

Artificial graphic insertions (for advertising or public-announcements purposes, for instance) may present many pixels
with the same colour, introducing sharp peaks in the hue histogram that are far away from the dominant colour hue.
Nonetheless, by submitting the hue histogram incidences to a moving-average filter previously to performing peak detec-
tion, such artefacts can be dramatically reduced, with a negligible effect on �hðmÞ.

Colour-dominance analysis results, considering the video frames exhibited in Fig. 7, are shown in Fig. 9. Note that black
regions include pixels with similar hue values to the dominant colour. In all cases, the dominant colour was successfully
determined, despite several degrading aspects, such as strong sunlight, reduced field shot, or publicity signs.

Finally, to contribute to match field identification, one may consider quantifying the proportion of image pixels whose
hue is similar (up to some similarity level S) to the dominant frame colour rSðmÞ. If the mth video-frame Vm has dimensions
p� q, and their pixel hue values are defined by the hue pixel image vector hðmÞ ¼ h1ðmÞ h2ðmÞ � � � hp�qðmÞ� �

, the feature
rSðmÞ can be computed as
rSðmÞ ¼ 1
p� q

Xp�q

i¼1

Iðj�hðmÞ � hiðmÞj < SÞ; ð18Þ
Fig. 8. Hue histogram of Fig. 7a, indicating a peak in its most dominant colour..
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Fig. 9. Binary masks indicating regions of dominant colour for the four screenshots shown in Fig. 7.
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where Ið�Þ is an indicator function, returning 1 for a true argument, otherwise zero. Based on some experiments, we adopted
S ¼ 30�.

Camera Movement & Panoramic Shots. Current football transmissions use several cameras at distinct view planes/distances
to cover the whole game action. All worldwide football broadcasts tend to follow a similar dynamics: close-ups are dedicated
to moments to which the ball is not moving significantly, while the moments of interest, such as fast-breaks or goal shots, are
all shown in a panoramic view. Therefore, characterizing the camera type or its movement may assist the classifier in iden-
tifying a highlight [39].

An estimate of camera movement for each frame can be derived by computing the phase correlation Cmðx; yÞ between the
current video frame Vm and the previous one Vm�1, as follows [36]:
Cmðx; yÞ ¼ F�1 F½Vm�F�½Vm�1�
F½Vm�F�½Vm�1�j j

� 	
; ð19Þ
where * denotes the complex conjugate operator. Ideally, suppose that the video-frame Vm corresponds to a translated ver-
sion of the frame Vm�1, i.e., Vmðx; yÞ ¼ Vm�1ðx� vx; y� vyÞ. In this case, their Fourier transforms are related as
F½Vm� ¼ F½Vm�1�e�2pjðf xvxþf yvyÞ; ð20Þ

where f x and f y represent frequencies in the x and y-axes, respectively. Consequently,
Cmðx; yÞ ¼ dðx� vx; y� vyÞ; ð21Þ

and the coordinates vx and vy are easily distinguishable by the prominent peak in the Cmðx; yÞ plot.

Noteworthily, the particular movement of objects in a football match, such as players, ball, referee, and others, are super-
imposed to the camera movement, leading to a noisy correlation function. As a result, the peak location defined by Cmðvx;vyÞ
only indicates the leading (probably the camera’s) movement. Notably, this peak amplitude q ¼ jCmðvx;vyÞj may provide a
confidence measure about this estimate: a large peak indicates that many image pixels follow a similar direction, a behavior
often observed in panoramic shots. Additionally, it is convenient to exploit the polar coordinate system to represent the cam-
era movement using the subsequent formula
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Fig. 10
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DðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
x þ v2

y

q
; hðmÞ ¼ arctan

vy

vx

� �
; ð22Þ
where the parameters D and h indicate the intensity and the angular direction of the detected movement, respectively.
Fig. 10 illustrates the time evolution of the camera movement parameters D; h, and q during an arbitrary video excerpt,

which starts with a close-up shot (scene 1), followed by a panoramic view (scene 2), and an audience shot (scene 3), ending
with another panoramic view (scene 4). From this figure, one can infer that the camera movement features D and h become
stable during the panoramic takes, case where the image pixels are mostly moving in the same direction, thus leading to
larger q values.

By the previous observations, one may conclude that the variance of Dm and hm in panoramic views tends to be lower than
in other scene modalities. To exemplify such behaviour, Fig. 11 exhibits the variance of such features during a 15-frame win-
dow, which corresponds to approximately 0:5s in the NTSC standard, considering the same video excerpt from Fig. 10. It is
noteworthy that these statistics can aid the classifier in distinguishing panoramic views. The variance of some feature f, in
this case Dm or hm, inside a window integrating the current plus R past frames can be defined as
r2
f ðmÞ ¼ 1

R� 1

Xm
i¼m�Rþ1

ðf i � �f mÞ2 ð23Þ

�f m ¼ 1
R

Xm
i¼m�Rþ1

f i; ð24Þ
where f i refers to the ith frame feature value. In this work, we adopted M ¼ 15, in accordance with some trials.
Algorithm 2 resumes the process of generating all video-frame features considered in this work.

Algorithm 2. Generating the mth frame video-features

Inputs: the current video-frame Vm; the previous and subsequent video-frames to Vm: Vi, ðm� llÞ 6 i –m 6 ðmþ luÞ
Outputs: (1) the dominant colour hue mean �hðmÞ; (2) the percentage of image pixels with a colour similar to the

dominant one rSðmÞ; (3,4,5) the magnitude DðmÞ, the direction hðmÞ, and the confidence qðmÞ of camera movement
estimates; (6,7) the inter-frame magnitude r2

DðmÞ and direction r2
hðmÞ variances.

1: Normalize the RGB components of all pixels integrating the mth frame image (Eq. 10).
2: Compute h (Eq. 13) for all normalized RGB components using Eqs. 11,12.
3: Compute the hue values of all normalized RGB components (Eq. 14).
4: Determine the dominant hue Hmax and the interval limits Hleft and Hright from the mth frame hue histogram
(Section 3.1.2).

5: Compute the dominant colour hue mean �hðmÞ (Eq. 17).
6: Compute the percentage of image pixels with a colour similar to the dominant one rSðmÞ (Eq. 18).
7: Compute the phase correlation function Cmðx; yÞ between the frames Vm and Vm�1 (Eq. 19)
8: Identify the pair of coordinates ðvx;vyÞ to which Cmðx; yÞ is maximum (Section 3.1.2).
9: Compute DðmÞ, hðmÞ (Eq. 22), and q ¼ jCmðvx;vyÞj.
10: Compute the inter-frame camera movement magnitude r2

DðmÞ and direction r2
hðmÞ variances (Eq. 23).
. Time evolution of movement features h;D, and q during a video excerpt including four takes: close-up (scene 1); panoramic view (scene 2),
e shot (scene 3), and another panoramic view (scene 4).
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Fig. 11. Time evolution of the variances of h and D for the same video excerpt as in Fig. 10.

C.L. Bez, João B.O. Souza Filho, Luiz G.L.B.M. de Vasconcelos et al. Information Sciences 578 (2021) 702–724
3.2. Feature time-aggregation

Defining lower (ll) and upper (lu) window boundaries constitutes a central issue to the feature time-aggregation stage (see
Section 3). More oversized windows enable the system to account for a richer feature panorama during decision making.
However, it turns the subsequent feature selection process harder, especially when considering keeping the classifier’s input
dimensionality manageable for most classification techniques. In our case, the raw feature vector would have 11536
(16þ 16� 30� 12� 2) elements, considering the adoption of a symmetrical window centred in the current frame with
24 s of duration, a frame rate of 30 frames/s, and a total of sixteen features produced to each frame.

We propose a simplified low-resolution cross-validation approach to define such window limits, for simplicity assumed
as symmetrical. In the related experiments, to allow a fair comparison among the multiple window length alternatives, the
classifier input dimensionality was kept frozen by proportionally subsampling the frames in time while increasing the cor-
responding trial windows’ length. The process adopted here is quite simple, starting with a trial considering a hypothetical
reference window with ð2M þ 1Þ frames lasting for L1 ¼ t0 s. In the second trial, the window’s length is increased to
L2 ¼ 2L1 ¼ 2t0 but only includes the odd frames. Subsequent trials solely consider windows lasting for integer multiples
of L1, i.e., Li ¼ kL1; k 2 Z; k P 3, but only takes frames subsampled from the original sequence by a factor k. Naturally, this
procedure is equivalent to sampling a single line from each group of k adjacent lines in the matrix of aggregated features
Am. Finally, the best window size can be defined by considering the Occam-razor principle [30].

3.3. Selection of Time-Aggregated Features

The development of an AHDS involves the crucial task of identifying the subset of frames most representative of a high-
light in long-term windows. The strategy proposed here considers an irregular frame subsampling in time based on frames
relevance, inferred by a non-parametric modelling scheme, as illustrated in Fig. 12. This wrapper-like approach [30] can use
any classifier with intrinsic feature selection, in our case, an Adaboost classifier. Roughly, this process consists of first defin-
ing a training set composed of frames regularly subsampled in time. The rationale behind that is keeping the number of fea-
tures feeding the classifier involved in this task under control. In the sequence, an AdaBoost classifier is trained over this set,
and the resulting model is accessed for inferring each frame’s relevance. Then, the remaining frames have their relevance
computed by interpolating the values observed for their neighbours integrating the training set. Finally, an irregular frame
subsampling procedure exploiting such values defines the set of frame indexes S, not necessarily uniformly time–spaced,
that best describes the problem at hand. This procedure is detailed in the following steps:

1. Training audio and video frames set definition: this stage consists of selecting a subset of synchronized and consecutive
(in time) audio si and video-frames (Vi;1 6 i 6 q) to integrate the training set exploited in this frame selection process.

2. Time aggregated audio and video features generation: based on the q pairs of audio and video frames defined in the
previous step, this step produces a total of q matrices of aggregated features Ai (1 6 i 6 q), as described in subsection 3.1.

3. Regular frame subsampling: this process aims at reducing the computational efforts when inferring frames’ relevance.
For this, a subsampling factor p is defined by the user to produce the matrix SAi, a subsampled version of the feature
matrix Ai (1 6 i 6 q), whose jth-line corresponds to SAmðj; :Þ ¼ Amð1þ ðj� 1Þ � p; :Þ;1 6 j 6 W=p, assuming W as an inte-
ger multiple of p.

4. Subsampled frame relevance wrapper inference: the relevance of any feature-frame pair may be inferred by the num-
ber of times it integrates some node decision in the AdaBoost model. Therefore, this process involves training an auxiliary
AdaBoost model for highlight identification that considers the matrices SAi (1 6 i 6 q) generated in the previous step.
After, the subsampled frame-feature relevance matrix SR 2 R

W=p�NA can be determined by accessing the resulting model,
wherein each entry SRij would represent the relevance of the ith feature associated with the jth frame. Finally, the rele-
vance of each subsampled frame is summarized by the subsampled frame relevance vector sr, defined by summing up all
SR columns.
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Fig. 12. Block diagram of the proposed frame selection method..
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5. Subsampled frame relevance vector interpolation: motivated by the slow time-varying nature of frame features, a suf-
ficiently accurate estimate of the original frame sequence relevance may be achieved by interpolating srm. For this, the
vector sr must be first zero-padded to produce the vector zsr ¼ ½srð1Þ;0; � � � ;0; srð2Þ;0; � � � ;0; srðW=pÞ;0; � � � ;0�; zsr 2 R

W .
Subsequently, it should be convolved with a rectangular T-length unitary window hðkÞ, defined as
hðkÞ ¼ 1; 0 < k < T;

0; otherwise;

�
ð25Þ

resulting in the estimated frame relevance vector r ¼ ½rð1Þ; � � � ; rðWÞ� 2 R
W . In this work, experiments have led to T ¼ 16.

6. Irregular frame sampling guided by the inferred relevance: the rationale here is sampling frames with a probability
defined by their relevance. Thus, by considering a sliding window defined between the time-intervals ðm� llÞ and
ðmþ luÞ including a total of W frames, each one indexed by some integer i, such that 1 6 i 6 W , the sampling process will
assume the probability of selecting the ith frame proportional to the corresponding frame relevance estimate rðiÞ, as
follows:
PSFðiÞ ¼ rðiÞPW
j¼1rðjÞ

; 1 6 i 6 W: ð26Þ

If one defines a set of U frame time-indexes given by F ¼ fc1; c2; � � � ; cl; � � � ; cUg, such that 1 ¼ c1 < c2 < � � � < cU ¼ W , the
probability of selecting any frame from the interval Il ¼ ½cl�1; cl�, where 2 6 l 6 U, will be

PSIðlÞ ¼
Xcl
j¼cl�1

PSFðjÞ; ð27Þ

For defining each cl, one should make three assumptions:
(i) Only one frame is sampled from each interval;
(ii) The intervals are defined such that PSIðlÞ ¼ 1

U, i.e., they are equally likely to be sampled. This last assumption is
equivalent to saying that all intervals would similarly contribute for solving the problem at hand. Therefore, short-
time intervals will be assigned to packs of frames associated with highly relevant periods of time, while longer inter-
vals will be dedicated to those whose relevance is more spread in time;
(iii) The current frame (m) is always included.

For simplicity, one may assume the upper-interval limit (cl) index for defining which frame will be sampled from the cor-
responding interval IðlÞ, which seems reasonable, considering that the number of time-intervals U is large enough and the
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features are slowly-varying. From the above, for defining each cl, one may consider the inverse cumulative distribution

function related to PSI , here denoted as C�1
PSI
ð�Þ, as follows:

cl ¼ C�1
PSI

l
U

� �
 �
; 1 6 l 6 U; ð28Þ

where the operator xb c denotes the largest integer smaller than or equal to x. Therefore, by assuming that the time inter-
vals of the selected frames are given by S ¼ fm;mþ D1; � � � ;mþ DUg, the value of Dj would correspond to

Dj ¼ cj � ll � 1; 1 6 j 6 U: ð29Þ
Algorithm 3 summarizes the frame selection algorithm proposed.

Algorithm 3: Proposed frame selection algorithm

Inputs: Training audio si and video frames Vi (1 6 i 6 q)
Outputs: Indexes of the selected frames S ¼ fm;mþ D1; � � � ;mþ DUg
1: Identify a proper value for the window length W by a coarse-search (Section 3.2).
2: Generate the matrices of aggregated features Ai (1 6 i 6 q) related to the pairs of audio sj and video Vj frames

(1 6 j 6 q) (Section 3.1).
3: Define a proper subsampling factor p and compute the subsampled aggregated feature matrix SAi (1 6 i 6 q)
4: Train an AdaBoost classifier with the training set T ¼ fSA1; SA2; � � � ; SAqg.
5: Access the AdaBoost model to produce the subsampled frame-feature relevance matrix SR and the subsampled frame

relevance vector sr.
6: Define the size T of the interpolating window hðkÞ (Eq. 25).
7: Produce the interpolated frame relevance vector r by convolving the window hðkÞ with the zero-padded relevance

vector zsr.
8: Define the number of frames to be selected U.
9: Compute the probability of selecting the ith frame PSFðiÞ (Eq. 26).
10: Compute the probability of selecting any frame inside the ith interval PSIðiÞ (Eq. 27).
11: Compute the offsets Di from S (Eq. 29) using (Eq. 28).
4. Experimental methodology

4.1. Database description

Frequently, the database represents a critical factor in the development of most classification systems due to requiring
the coverage of all the distinct dynamics over the problem under solution. In our case, the inclusion of different narrators,
football championships, production teams, stadiums, periods of the day, and even weather conditions represents a useful
strategy for enforcing system robustness to multiple operational scenarios. In addition, the size of the dataset must enable
that some matches can be exclusively dedicated to inferring model’s parameters (model training), while others are solely
dedicated for tuning model hyperparameters.

As pointed by the work in [14], most relevant soccer datasets are under copyright infringement. As a consequence, access-
ing comprehensive datasets tends to be challenging, especially when considering entire matches instead of small excerpts
for system development and evaluation, as it is our case. Besides, considering that each football match lasts for approxi-
mately 90 min, labelling such a comprehensive database is a relatively cumbersome and tedious task, even for fans. This fact
is particularly true when one enforces the required consistency in such a subjective duty. Therefore, our experiments were
restricted to a moderate-size dataset, defined and gently leased by a Brazilian TV broadcaster. The number of championships,
matches, highlight moments, and video hours are well positioned regarding the state-of-the-art. The fact that entire matches
were employed during system development and evaluation introduces some additional match variability relative to players’
and fans’ behaviour. In addition, our database does not include any matches played in snowy conditions. Nonetheless, light
and moderate snow might result in a diluted field colour that would affect the corresponding hue negligibly. This is equiv-
alent to saying that the mean hue of the dominant colour and the percentage of image pixels having a hue similar to the
dominant colour hue are expected to be close to those obtained in non-snowy conditions. This behaviour is also expected
to be observed with camera movement estimates, leading to system robustness regarding such scenarios. For the present
work, a single person annotated a total of 30 matches, targeting to maintain, as much as possible, a uniform criterion to iden-
tify a highlight and to define its starting and ending times.

In summary, some database characteristics are the following, as detailed in Table 1:

	 5 distinct tournaments, thus guaranteeing different production rules: World Cup 2010 (WC), Confederations Cup 2009
(CC), Brazilian National Championship 2010 (BR), UEFA Champions League 2010 (CL), Libertadores Cup 2010 (LC);
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Table 1
General characteristics of all 30 matches annotated: championship (CH); stadium (ST); narrator (NA); daytime (DT); number of goals (G#); number of
highlights (H#).

# Teams CH ST NA DT G# H#

01 Argentina x Germany WC S01 N1 D 3 11
02 Argentina x Mexico WC S02 N2 N 4 10
03 Argentina x Nigeria WC S03 N3 D/N 1 11
04 Argentina x S. Korea WC S02 N2 D 5 9
05 Brazil x Chile WC S03 N3 N 3 8
06 Brazil x Holland WC S04 N3 D/N 3 11
07 Chile x Switzerland WC S04 N4 D/N 2 8
08 Denmark x Japan WC S05 N1 N 4 12
09 France x Mexico WC S06 N3 N 2 6
10 Germany x England WC S07 N1 D/N 5 15
11 Germany x Spain WC S08 N3 N 1 5
12 Germany x Uruguay WC S04 N2 N 5 14
13 Italy x Slovakia WC S03 N2 D/N 6 13
14 Holland x Japan WC S08 N2 D 1 4
15 Holland x Slovakia WC S08 N1 D/N 2 4
16 Portugal x N. Korea WC S01 N1 D 7 14
17 Spain x Holland WC S03 N3 N 0 8
18 Spain x Portugal WC S01 N2 N 1 10
19 Spain x Switzerland WC S08 N1 D/N 1 12
20 Uruguay x Holland WC S01 N2 N 5 10
21 Uruguay x S. Korea WC S04 N1 D/N 3 9
22 Brazil x Italy CC S09 N3 N 3 12
23 Spain x USA CC S07 N2 N 2 8
24 Brazil 1 x Brazil 2 BR S10 N1 D/N 3 10
25 Brazil 3 x Brazil 4 BR S11 N1 D/N 1 9
26 Brazil 5 x Brazil 2 BR S12 N4 D/N 4 9
27 Spain 1 x Italy 1 CL S13 N3 N 2 5
28 Germany 1 x Italy 1 CL S14 N3 D/N 2 8
29 Brazil 6 x Brazil 7 LC S10 N2 N 3 9
30 Brazil 7 x Brazil 6 LC S15 N2 N 2 8
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	 20 national teams and 10 local teams (7 from Brazil, 1 from Spain, 1 from Italy, and 1 from Germany), yielding to different
football uniform patterns/colours;

	 15 stadiums, with distinct grass characteristics and broadcasting conditions;
	 3 different lighting conditions: day (D), evening (D/N), and night (N) matches;
	 4 male Brazilian narrators, imposing different styles and pitch characteristics;
	 A total of 282 highlight events, with an average duration of 6:0s, including 86 goals.

All video files are in Standard Definition (SD) format (486 lines x 720 columns), with a frame rate of 29:97 frames/s,
encoded in MPEG-2 at 6 Mbps, whereas audio files follow PCM format (48 kHz sampling rate). The 30 matches are repre-
sented by 6,290,767 frames, which is equivalent to approximately 58 h of video.

The selection of highlights includes some degree of subjectivity, even when performed by a professional operator. When
annotating the database in this work, all (successful or not) goal attempts were considered as highlight events. Another prob-
lematic aspect refers to the definition of the beginning and the ending times of a given highlight. In such cases, we assumed as
highlight beginnings the moments where the goal attempt becomes clear (a few seconds before the player shoots, for
instance). In turn, the moments right after the goal is scored or its attempt fails were taken as highlight ends. Following this
framework, when annotating the database, the highlight detectionwas performed in two rounds. The first was responsible for
identifying the highlight existence. In the second, the beginning and ending times of each identified highlight were deter-
mined. This procedure allows a higher uniformity within each round, resulting in a more reliable frame classification. In prac-
tice, once the system had automatically detected a given highlight, a professional operator can easily make slight adjustments
in the corresponding timestamp. Nonetheless, our system performed quite reliably regarding this issue in all our experiments.

4.2. Performance assessment

The database was split into three sets: training (TR), validation (VA), and test (TS), targeting model development, hyper-
parameter tuning, and final system evaluation, respectively. Training and validation sets did not include any match associ-
ated with the narrator N4 (matches 07 and 26 in Table 1) to enforce the system robustness to narrator choice. These matches
were exclusively assigned to the test set, comprising of approximately 457; 000 frames.

A sevenfold cross-validation [30] procedure defined the training and validation sets, considering folds composed by the
whole matches. Therefore, the twelve-eight training and validation matches were partitioned into seven folds. Each fold was
formed of four distinct matches, contemplating various narrators, tournaments, teams, stadiums, and lighting conditions. As
a result, this process resulted in seven pairs of training and validation sets.
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Table 2
Training and Validation Set Composition (see text).

Sevenfold Cross Validation

Cross-Validation Iterations (#)

Fold (#) Fold Matches Fold TR Size (in 103 frames) 1 2 3 4 5 6 7

01, 18, 25, 27 12.2 VA TR TR TR TR TR TR
2 08, 14, 21, 23 13.6 TR VA TR TR TR TR TR
3 10, 13, 17, 29 20.3 TR TR VA TR TR TR TR
4 05, 09, 12, 15 14.3 TR TR TR VA TR TR TR
5 03, 11, 16, 24 15.9 TR TR TR TR VA TR TR
6 04, 19, 20, 22 21.2 TR TR TR TR TR VA TR
7 02, 06, 28, 30 17.3 TR TR TR TR TR TR VA

Total Training Size (in 103 frames) 102.6 101.3 94.6 100.5 99.0 93.7 97.6

Total Validation Size (in 103 frames) 793.9 829.6 871.5 682.0 898.4 842.0 916.4

Final Test (Matches 07 and 29)

Total Test Size (in 103 frames) 456.9
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The training sets were submitted to a majority-class undersampling process [40], aiming to mitigate possible class-
imbalance effects, due to the much larger number of non–highlights than highlights (inferior to 1%). By this process, approx-
imately the same number of class instances were destined to train the classifiers. Table 2 summarizes the matches and the
number of frames integrating each fold, besides the size of each training (TR) and validation (VA) sets for each trial.

5. Experimental results

The figure of merit for hyperparameter tuning was the false-positive rate (FPR) [30], averaged over all validation sets. The
FPR values reported here, denoted as FPR97%, assumed a decision threshold correspondent to a true-positive rate (TPR) equal
to 97%, related to a practical operational system setting. Models were compared utilizing the Receiver Operating Character-
istics (ROC) curves [30].

The definition of system hyperparameters related to time-aggregation, frame-selection, and decision making exploited a
process named here as greedy cross-validation (CV). In this process, the hyperparameters were optimized in a nested
sequence, defined according to our convenience, avoiding the computation burden related to any grid-search alternative.

5.1. Feature aggregation

For simplicity, experiments assumed symmetrical windows (l ¼ ll ¼ lu) with half-length l equal to 1;2;4;6;8;10, and 12 s.
For all, windows were composed of U ¼ 61 frames (30 past + the current + 30 future), since the frame rate is 30 frames/s,
and the subsampling factor k was increased accordingly to the window length, as described in Section 3.2.

Fig. 13 depicts the FPR97% values obtained in each case, including the results of one experiment assuming a window com-
posed of just one frame (0s). The inclusion of feature time-dynamics improved system performance, significantly reducing
the FPR97% value. The models associated with half-window lengths of 8 to 12 s exhibited similar performance, which corrob-
orates with practice, as football match highlights often last for about 6s.

5.2. Feature selection

Feature selection considered the subsampling factor p equal to 4. Frame relevance inference exploited the Gentle Ada-
Boost [2], assuming a total of forty trees, each one with three-levels, defined in accordance with some trials.
Fig. 13. Values of FPR97% for different window lengths Li .
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Motivated by the previous results, the following experiments included symmetric windows whose half-length was made
equal to l ¼ 8 and l ¼ 12 seconds, and compared the proposed frame selection approach with a standard uniform-frame sub-
sampling (in time). Table 3 summarizes the results, assuming windows with U ¼ 61 frames. Notably, the proposed method
outperforms the uniform-subsampling in both scenarios. It also seems to better exploit the information that is exclusive to
the longer (12s) window, considering the higher drop in FPR97% observed in this case.

By fixing on windows with half-length equal to l ¼ 12, the subsequent experiments compared the uniform-sampling
solutions, including U ¼ 61 and U ¼ 121 frames, with the proposed frame selection method, assuming U ¼ 61 frames.
Fig. 14 exhibits the ROC curves for TPR values ranging from 97% to 99%. Results confirmed the better performance of the pro-
posed frame selection method.

Finally, adopting l ¼ 12, simulations varied the number U of frames in the range of 31 to 121. Table 4 summarizes the
results, indicating an optimal number of U ¼ 61 frames.
5.3. Classifier definition

For implementing the set of classifiers analysed in this work, we used the following toolboxes: MATLAB Statistics and
Machine Learning Toolbox [41] (kNN, SVM, RF), GML Adaboost Matlab Toolbox [42] (AdaBoost), and the basic ELM code
[43] (ELM).

Previously to classifier training and evaluation, data was preprocessed such as all features were normalized to zero mean
and unit variance (z-score), except the energy features estðmÞ and ecsðmÞ, which were log-normalized before having their z-
score computed.

Classifier hyperparameters were tuned by CV, considering TPR97% as the figure of merit. Table 5 summarizes the range of
hyperparameters evaluated for each method and those identified as the best by CV. The hyperparameters not covered in this
table were left as default, except for SVM, whose corresponding toolbox has settled the kernel width automatically.
Table 3
Comparison of the proposed frame selection
method with ordinary uniform subsampling
for different window lengths.

FPR97% (%)

Half-window length 8s 12s
Uniform subsampling 13.4 14.2
Proposed method 12.5 11.6

Fig. 14. Comparison of the proposed frame selection method with uniform-frame subsampling, assuming a different number of frames and windows with
half-length of 12s.

Table 4
Values of FPR97% by setting a different number U of
frames in the proposed approach.

U FPR97%(%)

31 13.2
41 13.5
51 13.2
61 11.6
71 13.0
81 12.9
91 11.7
121 12.8
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Table 5
Hyperparameters (range and choice) exploited in the cross-validation experiments, considering a range of classification algorithms (see text).

Classifiers Parameter Range Tested Chosen Value

Adaboost Split (S) - Number of Trees (NT ) 1 6 S � 7; 10 6 NT 6 150 S ¼ 3; NT ¼ 100
ELM Number of Hidden Neurons (NH) 80 6 NH 6 200 NH ¼ 150
kNN Number of Neighbors (k) 1 6 k 6 21 k ¼ 15
Random Forest Number of Trees (NT ) 50 6 NT 6 200 NT ¼ 120
SVM Kernel Function Gaussian, Linear and Polynomial of 2nd, 3rd, and 4th orders Gaussian
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Methods were compared by ROC curves, as depicted in Fig. 15. RF achieved the best performance, followed by SVM, and
AdaBoost, respectively.

5.4. Voting Filter

Experiments for defining the size of the decision window assumed k ¼ ki ¼ ku (symmetrical window) and values for k in
the range of 1 to 121 frames. Fig. 16 exhibits the corresponding FPR97% values. The use of larger windows has led to a reduc-
tion in the FPR97% values, as expected, with U ¼ 61 frames performing best.

5.5. Final System Evaluation

Aiming to evaluate the effectiveness of each design stage in the proposed approach, Table 6 summarizes the TPR97% val-
ues (averaged over validation sets), considering five processing schemes (P1 to P5), each one including a given design pro-
cedure in a greedy fashion. Note that when adopting uniformly time-sampled frames (61, in total), integrating a time-
interval of 
12s around the current frame (P2), FPR97% drops approximately third-seven percentage points. When consider-
ing the proposed irregular frame-sampling mechanism replacing the uniform sampling, this gain increases by almost three
percentage points (P3). The use of a RF classifier adds more six percentage points (P4). Finally, the inclusion of a voting win-
dow (P5) leads to an additional increase of 0:7%. The median and interquartile range (IQR) of FPR97% values observed to mod-
els following the P5 scheme were 4:2 and 1:7, respectively.

The subsequent analysis focused solely in the model associated with the lowest validation set FPR97% (trial 2), selected
from those produced by the sevenfold cross-validation process, considering the processing scheme P5.

Table 7 summarizes the performance attained by this model to each match. Matches integrating the validation (8, 14, 21,
and 23) and test sets (07 and 26) are in bold. Training matches were not undersampled for this analysis. This table includes
Fig. 16. Values of TPR97% for different decision window lengths.

Fig. 15. ROC curves related to different classification techniques (see text).
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Table 7
System performance in terms of False Positive Rate (FPR), True Positive Rate (TPR), and Summarization Ratio (SR) for each entire match.

Match # FPR(%) TPR (%) SR (%) Match # FPR (%) TPR (%) SR (%)

01 5.7 100.0 7.2 18 5.5 100.0 6.5
02 3.6 100.0 5.1 19 2.9 100.0 4.7
03 4.9 100.0 5.9 20 3.4 100.0 4.9
04 5.5 100.0 6.4 21 4.4 95.6 5.4
05 5.2 100.0 6.4 22 3.4 100.0 5.2
06 5.4 100.0 6.8 23 4.7 99.0 5.8
07 1.9 97.4 2.8 24 4.3 100.0 5.5
08 6.5 99.9 7.7 25 6.7 100.0 7.3
09 1.8 100.0 2.6 26 4.6 100.0 5.7
10 5.0 100.0 6.9 27 14.9 100.0 15.5
11 1.7 100.0 2.1 29 11.0 100.0 11.9
12 4.0 100.0 5.8 28 1.5 100.0 2.8
13 2.6 100.0 4.4 30 12.1 100.0 13.0
14 3.1 99.4 3.5
15 2.2 100.0 3.6 Mean 4.8 99.7 6.0
16 4.2 100.0 6.0 Median 4.4 100.0 5.7
17 1.8 100.0 2.6 IQR 2.6 0.0 2.3

Table 6
Effectiveness of the proposed approach - values of TPR97% - assuming different design choices (see text).

Design choices Model

P0 P1 P2 P3 P5

Time window length
Absent X

12s X X X X
Frame sampling process
Uniformly spaced X
Irregular wrapper-probabilistic approach X X X
Classifier
Adaboost X X X
Random Forest X X
Voting Filter
None X X X X
2s-long voting filter X

FPR97%ð%Þ 51.5 14.2 11.3 5.4 4.7
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the here denoted Summarization Ratio index (SR), defined as the proportion of highlight frames over all match frames. The
average SR was only 6%, meaning that an excerpt with 5.7 min of duration can summarize a regular 90-min match. As this
model attained an average TPR of 99.7%, no highlight is lost in practice. We should also mention that the high TPR values
associated with the low false-alarm rates observed in this table were only made possible by our system considering highly
discriminative features extracted from a concise set of frames integrating long-term windows, a strategy efficiently conju-
gated with an ensemble decision making process. Nonetheless, by integrating such a tool in daily routine, operator’s produc-
tivity would significantly increase, as now in charge of the much easier task of just refining highlights automatically pre-
selected by the system.

A more practical quality assessment measure would be the here denoted Operational True Positive Rate (OTPR), which
corresponds to the probability of a professional operator in not missing any significant highlight when just watching the
summarized match version. For this measure, we arbitrarily assumed that a highlight would be identified in practical set-
tings when at least 10% of the number of frames integrating its corresponding window are positively detected. A remarkable
result is that the proposed system attains an OTPR equal to 100% for all matches. Nonetheless, operators can quickly settle
the limits of the highlights more precisely to meet more specific task demands.

Fig. 17 exhibits some screenshots taken from the system during a match sequence ending in a goal. In the bottom, a high-
light bar provides an indicator proportional to the number of MFCMs pointing out a highlight. As the final decision relatively
whether the scene is a highlight or not considers majority voting over all MFCMs, as soon as this bar exceeds the half-scale
level, a highlight is automatically identified, and the frame number corresponding to the start of this highlight is displayed.
Similarly, when the system detects the end of a highlight, the corresponding frame number is also exhibited. All highlights
identified and their related information are stored in a database for subsequent operator processing and evaluation.
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Fig. 17. Example of a highlight sequence being identified by the proposed system: (a) Start of the passing sequence until goal; (b) Last pass before goal shot;
(c) Goal shot; (d) Players’ celebration after scoring a goal.

Table 8
Performance and dataset size comparison of the proposed and literature methods.

GDR
(%)

TPR or
Recall (%)

Number of
highlights

Other results Number of Championships (and
games) / Video hours

Number of
features

Classifier

Our Work 100.0 99.7 282 FPR = 4.8%;
SR = 6.0%

5 (30)/ 58 h

16 RF
(also
kNN,
SVM,
ELM,

Random
Forest)

[44] - 94.9 108 Precision
= 86.0%

1 (5)/ 5 h2 NR3 Proprietary algorithm

[14] - 45.7 NR Precision
= 47.0%

2 (20)/ 30 h 1024 LSTM

[24] - 94.34 800 - NR 4096 CNN
[6]5 71.4 68.36 1824 Precision

= 79.1%
2 (48)/ 73 h 39 Temporal confusion NN

[46] 84.6 - 142 - 1 (10)/ NR NR SVM
[23] 91.9 91.47 256 Precision

= 94.3%
3 (30)/ 45 h 512 CNN

[13] - 94.5 91 Precision
= 92.5%

2 (23)/ 31 h 17 Decision tree

[45] - 83.5 643 Precision
= 67.4%

10 (13)/ � 19h 19 E-HMM

[26] - 61.5 185 Precision
= 44.0%

1 (69)/ � 103h NR kNN

2 Number of games/hours used for testing. It does not mention the use of training.
3 Not Reported.
4 Average of goal attempts and shoot related values.
5 Considering only the World Cup 2010 set.
6 Average of shooting and scoring related values.
7 Metrics related to goal attempts only.
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5.6. Comparison with Other Works

Comparing the proposed solution with the literature is difficult, especially due to differences on datasets, objectives, and
highlight concepts. Nonetheless, Table 8 provides some quantitative measures to position our proposal regarding the state-
of-the-art, focusing on problem coverage, feature/classification issues, and performance achievements. Concerning the last
aspect, this table reports the most commonly adopted metrics: the goal-detecting rate (GDR) and true positive rate (TPR),
as well as includes additional indexes for some cases, according to the original reference availability. In what concerns
the problem coverage, our work is distinguished by the following aspects:

1. the number of championships included, since most works restrict to WorldCups [44,13], WorldCups plus some regional
championship [6], or solely regional championships [14,26]. A notable exception is [45];

2. the number of matches, which is among the highest, being only surpassed by [6,26];
3. the number of highlight excerpts, although the references [6,24,45] include more highlights than our work;
4. the number of evaluation hours, which is among the top four [6,23,26].

Nevertheless, some points regarding the methods in the references mentioned above should be emphasized: the refer-
ence [6] exploits speech recognition by acoustic and language models, which tends to be less robust and more computation-
ally complex; the reference [45] includes a replay detection mechanism, which may restrict the domains of system
application, and the reference [24] considers a dataset composed by short match excerpts (10s) that are strongly positively
biased (75% of the excerpts are highlights).

Relatively to the number of matches included in this study, it is comparable to one of most state-of-the-art works
reported in Table 8 [13,14,23], and it is large enough to account for a reasonable variability regarding tournaments, clubs,
stadiums, and lighting conditions, as discussed in Section 4.1. Besides, in opposition to previous works that typically use
short game excerpts, this work innovates by exploiting full-length matches when evaluating system performance. In that
sense, the adoption of full matches enabled a better emulation of the operational scenarios typically expected for such a sys-
tem, leading to more realistic performance estimates. Overall, this database encompasses approximately 6.3 million frames,
50.7 thousand of which are annotated as highlights, such that each game has an average of 210 thousand frames, and each
highlight has an average of 1.7 thousand frames. Therefore, concerning the results summarized in Table 7, the FPR values
considered an average evaluation of (50.7–1.7) = 49.0 thousand frames, while the TPR values assumed an average evaluation
of 1.7 thousand frames, yielding to FPR and TPR estimates with very low-variance.

Regarding system characteristics, our work involves the fewest number of features (multimodal and low-level), especially
when compared to deep-learning alternatives [14,23,24]. This characteristic may contribute to a better model generalization
in other operational scenarios, such as different matches, championships, narrator, and broadcast conditions. Additionally,
our work considered a range of classifier alternatives, differing from most competing proposals that only evaluated one clas-
sification model. Moreover, many highlight classification windows [24,26,45] are short-term (duration inferior to 10s); one
exception is the work in [14] (30s classification windows). Relatively to conducting or not feature selection, the only other
work besides ours that exploits this resource is in [13], but it exploits a filter-based approach. We should stress out that
wrapper methods, such as the one used in this work, often outperforms filter-based techniques. It is also noteworthy that,
bearing in mind the limitations in this analysis, our system surpasses all competitors in TPR value, attaining also a reduced
FPR .

6. Conclusions

This paper describes a complete and robust framework for highlight detection in football broadcasts using audio/video
descriptors (multimodal approach). The proposed system accurately identifies a highlight by producing highly discriminat-
ing features, extracted from a sparse subset of irregularly time-sampled frames integrating long-term windows, which are
submitted to a multi-frame classification approach. A feature selection scheme based on a non-parametric probabilistic
frame relevance modelling, adequate to slowly-varying features, is proposed. Experimental results, exploiting a comprehen-
sive 30-match database, each one with an average duration of about 90 min, indicate a compression ratio of 94%, as well as a
correct highlight identification of 100%, including all annotated goals and significant goal attempts.

The present work has not considered games played under any form of snowy weather. Therefore, the developed system is
not necessarily reliable in these conditions. Future works might consider addressing such liability by expanding the anno-
tated database to include matches played under snow. In this scenario, the development of an updated version of this high-
light system can greatly benefit from the design methodology proposed here.
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