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ABSTRACT

In this dissertation� a thorough study of the area of adaptive IIR �ltering is performed� A

general framework to analyze adaptive systems is included along with a short presentation

of the equation error �EE� and output error �OE� adaptive algorithms� Based on these

algorithms� the so called composite squared error �CSE� algorithm is introduced in attempt

to combine the good qualities associated to the EE and OE basic schemes� Stationary and

transient analyses of the CSE convergence behavior are performed demonstrating the inter�

esting properties associated to this algorithm� Techniques to implement the CSE algorithm

using time�varying convergence factors and composite parameter are also considered� In

addition� a new way to e�ciently realize any adaptive IIR algorithm� including the CSE

algorithm� is proposed based on the two�multiplier and the normalized lattice structures�

thus allowing a necessary pole�monitoring procedure to be performed on line� The imple�

mentation of adaptive techniques to process real�time signals is considered with emphasis

on the digital�signal�processor method as this approach results in a better cost�performance

ratio when compared to alternative methods� The contributions of this dissertation aim to

convert adaptive IIR techniques into a reliable alternative to the well�known adaptive FIR

methods for all practical purposes�
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Chapter �

Introduction to Adaptive IIR

Filtering

��� Introduction

The term adaptive �lter usually refers to a system the characteristics of which are modi�ed

by adjusting the coe�cients of its transfer function in an automatic fashion in order to

satisfy a particular speci�cation or criterion�

The number of di�erent applications in which adaptive techniques are being success�

fully used increased enormously recently� These applications include� for instance� system

identi�cation ����� equalization of dispersive channels for faster data transmission ����� echo

cancellation in telephone lines ����� beamforming using linear arrays ����� and noise cancel�

lation �����

An example of a real application where adaptive �lters are successfully employed is the

measurement of electrocardiographic �ECG� signals which� in practice� present very small

amplitudes and most frequency components in the range below ���Hz ����� ����� Due to these

characteristics� recording ECG signals tends to be very sensitive to power�line interference�

Fixed�in�time solutions for this problem might not be able to accurately eliminate the

perturbation noise if the power line �uctuates making the interference characteristics varying

in time� A very e�cient and robust way to solve this problem is illustrated in Figure ���

where the combination �ECG � interference� signal is processed by an adaptive system

which has also access to some version of the interference signal� By properly adjusting the



�

amplitude� the frequency� and the phase of its sinusoidal output signal� the adaptive �lter

is then able to successfully cancel out the interference from the original ECG signal� Due

to its own adjustable nature� the adaptive �lter can accomplish the noise reduction in a

continuous fashion by being able to track �uctuations on the perturbation characteristics�

Adaptive �lters are advantageous in this situation due to the particular nature of heartbeat

signals which are very distinctive for each individual person and� in addition� continuously

change in time� This example demonstrates the general philosophy behind the usage of

adaptive �lters� The employment of adaptive techniques becomes particularly useful in

cases where the characteristics of the surrounding environment are not completely known

or even varying in time� as under these circumstances a �xed system would not be able to

achieve a desirable performance level� Others forms of interference can also be eliminated

using adaptive systems as it will be discussed later�

Adaptive
Filter

-+
+ +

+ +

ECG Sensor

Power-Line
Interference

ECG+InterferenceECG ~ECG

Patient

Asin(wt+  )φ

Figure ���
 General scheme of adaptive noise cancellation of power line interference in an
ECG recording system�

Early forms of adaptive �lters ���� were based on structures with �nite�duration impulse

response �FIR� that presented very good adaptation properties such as existence of a single

solution� good convergence speed� �lter stability� etc� However� due to steadily increasing

demand for more e�cient adaptive �lters to be applied in a wide variety of applications�

substantial research e�ort has been invested to turn adaptive �lters with in�nite�duration

impulse response �IIR�� into reliable alternatives to traditional adaptive FIR �lters� The

main advantages of IIR �lters are their better suitability for modelling physical systems

due to the pole�zero structure and their requirement of fewer parameters to achieve the

�The acronyms FIR and IIR are commonly used in time�invariant digital �lter theory to indicate� respec�

tively� the �nite or in�nite duration of the impulse response of these devices� The same terminology also

applies to the theory of adaptive �lters�





same performance as FIR �lters� Unfortunately� these good characteristics come along with

possible drawbacks such as algorithm instability� �lter instability� convergence to biased or

local minima� and slow convergence� The objective of this dissertation is to present reliable

techniques for adaptive IIR �lters in an attempt to make such systems an e�cient and

robust practical alternative to adaptive FIR �lters�

��� Adaptive Signal Processing

����� Basic Concepts

ADAPTIVE FILTER
x(n)

+

y(n)

y(n)^

-

+ e  (n)
OE

Figure ���
 Block diagram of a general adaptive system�

The general con�guration of a basic adaptive system is depicted in Figure ���� In this type

of process� an input signal x�n� is �ltered by a time�varying system generating at each time

interval n the output �y�n�� This signal is then compared to a reference y�n�� also called the

desired output signal� leading to the error signal eOE�n�� This error signal is then used by an

algorithm to adjust the adaptive �lter coe�cients in order to minimize a given performance

criterion� The speci�cation of an adaptive system� as shown in Figure ���� consists of three

items
 Application� �lter structure� and algorithm�

The type of application de�nes the input and reference signals acquired from the sur�

rounding environment� For the interested reader� good sources of information on adaptive

�ltering applications can be found in ����� ����� ����� In this dissertation� the system identi�

�cation problem is brie�y introduced in the next section and it serves as basic environment

throughout the remainder of this dissertation� with exception of Chapter �� where the noise

cancellation problem is considered�

The choice of the adaptive �lter structure de�nes the mathematical model to be used

and the parameters to be adapted� Basically� there are two classes of adaptive digital �lter
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realizations� 
 FIR and IIR structures� The structure being used in�uences the computa�

tional complexity �amount of arithmetic operations per iteration� of the adaptation process

and also the necessary number of iterations to achieve a desired performance level�

The most widely used adaptive �lter structure is the transversal FIR �lter� also referred

to as the tapped delay line �TDL�� that implements a nonrecursive transfer function in

a canonic form without feedback� For this realization� the output signal �y�n� is a linear

combination of the �lter coe�cients� which yields a quadratic mean squared error function

E�e�OE�n�� with respect to the adaptable coe�cients with a unique optimum point �����

Other alternative adaptive FIR realizations are also used in order to obtain improvements

as compared to the transversal �lter structure in terms of computational complexity ���� �����

speed of convergence ����� ����� ����� and �nite wordlength properties ����� In this disserta�

tion� although most of the work is concentrated in adaptive IIR �lters� the basic TDL is

used in Chapter � with the standard least mean squares �LMS� algorithm ���� for the sake

of performance comparison with some of the IIR adaptation techniques�

The earliest attempt to implement an adaptive IIR �lter reported in the literature was

made by White ���� in ���� using the standard IIR direct form� Since then� a large number

of papers have been published in this area� Initially� most of the work on adaptive IIR

�lters was based on the canonic IIR direct�form realization due to its simple implementation

and analysis� However� due to some inherent problems of recursive adaptive �lters� such as

continuous pole�monitoring requirement and slow speed of convergence� di�erent realizations

were contemplated in an attempt to overcome the limitations of the direct�form structure�

Among these alternative structures� the cascade ���� parallel ���� and lattice �	�� realizations

were considered due to their unique feature of allowing simple pole monitoring for stability

testing� The cascade and parallel structures� however� lead to manifolds on the respective

error performance surfaces which cause the adaptive convergence process to be dramatically

slowed down ����� For the lattice realization� the large computational complexity to calculate

its gradient vector has prevented its widespread use in practical systems� New e�cient

lattice�type realizations� however� are proposed in Chapter � of this dissertation� turning

�Despite the fact that some adaptive �lters can also be implemented with continuous�time techniques�

general results have shown that this type of realization still faces many practical implementation prob�

lems ����� ��	�� �
��� Because of that� this work will focus on discrete�time implementations of adaptive

systems�
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this structure into a reliable and e�cient tool for the realization of adaptive IIR �lters�

The algorithm is the procedure used to adjust the adaptive �lter coe�cients in order to

minimize a prescribed criterion� The algorithm is determined by de�ning the search method

or minimization algorithm� the objective function and the error signal nature� The choice

of the algorithm determines several crucial aspects of the adaptive process such as existence

of sub�optimal or biased solutions� the convergence speed� and the overall computational

complexity� A general discussion of some of the most important adaptation algorithms is

presented later in this chapter�

����� Technical Background

In this section� some de�nitions to be used later are presented� One of the most heavily used

concepts in this dissertation is the di�erence polynomial operator used in the time�domain

description of adaptive systems� A thorough presentation including de�nition� properties�

and extensions of this concept can be found in Appendix A� Due to its importance� the reader

who is unfamiliar with its properties and associated notation is referred to Appendix A�

where much valuable information can be gathered on that subject�

De�nition ���
 A signal u�n� is said to be persistently exciting ���� of order �n if the

limit

lim
N��

�

N

NX
n��

u�n�u�n� �� � ru��� �����

exists and the following �n� �n matrix is positive de�nite�
����

ru��� � � � ru��n� ��
���

� � �
���

ru��n� �� � � � ru���

�
���� �����

�

An important result on persistently exciting sequences states that ���� if u�n� is persistently

exciting of order �n� then there is no �lter described by H�q� � h� � h�q
�� � � � �� h�nq

��n

with h�n �� �� such that H�q�fu�n�g � �� In addition� if v�n� � H�q�fu�n�g� then v�n� is

also persistently exciting of order �n� In general terms� the persistence of excitation concept

indicates when an input signal carries enough information in the time or frequency domain

to allow a given plant to be completely identi�ed�



	

De�nition ���
 For a given stochastic process u�n�� the ith�order moment is de�ned

as �	��

mi�E
�
ui�n�

�
����

�

De�nition ���
 Conditional probability of two events U and V is de�ned as �	��

P �U�V � �
P �UV �

P �V �
�����

where P �UV � is the joint probability of both events U and V and P �V � is di�erent from

zero by assumption�

�

De�nition ���
 The pair of signals u�n� and v�n� is said to be ��mixing if ����

�X
n��

�����n� �� �����

with

��n� � sup

�	

jP �U�V �� P �U�j �

U � � f�u�k� v�k��� k � �g

V � � f�u�l� n� v�l� n��� l 	 �g

��
 ���	�

where supf�g denotes the supreme or minimum�upper�bound operator and �f�g represents

the algebraic �eld generated by the corresponding elements�

�

Essentially� the ��mixing condition implies that u�n� and v�n� are uncorrelated to each

other for large time separations as indicated in �����

����� System Identi�cation with the Direct�Form IIR Realization

In order to present a simple framework for the remainder of this dissertation� most of the

analyses shown in this work will be based on the system identi�cation application and

on the direct�form IIR structure� Most results discussed� however� can be extended to

other applications and realizations� following the works of Johnson ���� �� and Nayeri

and Jenkins ����� In fact� in ���� ��� Johnson discusses the relationships between system

identi�cation� adaptive �ltering� and control problems� Meanwhile� in ����� Nayeri and

Jenkins show the relationships existing between the direct form and other alternative IIR

realizations as the cascade� parallel� and lattice forms�
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Figure ��
 Block diagram of an adaptive system identi�er�

The general block diagram of an adaptive system identi�er is shown in Figure ��� In

this con�guration� an adaptation algorithm adjusts the adaptive �lter coe�cients such that

the �lter input�output relationship better matches that of an unknown plant� The plant�

or unknown system� is commonly assumed time�invariant and stable� being described by

yo�n��

�
B�q�

A�q�

�
fx�n�g ����a�

y�n��yo�n� � v�n� ����b�

or equivalently

y�n� �

�
B�q�

A�q�

�
fx�n�g� v�n� �����

where x�n� is the input signal� v�n� represents some form of perturbation noise� and A�q� �

��
Pna

i�� aiq
�i and B�q� �

Pnb
j�� bjq

�j are coprime polynomials of the unit delay operator�

de�ned by q��fx�n�g � x�n � ��� Using the direct�form structure� the adaptive �lter is

described by

�y�n� �

�
�B�q	 n�

�A�q	 n�

�
fx�n�g �����

with �A�q	 n� � � �
Pn�a

i�� �ai�n�q
�i and �B�q	 n� �

Pn�b
j��

�bj�n�q
�j �

An equivalent way to represent the adaptive identi�cation process depicted in Figure ��

�For a complete discussion of the unit delay operator and of some of its extensions� the reader may refer

to Appendix A�
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is obtained by de�ning the variables

���a� � � � ana b� � � � bnb�
T �����a�

��n����yo�n� �� � � �� yo�n� na� x�n� � � �x�n� nb��
T �����b�

���n��
h
�a��n� � � ��an�a�n�

�b��n� � � ��bn�b
�n�
iT

�����c�

��MOE�n��
�
��y�n � �� � � ���y�n� n�a� x�n� � � �x�n� n�b�

�T
�����d�

where � is the plant parameter vector� ��n� is the plant information vector� ���n� is the

adaptive �lter parameter vector� and ��MOE�n� is the adaptive �lter information vector�

With the above de�nitions� equations ����� and ����� become

y�n���T��n� � v�n� ������

�y�n����
T
�n���MOE�n� ������

respectively� Comparing the di�erence polynomial operator notation seen in ����� and �����

with the vector notation given in ������ and ������� it can be seen that the physical meaning

of a signal is more clear when the delay operator is used� while the vector notation greatly

simpli�es the adaptation algorithm representation� as it will become clear later in this

chapter�

In order to present an overview of some adaptive IIR �ltering algorithms in a structured

form� it is useful to classify the IIR identi�cation problem using three distinct criteria given

below�

Classi�cation with respect to the adaptive IIR �lter orders
 Let n� � min��na�n�a�� �nb�

n�b��� thus the following classes are de�ned


 Case �a�
 Insu�cient order case� where n� � ��


 Case �b�
 Strictly su�cient order case� where n� � ��


 Case �c�
 More than su�cient order case� where n� 
 ��

In many cases� cases �b� and �c� are grouped in one single class� called the su�cient order

case� where n� 	 ��

Classi�cation with respect to the input signal properties



 Case �d�
 Problem with persistent exciting input signal�


 Case �e�
 Problem with nonpersistent exciting input signal�



�

Basically� the persistence of excitation concept ���� ���� is associated with the amount of

information carried by the external signal x�n� to the adaptive process� Processes belonging

to class �e� may lead to situations where it is not possible to identify the system parameters

and therefore they are not commonly considered in the literature�

Classi�cation with respect to the disturbance signal properties



 Case �f�
 Without perturbation�


 Case �g�
 With perturbation correlated to the input signal�


 Case �h�
 With perturbation uncorrelated to the input signal�

The presence or not of perturbation signal greatly in�uences the overall performance level

of a given adaptive system as will later be demonstrated� Also� it must be mentioned that

case �g� can be considered a special case of �a�� and therefore it is often disregarded in the

literature�

Following this framework� all the above described cases are widely studied in the litera�

ture and will be addressed at the appropriate time in this dissertation� with the exception

of cases �e� and �g�� due to the reasons mentioned above�

����� Introduction to Adaptive Filter Algorithms

The basic objective of the adaptive �lter in a system identi�cation problem is to �nd the

parameter vector ���n� that equivalently represents the input�output relationship of the

unknown system� i�e�� the mapping of x�n� into y�n�� Usually� system equivalence ��� is

determined by the objective functional W of the input x�n�� the available plant output

y�n�� and the adaptive �lter output �y�n� signals� In that sense� two systems� S� and S�� are

considered equivalent if� for the same external signals x�n� and y�n�� the objective function

assumes the same value for these systems� i�e�

W �x�n�	 y�n�	 �y��n�� �W �x�n�	 y�n�	 �y��n�� �����

In an adaptive system identi�cation process� this concept implies that ����� ��� the adapta�

tion algorithm attempts to minimize the functionalW in such a way that �y�n� approximates

y�n� and� as a consequence� ���n� converges to � or to a best possible approximation of this

vector�
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It is important to notice� however� that in order to have a meaningful de�nition of the

objective function� this function must satisfy the nonnegativity and optimality properties

described respectively by

W �x�n�	 y�n�	 �y�n�� 	 �� ��y�n� �����a�

W �x�n�	 y�n�	 y�n�� � � �����b�

Another way to interpret the objective function is to consider it as a direct function of a

generic error signal e�n�� which in turn is a function of the signals x�n�� y�n�� and �y�n��

That function W �e�n�� de�nes a surface in the domain of the adaptive �lter coe�cients that

is referred to as the performance surface ���� Based on this interpretation� the adaptive

�lter algorithm can be seen as the numeric procedure used to adjust the adaptive �lter

coe�cients in order to search for the global minimum of that geometric performance surface�

In practice� the adaptation algorithm is characterized by the de�nition of three basic aspects


The minimization algorithm� the form of the objective function� and the error signal� These

items are discussed in the remainder of this section�

The minimization algorithm for the functional W is the subject of optimization theory

and it essentially a�ects the speed of convergence and the computational complexity of

the adaptation process� The most commonly used optimization methods in the adaptive

signal processing �eld include the Newton method� the quasi�Newton methods� and the

steepest�descent method�

The Newton method seeks the minimum of a second�order approximation of the objec�

tive function W �e�n�� using an iterative updating formula for the parameter vector of the

form

���n� �� � ���n�� �
�

H����
fW �e�n��gr��

fW �e�n��g ������

where �
�

is a factor that controls the step size of the algorithm� H��
fW �e�n��g is the Hessian

matrix of the objective function ����� and r��
fW �e�n��g is the gradient of the objective

function with respect to the adaptive �lter coe�cients�

Quasi�Newton methods are simpli�ed versions of the standard Newton method� They

attempt to minimize the objective function W �e�n�� using a recursively calculated estimate

of the inverse of the Hessian matrix and they are described by

���n� �� � ���n�� �
�

T�n � ��r��
fW �e�n��g ����	�



��

where T�n� is an estimate of the inverse of the Hessian matrix H��
��
fW �e�n��g� such that

limn�� T�n� � H��
��
fW �e�n��g� A common form to implement this approximation for the

inverse of the Hessian matrix is obtained using the matrix inversion lemma ����� which yields

the recursion

T�n� �� �
�

�
T�n��

�
�

�

�
T�n����n���

T
�n�T�n�

�� �
� ��

T
�n�T�n����n�

�
������

where � is the so�called forgetting factor usually de�ned as � � �� �
�

�

The steepest�descent method searches for the minimum of the objective function follow�

ing the opposite direction of the gradient vector of this function� The updating equation

for this type of algorithm assumes the form

���n� �� � ���n�� �
�

r��
fW �e�n��g ������

In general� the steepest�descent method is the easiest one to be implemented but� on the

other hand� the Newton method usually requires a smaller number of iterations to converge�

In many cases� quasi�Newton methods can be considered a good compromise between the

computational e�ciency of the gradient method and the fast convergence of the Newton

method� A detailed study of the most widely used minimization algorithms is out of the

scope of this dissertation and can be found in the seminal work of Luenberger �����

The de�nition of the form of the objective function W �e�n�� directly a�ects the com�

plexity of the gradient vector and Hessian matrix calculations� There are many ways to

de�ne an objective function that satis�es the nonnegativity and optimality properties seen

in ������� The following forms for the objective function are the most commonly used in

the derivation of adaptation algorithms� The mean squared error �MSE� function is given

by

W �e�n�� � E
�
e��n�

�
������

The least squares �LS� function is de�ned as

W �e�n�� �
�

N � �

NX
i��

e��n� i� ������

where N is a particular number of samples speci�ed by the algorithm designer� Finally� the

instantaneous squared value �ISV� function is characterized by

W �e�n�� � e��n� ������
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In a strict sense� the MSE method is of theoretical value since it requires an in�nite

amount of information to be processed� In practice� this ideal objective function is ap�

proximated by the other two methods listed� The LS and ISV schemes di�er in the imple�

mentation complexity and in the convergence behavior characteristics� In general� the ISV

method is easier to be implemented but it tends to present noisier convergence properties

as it represents a greatly simpli�ed estimate of the MSE objective function�

The de�nition of the error signal e�n� is the last� but by no means the least important�

factor to completely characterize a given adaptation algorithm� Its choice is crucial for the

algorithm de�nition since it a�ects characteristics of the overall algorithm such as computa�

tional complexity� speed of convergence� robustness� and� most importantly� the existence of

biased or multiple solutions� Due to its importance� however� a deeper analysis introducing

several examples of error signal de�nitions is left to be presented in detail in the following

section�

As it was described here� the minimization algorithm� the objective function� and the

error signal give us a structured and simple way to interpret and understand the intrinsic

structure of an adaptation algorithm� In fact� all currently known adaptation algorithms

can in some way or another be analyzed following this framework� In the next section�

we present a detailed review of two well known adaptation algorithms used in adaptive IIR

�ltering� emphasizing their similarities� distinctions� and their advantages and disadvantages

when compared to each other� That discussion will serve as a motivating point for the

introduction in the subsequent chapters of newly proposed e�cient techniques for adaptive

IIR �ltering�

��� Adaptive IIR Filter Algorithms

The discussion in the previous section indicates that the minimization algorithm and the

form of the objective function a�ect mainly the convergence speed and computational com�

plexity of the adaptation process� On the other hand� the most important aspect in the

de�nition of an adaptation algorithm consists of the choice of the error signal� since the

convergence properties of the adaptation algorithm are greatly in�uenced by this signal�

Therefore� in order to concentrate the analysis on the in�uence of the error signal� the

minimization algorithm and the objective function will be �xed� In this section� the min�



�

imization algorithm will be the SD method and the objective function will the ISV of the

error signal� Based on this framework� consider the following adaptive IIR algorithms�

����� The Equation Error Algorithm

The simplest way to model an unknown system is to use the input�output relationship

described by a linear di�erence equation of the form

y�n���b��n�x�n� � � � �� �bn�b
�n�x�n� n�b�

��a��n�y�n� ��� � � �� �an�a�n�y�n� n�a� � eEE�n� ������

where �ai�n� and �bj�n� are the parameters for the direct structure and eEE�n� is a residual

error� referred to as the equation error signal� Equation ������ can be rewritten using the

delay polynomial operator form as

y�n� �

�
�B�q	 n�
�A�q	 n�

�
fx�n�g�

�
�

�A�q	 n�

�
feEE�n�g �����

or in the vector form as

y�n� � ��
T
�n���EE�n� � eEE�n� ������

with

��EE�n� �
�
�y�n� �� � � ��y�n� n�a� x�n� � � �x�n� n�b�

�T
������

From the previous equations� it is easy to verify that the adaptation algorithm that attempts

to minimize the ISV of the equation error� e�EE�n�� using a gradient�type search method�

assumes the form

���n� �� � ���n� � �eEE�n���EE�n� ����	�

This equation identi�es the so�called equation error �EE� adaptive IIR algorithm which is

characterized by the following property �����

Property ���
 The Euclidean norm of the error parameter vector de�ned by s�n� � k

���n�� � k� and the EE signal� eEE�n�� are convergent sequences if n� 	 �� v�n� � �� and

� satis�es

� � � �
�

k ��EE�n� k
�

������

�
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This �rst property establishes the interval of � that guarantees convergence and stability

for the EE algorithm� However� although this property asserts that s�n� and eEE�n� are

convergent sequences� it is not clear to what value these sequences tend to� Although the

derivation of the EE algorithm was based on the ISV function of the EE signal� the properties

of the EE solution are usually referred to the mean squared equation error �MSEE� function

E�e�EE�n�� which is characterized below �����

Property ���
 If n� 	 �� v�n� � �� and the input signal is persistently exciting of

the order max��n�a � nb�� �n�b � na��� then the MSEE function E�e�EE�n�� has only global

minimum solutions of the form

�A��q��A�q�L�q� �����a�

�B��q��B�q�L�q� �����b�

where L�q� � � � l�q
�� � � � � � lnlq

�nl represents the common factor between �A��q� and

�B��q��

On the other hand� if n� � � or if perturbation noise is present� the optimal solution is

unique but it does not minimize the mean squared output error� The bias of this solution

depends on the plant transfer function and on the perturbation signal characteristics�

�

This property indicates that in cases of su�cient order identi�cation� given the above two

conditions� any EE solution is a global minimum of the MSEE function that includes the

polynomials describing the plant and a common factor L�q� present in the numerator and

denominator polynomials of the adaptive �lter transfer function�

In short� the main characteristic of the EE algorithm is the fact that the MSEE function

is quadratic with respect to the adaptive �lter coe�cients what results in a unique solution�

given that the input signal is persistently exciting of su�cient order� This property� however�

comes along with the serious problem of generating a biased solution in the presence of any

form of disturbance signal v�n��

����� The Output Error Algorithm

The output error �OE� algorithm attempts to minimize the mean squared value of the output

error signal de�ned as the di�erence between the plant and the adaptive �lter output signals�



��

i�e�

eOE�n��

�
B�q�

A�q�
�

�B�q	 n�

�A�q	 n�

�
fx�n�g� v�n�

��T��n�� ��
T
�n���MOE�n� � v�n� ������

with ��n� and ��MOE�n� as de�ned in equation ������� Finding the gradient ofW �eOE�n�� �

e�OE�n� with respect to the adaptive �lter coe�cients� one obtains

r��
�e�OE�n����eOE�n�r��

�eOE�n��

���eOE�n�r��
��y�n�� �����

which� using the so�called small step approximation� ���� ��	�� ����� yields that

r��
�e�OE�n�� � ��eOE�n�

��OE�n� �����

with

��OE�n� �
h
��yf�n� �� � � ���yf�n� n�a� x

f�n� � � �xf�n� n�b�
iT

�����

where the superscript f indicates that the corresponding signal is being preprocessed by

the allpole �lter �
�A�q�n	

� From the previous equations� the steepest�descent form of the OE

algorithm is then written as

���n� �� � ���n� � �eOE�n���OE�n� ����

The stationary convergence properties of the OE algorithm are usually characterized

with respect to the mean squared output error �MSOE� performance surface de�ned by

W �e�n�� � E�e�OE�n��� This function� assuming the input and perturbation signals to be

statistically independent with zero means� is characterized by the following properties�

Property ��� ���� ����
 The stationary points of the MSOE performance surface are

given by

E

���
�A�q	 n�B�q��A�q� �B�q	 n�

A�q� �A�q	 n�

�
fx�n�g

�
�

��
�B�q	 n�
�A��q	 n�

�
fx�n� i�g

��
� � ����a�

E

���
�A�q	 n�B�q��A�q� �B�q	 n�

A�q� �A�q	 n�

�
fx�n�g

�
�

��
��

�A�q	 n�

�
fx�n� j�g

��
� � ����b�

�See Appendix A�
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for i � �	 � � � 	 n�a and j � �	 � � � 	 n�b� In practice� only the stationary points that result in a

stable adaptive �lter are of interest� These points are commonly referred to as equilibrium

points and they are classi�ed as ���


Degenerated points
 These are the equilibrium points where

�B�q	 n���� if n�b � n�a ����a�

�B�q	 n�� �A�q	 n�L�q�	 if n�b 	 n�a ����b�

with L�q� � � � l�q
�� � � � �� lnlq

�nl �

Non�degenerated points
 All the equilibrium points that are not degenerated�

�

The following properties de�ne how the equilibrium points characterize the MSOE perfor�

mance surface associated to the OE adaptation algorithm�

Property ��	 ���� ����
 If n� 	 �� all global minima of the MSOE performance surface

are of the form given in equation ������� This means that in all cases of su�cient order

identi�cation� the global minimum solutions of the OE algorithm will include the polyno�

mials of the unknown system plus a common factor L�q� present in the numerator and

denominator polynomials of the adaptive �lter�

�

Property ��
 ����
 If n� 	 � and the input signal x�n� is persistently exciting of order

max��n�a�nb�� �n�b�na��� then all equilibrium points that satisfy the strictly�positive�realness

condition

Re

�
�A��z�

A�z�

�

 �� � jz j � � ���	�

are global minima of the form given in equation �������

�

This theorem is essential to the characterization of the stationary properties of the composite

squared error algorithm to be presented later and it will be discussed in detail in Chapter ��

Property ��� ����
 Let the input signal x�n� be generated as

x�n� �

�
F �q�

G�q�

�
fw�n�g �����

where F �q� �
Pnf

k�� fkq
�k and G�q� � � �

Png
k�� gkq

�k are coprime polynomials and w�n�

is a white noise signal� Then� if

n� 	 nf ����a�

n�b � na � � 	 ng ����b�



��

all equilibrium points of the OE algorithm are global minima of the form given in equa�

tion �������

�

This latter property is indeed the most general result about the unimodality of the MSOE

performance surface in cases of su�cient order identi�cation and it has a very important

special case�

Corollary ���� ����
 If x�n� is a white noise� the orders of the adaptive �lter are strictly

su�cient� such that n�a � na and n�b � nb� and if n�b � na � � 	 �� then the MSOE function

has one single equilibrium point� which is the global minimum of the form

�A��q��A�q� ����a�

�B��q��B�q� ����b�

�

The case analyzed by this last statement was further investigated by Nayeri in ����� who

obtained a less restrictive su�cient condition to guarantee unimodality of the OE algorithm

when the input signal is a white noise and the orders of the adaptive �lter exactly match

the unknown system� This result is given by the property below�

Property ���� ����
 If x�n� is a white noise� the orders of the adaptive �lter are strictly

su�cient� such that n�a � na and n�b � nb� and if n�b � na � � 	 �� then there is only one

equilibrium point� which is the global minimum of the form given in equation ������

�

Fan and Nayeri ���� showed that this last condition is the least restrictive su�cient condition

of this form that assures unimodality of the adaptive process for the corresponding adaptive

system identi�cation case� In fact� a numerical counterexample was presented in ���� for

the case n�b�na� 	 �� Another important result associated to the OE algorithm is given

below�

Property ���� ���
 All degenerated equilibrium points are saddle points and their

existence implies multimodality of the performance surface if either n�a 
 n�b � � or n�a � ��

�

Notice that this last property is independent of the value of n� and� as a consequence� is

also valid for insu�cient order cases�
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Another interesting statement related to the OE algorithm was made by Stearns ���

in ����� In fact� it was conjectured that if n� 	 � and x�n� is a white noise input signal�

then the performance surface de�ned by the MSOE objective function is unimodal� This

conjecture was supported by several numerical examples and it was considered valid until

����� when Fan and Nayeri published a numerical counterexample for it in �����

Basically� the most important characteristics of the OE algorithm are the possible ex�

istence of multiple local minima and the assured existence of an unbiased global minimum

solution� even in presence of perturbation noise in the unknown system output signal�

Other important aspect of the OE algorithm is the stability checking requirement during

the adaptive process� A practical alternative to avoid extensive computations related to the

�lter stability check is the use of an alternative �lter realization other than the direct�form

structure� as it will be discussed later in Chapter ��

����� Other Adaptive IIR Filter Algorithms

Besides the EE and OE algorithms� other IIR algorithms that are de�nitely worth mention�

ing are the following�

The Steiglitz�McBride �SM� method was introduced in ���� and later an on�line version

of it was introduced in ���� by Fan and Jenkins� The central idea behind the SM approach

is the intent of combining all the good properties of the EE and OE algorithms� For that

purpose� a new error signal was introduced as

eSM �n� �

�
�A�q	 n�

�A�q	 n� ��

�
feOE�n�g ������

Due to the linear relationship of this signal with respect to the adaptive �lter coe�cients

at time n� the SM scheme was expected to yield a single solution independent of the initial

values of the adaptive �lter coe�cients� In addition� as the SM error signal tends to resemble

the OE signal as the adaptive process converges� it can be inferred from the de�nition of

eSM �n� that the SM solution will be also expected to be identical to the MSOE global

solution� These assumptions were con�rmed for the cases of su�cient order identi�cation

when the perturbation noise was a white signal ��	�� However� in cases of insu�cient order

identi�cation� it was veri�ed in ��	�� ����� ����� ��	� that the characterization of the SM

convergence process is not easy and it is possible that biased or multiple solutions exist�

More recently ���� ����� some attempts have been made to associate the SM approach to a
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time�varying performance surface� thus giving a better physical meaning to the convergence

process of this algorithm� Preliminary analyses using these methods� however� are somewhat

inconclusive and further research is yet to be performed for any practical result be achieved�

Another signi�cant algorithm is the so�called simpli�ed hyperstable adaptive recursive

�ltering �SHARF� algorithm presented in ��� as an extension of Landau�s work in ���� The

SHARF algorithm is based on the signal

eSHARF �n� � D�q� feOE�n�g ������

with D�q� � � � d��n�q
�� � � � � � dnd�n�q

�nd being chosen by the system designer� The

SHARF algorithm is known to be unimodal and unbiased with respect to the MSOE global

minimum in cases of su�cient�order identi�cation� when a speci�c positive�realness condi�

tion is satis�ed by the adaptive �lter polynomials ���� The main problem for the imple�

mentation of the SHARF algorithm� however� is the lack of a robust practical procedure

to determine the additional FIR processing D�q� in order to satisfy the aforementioned

convergence condition�

Finally� one must mention the composite regressor algorithm presented by Kenney and

Rohrs in �	�� This algorithm makes use of an explicit composition of two other individual

algorithms in order to combine their respective properties in a single approach� The same

method is also utilized in the next chapter to generate a new algorithm combining the EE

and OE algorithms�

For the sake of brevity� a more complete study of adaptive IIR algorithms was not

included in this dissertation and the interested reader is referred to �	�� which includes all

the above listed schemes and also the modi�ed output error algorithm ����� the bias�remedy

equation error algorithm ����� and the composite error algorithm ��	��

��� Thesis Organization and Contributions

In this chapter� the basic material necessary for the understanding of the remaining chap�

ters was introduced� In fact� here a structured presentation of the �eld of adaptive �ltering

was given� dividing the area into the topics of applications� �lter realizations� and algo�

rithms� Also� the system identi�cation application and the direct�form realization were

brie�y introduced as they will constitute the basic environment for most of all subsequent

analyses� Finally� a discussion of some concepts associated to adaptation algorithms was
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included leading to the presentation of two important adaptive IIR algorithms� namely the

equation error �EE� and the output error �OE� algorithms� The organization of the rest of

this dissertation is as follows�

In Chapter �� a new adaptation algorithm� the so�called composite squared error �CSE�

algorithm� is introduced� This algorithm is based on the idea of combining the good proper�

ties of both the EE and OE algorithms� The relationship of the CSE algorithm with the EE

and OE algorithms facilitates the steady�state and transient behavior analyses of the CSE

algorithm� Based on these analyses� convergence properties of the CSE algorithm� such as

the existence of suboptimal or biased solutions� and its stability properties are veri�ed�

In Chapter � the implementation of the CSE algorithm using time�varying adaptable

parameters in order to obtain more e�cient and more robust convergence is discussed�

Adaptation parameters for the CSE algorithm include the convergence factor that controls

the stability and speed of convergence of the algorithm and the composition factor that

mainly dictates the steady�state characteristics of the �nal solution of the algorithm�

In Chapter �� alternatives to the direct�form realization for IIR �lters are presented�

One of the disadvantages of this realization is the complexity of the required real�time

stability test� A new lattice implementation for adaptive IIR �lters is proposed which can

be used with the CSE algorithm as well as with any other adaptive IIR algorithm� The

proposed lattice implementation is shown to be equivalent to the direct form such that both

approaches present similar transient processes and equivalent sets of stationary points in

the sense of realizing identical transfer functions� The lattice structure� however� possess

the additional feature of allowing real�time pole monitoring in a simple manner throughout

the adaptation process�

In Chapter �� the implementation of adaptive �ltering algorithms for real�time applica�

tions is discussed� A noise canceller is implemented on a DSP chip using both FIR and IIR

adaptation techniques and their performances are compared� The main goal of this chap�

ter is to illustrate the issues related to the implementation of practical adaptive IIR �lters

comparing the performance of these systems with well�known standard FIR counterparts�

In Chapter 	� the conclusions are presented� some open issues in the vast area of adaptive

IIR �ltering are discussed� and possible ways for the extension and continuation of this work

are proposed�
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��� Conclusion

The purpose of this chapter has been to outline some of the issues related to the project

of an adaptive IIR �ltering system� This has been attempted with the presentation of

a structured introduction to the �eld of adaptive signal processing� Also� two well known

adaptive IIR algorithms were introduced following a previously de�ned unifying framework�

In the remaining of this dissertation� using the content of this chapter as a starting point�

several adaptive IIR �ltering techniques are introduced in attempt to turn this class of

systems into a reliable alternative to the adaptive FIR �lters�
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Chapter �

The Composite Squared Error

Algorithm

��� Introduction

In the previous chapter� two commonly used adaptive IIR �lter algorithms� namely the

equation error �EE� and output error �OE� algorithms� were introduced� One of the best

features of these two schemes is the fact that each one can be associated to a mean squared

error performance surface ���� This results in a better understanding of the general con�

vergence characteristics of the respective adaptive technique�

The EE algorithm is a simple adaptation algorithm that generally presents a unimodal

mean square equation error �MSEE� performance surface and good stability characteristics�

However� the EE algorithm yields a biased solution in the presence of measurement or

modelling noise in the desired output signal� On the other hand� the mean square output

error �MSOE� performance surface associated to the OE algorithm has an unbiased global

minimum when the noise is independent of the input signal� This surface� however� may have

suboptimal local minima in cases of insu�cient order modelling or when the unimodality

condition of S oderstr om ����� seen in Property ����� is not satis�ed in cases of su�cient

order identi�cation� In cases of strictly su�cient order modelling� the unimodality of the

MSOE performance surface is guaranteed if the su�cient condition of Nayeri ���� given in

Property ���� is satis�ed� Comparing the characteristics of the EE and OE algorithms�

one concludes that the EE scheme tends to present strong positive qualities during the
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transient part of the convergence process� while the OE scheme is characterized by the

important steady�state fact of possessing an unbiased global minimum�

In this chapter� the composite squared error �CSE� algorithm is introduced� This algo�

rithm attempts to combine the good characteristics of the EE algorithm in the transient

part of the convergence process with the good properties of the OE algorithm at steady

state� In order to allow a better control of the overall properties of the CSE algorithm the

combination of the EE and OE algorithms is made in an explicit form using a composition

parameter� as will be seen later� This approach is similar to the one used by Kenney and

Rohrs in �	��

In ��	�� ���� an adaptive IIR �lter algorithm was developed using the same motivation

as the CSE algorithm� For that algorithm� an auxiliary error signal was de�ned as a linear

combination of the individual EE and OE signals� For the CSE algorithm� however� the

corresponding error signal is de�ned based on the squared values of the EE and OE signals�

resulting in a much easier way to determine the resultant performance surface through the

direct composition of the MSEE and MSOE functions� This results into simpler analysis

of the �nal convergence properties for the CSE algorithm� as will be veri�ed later in this

chapter�

��� The Composite Squared Error Algorithm

Consider the adaptive �ltering con�guration as described in Section ���� The basic form of

a general adaptation algorithm is given by

���n� �� � ���n� � ��n�e�n����n� �����

where ���n� is the parameter vector to be updated� ��n� is a gain factor that can be a

matrix or a scalar� e�n� is an estimation error� and ���n� is the regressor or information

vector associated to the respective adaptation algorithm� As seen in Section ��� following

this approach the EE algorithm is characterized by

eEE�n�� �A�q	 n�fy�n�g � �B�q	 n�fx�n�g ����a�

��EE�n��
�
�y�n� �� � � ��y�n� n�a� x�n� � � �x�n� n�b�

�T
����b�
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and for the OE algorithm� one has

eOE�n��y�n�� �y�n� ���a�

��OE�n��
h
��yf�n� �� � � ���yf�n� n�a� x

f�n� � � �xf�n� n�b�
iT

���b�

Consider a new signal� hereby referred to as the composite squared error �CSE� signal�

that explicitly combines the EE and OE quadratic signals in the form

e�CSE�n� � �e�EE�n� � ��� ��e�OE�n� �K �����

where � is the composite parameter of the two basic schemes and K 	 � is a constant that

guarantees the right�hand side of the above equation to be nonnegative for a general range

of the values of �� Notice that if the composite parameter is constrained to the interval

� � ��	 ��� then K can be set to zero�

From ������ the mean composite square error �MCSE� performance surface associated

to the CSE signal can be directly calculated as

E
�
e�CSE�n�

�
� �E

�
e�EE�n�

�
� ��� ��E

�
e�OE�n�

�
�K �����

i�e�� the MCSE performance surface is obtained as a weighted combination of the MSEE

and MSOE surfaces added to a factor K 	 � that assures the nonnegativity of the MCSE

function� Obtaining the updating equation of the adaptation algorithm that is based on

the CSE signal using a steepest descent minimization scheme of the form ������� one gets

���n� �� � ���n� � �
h
�eEE�n���EE�n� � ��� ��eOE�n���OE�n�

i
���	�

This equation shows that the instantaneous gradient vector is in this case a weighted com�

bination of the instantaneous gradient vectors of the EE and OE adaptation algorithms� as

expected due to the de�nition used for the CSE signal�

From equations ����	� and ������� the quasi�Newton version of the CSE algorithm is

obtained as

���n��� � ���n���
h
�TEE�n���eEE�n���EE�n�������TOE�n���eOE�n���OE�n�

i
�����

where

TEE�n� �� �
�

�
TEE�n��

�
�

�

�
TEE�n���EE�n���EE

T
�n�TEE�n�

�� �� ��EE
T
�n�TEE�n���EE�n�

�
����a�

TOE�n� �� �
�

�
TOE�n��

�
�

�

�
TOE�n���OE�n���OE

T
�n�TOE�n�

�� �� ��OE
T
�n�TOE�n���OE�n�

�
����b�

with � � �� �
�

and �
�

� ����
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��� Steady�State Analysis of the CSE Algorithm

The steady�state performance of the CSE algorithm is completely characterized by the sta�

tionary points of the MCSE performance surface described in equation ����� in the previous

section� These points are the solution of

E
h
�eEE�n���EE�n� � ��� ��eOE�n���OE�n�

i
�  �����

In order to analyze the MCSE stationary points� however� consider �rst the stationary

solutions of the basic EE and OE schemes for which the following results� brie�y stated in

Chapter � and discussed here in more detail� apply�

Property ��� ����
 For the OE scheme� if n� 	 �� the stationary points of the MSOE

performance surface such that

Re

�
�A��z�

A�z�

�

 �� � jz j � � ������

are global minima of the form

�A��q� � A�q�L�q� �����a�

�B��q� � B�q�L�q� �����b�

with L�q� � � � l�q
�� � � � �� lnlq

�nl � assuming that x�n� and v�n� are zero mean statisti�

cally independent sequences and that x�n� is persistently exciting of order �n � max��n�a �

nb�� �n�b � na���

Proof
 The stationary points for the OE algorithm are given by

E
h
eOE�n���OE�n�

i
�  ������

De�ne the delay polynomial operators !A�q�� !B�q�� and L�q� based on the following rela�

tionships

�A�q� � !A�q�L�q� ����a�

�B�q� � !B�q�L�q� ����b�

with L�q� as above� and !A�q� and !B�q� being two relatively prime polynomials with orders

respectively equal n
a � n�a � nl and n
b � n�b � nl� Developing the terms in the left�hand
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side of equation ������� one can write from ���� and ����� that

��OE�n��

��
� !B�q�

�A�q� !A�q�

�
f�x�n� �� � � �x�n� n�a��g

�
!A�q�

�A�q� !A�q�

�
f
�
x�n� � � �x�n� n�b�

�
g

�T

�

�
�

�A�q� !A�q�

�

��������������	
�������������


�
��������������

�!b�x�n� ��� � � �� !bn
bx�n� n
b � ��
���

�!b�x�n� n�a�� � � �� !bn
bx�n� n
b � n�a�

x�n� � � � �� !an
ax�n � n
a�
���

x�n� n�b� � � � �� !an
ax�n � n�b � n
a�

�
��������������

���������������
�������������

�

�
�

�A�q� !A�q�

�

��������������	
�������������


�
��������������

� �!b� � � � �!bn
b � � � � �
���

� � �
� � �

� � �
� � �

� � �
���

� � � � � �!b� � � � � � � �!bn
b

� !a� � � � !an
a � � � � �
���

� � �
� � �

� � �
� � �

� � �
���

� � � � � � !a� � � � !an
a

�
��������������

�
����

x�n�
���

x�n�n�a�n�b�nl�

�
����

���������������
�������������

������

and also

eOE�n��

�
�

A�q� !A�q�

�
fH�q�fx�n�gg� v�n�

�

�
�

A�q� !A�q�

�
����	
���

�x�n� � � �x�n� nh��

�
����

h�
���

hnh

�
����
�����
���

� v�n� ������

where H�q� � !A�q�B�q�� A�q� !B�q� � h� � h�q
�� � � � �� hnhq

�nh � with nh � max��n
a �

nb�� �na � n
b���

Thus� de�ning the �n�a � n�b � nl � ����nh � �� matrix

POE � E

�
����
�

�
�A�q� !A�q�

�����	
���


�
����

x�n�
���

x�n�n�a�n�b�nl�

�
����
�����
���
�

�

A�q� !A�q�

�
f�x�n� � � �x�n�nh��g

�
���� ����	�

and using ������ and ������ in equation ������� results in

R�OEP
�
OEh

� �  ������

where ROE is the �n�a � n�b � ����n�a � n�b � nl � �� coe�cient matrix in ������� h is the

�nh � ���dimensional vector of h coe�cients in ������� and the superscript asterisk symbol
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indicates the given point to be a solution of equation ������� In equation ������� the fact

that x�n� and v�n� are considered to be zero mean statistically independent sequences is

used�

From the fact that !A�q� and !B�q� are two relatively prime polynomials� ROE is then

a Sylvester matrix ��� with linearly independent columns and� consequently� rank equal

�n�a�n�b�nl���� Hence� the square matrix RT
OEROE is invertible ���� and ������ simpli�es

to

P�OEh
� �  ������

which can be rewritten as

E

��
q�i

�A��q� !A��q�

�
fx�n�g

�
H��q�

A�q� !A��q�

�
fx�n�g

�
� �� � � i � �n�a � n�b � nl� ������

For su�cient order identi�cation cases� one has that nh � �n�a�n�b�nl� and then it follows

that

E

��
H��q�

�A��q� !A��q�

�
fx�n�g

�
H��q�

A�q� !A��q�

�
fx�n�g

�
�E

�
r�n�

�
�A��q�

A�q�

�
fr�n�g

�

�
�

��

Z �

��
Re

�
�A��ejw�

A�ejw�

�
"r�w� dw

�� ������

with

r�n� �

�
H��q�

�A��q� !A��q�

�
fx�n�g ������

and "r�w� being the spectral density of r�n��

Using the strictly�positive�realness assumption ������� one must have that "r�w� � �

and then r�n� � �� Finally� as the input signal is assumed to be persistently exciting of

order �n� r�n� � � yields that H��q� � � or equivalently

�A��q�B�q� � A�q� �B��q� ������

which implies the statement of Property ����

�

Although this proof for Property ��� had already been presented by S oderstr om in �����

its inclusion here was considered essential to obtain a simpler presentation of the following

results�
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Property ���
 For the EE scheme� if n� 	 �� the stationary points of the MSEE

performance surface are global minima of the form given in equation ������� if the pertur�

bation signal v�n� is inexistent and the input signal is persistently exciting of the order

�n � max��n�a � nb�� �n�b � na���

Proof
 The proof in this case follows similar approach to the one given for Property ����

In fact� the stationary points of the EE algorithm are obtained by solving

E
h
eEE�n���EE�n�

i
�  �����

Using the same delay operator polynomials !A�q�� !B�q�� and L�q� as previously de�ned for

Property ���� the terms in this equation can be rewritten from ����� and ����� as

��EE�n��

��
�B�q�

A�q�

�
f�x�n� �� � � �x�n� n�a��g

�
A�q�

A�q�

�
f
�
x�n� � � �x�n� n�b�

�
g

�T
� �v�n� �� � � �v�n� n�a�� � � ���

T

�

�
�

A�q�

�

��������������	
�������������


�
��������������

�b�x�n� ��� � � �� bnbx�n� nb � ��
���

�b�x�n� n�a�� � � �� bnbx�n� nb � n�a�

x�n� � � � �� anax�n� na�
���

x�n� n�b� � � � �� anax�n� n�b � na�

�
��������������

���������������
�������������

� �v�n� �� � � �v�n� n�a�� � � ���
T

�

�
�

A�q�

�

��������������	
�������������


�
��������������

� �b� � � � �bnb � � � � �
���

� � �
� � �

� � �
� � �

� � �
���

� � � � � � � � �b� � � � �bnb

� a� � � � ana � � � � �
���

� � �
� � �

� � �
� � �

� � �
���

� � � � � � a� � � � ana

�
��������������

�
����

x�n�
���

x�n�nh�nl�

�
����

���������������
�������������

� �v�n� �� � � �v�n� n�a�� � � ���
T ������
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and also

eEE�n��

�
L�q�

A�q�

�
fH�q�fx�n�gg� �A�q�fv�n�g

�

�
L�q�

A�q�

�
����	
���

�x�n� � � �x�n� nh��

�
����

h�
���

hnh

�
����
�����
���

� �A�q�fv�n�g ������

where H�q� and nh are given as before for the previous property�

De�ning� the �nh � nl � ����nh � �� matrix

PEE � E

�
����
�

�

A�q�

�
����	
���


�
����

x�n�
���

x�n� nh � nl�

�
����
�����
���
�
L�q�

A�q�

�
f�x�n� � � �x�n� nh��g

�
���� ����	�

and using equations ������ and ������ in ������ results in

R�EEP
�
EEh

� �E
h
v�n� �A��q�fv�n�g

i
�  ������

where the superscript asterisk symbol indicates that the given point is a solution of equa�

tion ������ REE is the �n�a � n�b � ��� �nh � nl � �� coe�cient matrix in ������� h is

the �nh � ���dimensional vector of h coe�cients in ������� and v�n� is the vector in equa�

tion ������ of samples of the noise signal v�n� and �n�b��� null entries� It should be noticed

that the sequences x�n� and v�n� are once again here assumed to be statistically independent

with E�v�n�� � ��

As A�q� and B�q� are two relatively prime polynomials� the matrix REE has linearly

independent columns ��� and� consequently� �RT
EEREE�

�� exists what simpli�es ������ to

P�EEh
� �  ������

which can then be rewritten as

E

��
q�i

A�q�

�
fx�n�g

�
L��q�H��q�

A�q�

�
fx�n�g

�
� �� � � i � �nh � nl� ������

or equivalently

E

��
L��q�H��q�

A�q�

�
fx�n�g

�
L��q�H��q�

A�q�

�
fx�n�g

�
�E

���
L��q�H��q�

A�q�

�
fx�n�g

���

�
�

��

Z �

��

"s�w� dw

�� �����



�

with

s�n� �

�
L��q�H��q�

A�q�

�
fx�n�g �����

Hence� it is valid that "s�w� � �� implying that s�n� � � and then L��q�H��q� � �� or

equivalently

�A��q�B�q� � A�q� �B��q� �����

leading to the result stated in Property ����

�

Based on the previously included results and on the de�nition of the CSE scheme� the

subsequent result follows�

Property ���
 The stationary points of the CSE algorithm are given by

��R�EEP
�
EE � ��� ��R�OEP

�
OE �h

� � �E
h
v�n� �A��q�fv�n�g

i
�  ����

where all terms in this equation are as de�ned before for the EE and OE algorithms�

Proof
 Equation ���� follows directly from Properties ��� and ���� which can be seen

as special cases of Property �� when � � � and � � �� respectively�

�

Corollary ���
 In a su�cient order identi�cation case with v�n� � �� the solutions of

the form ������ are stationary points of the CSE algorithm�

Proof
 This result immediately follows from the fact that for solutions of the form �������

H��q� � !A��q�B�q��A�q� !B��q� becomes identically null and� since v�n� � �� equation ����

holds�

�

It must be pointed out that equation ���� can not be further simpli�ed in general due to

the fact that REE and ROE are two di�erent matrices� However� some conclusions can still

be drawn for the MCSE performance surface based on the MSEE and MSOE functions�

Property ���
 If for a given single point ��
�
� it is valid that

E
h
eEE�n���EE�n�

i
� E

h
eOE�n���OE�n�

i
�  �����

then this particular point is also the single stationary point of the MCSE algorithm� The

converse statement is not always true�

�



�

Property ���
 The composition of the MSEE and MSOE functions as described in

equation ����� for the CSE algorithm can be regarded as a trade�o� between obtaining

a unique or unbiased solution when the composite parameter varies within the interval

� � ��	 ���

�

This property is clearly illustrated by the system identi�cation case shown below�

Example ���
 Consider the system identi�cation application depicted in Figure ��

with a plant given by

H�q� �
����� ���q��

�� �����q�� � ��	����q��
�����

and the adaptive �lter de�ned by n�a � � and n�b � �� Assume also a zero mean� unitary

variance� Gaussian noise as input signal x�n� and no perturbation noise being present in the

desired output signal� Figure ��� shows the MCSE performance surfaces for several values

of the composite factor �� Notice that as � approaches one� the MCSE function becomes

more quadratic and well behaved� On the other hand� when � is close to zero� the MCSE

performance surface becomes multimodal� In this example� the MCSE becomes multimodal

for values of � in the interval � � � � ����� and when � � � the error function presents a

local minimum at ��
�
� ������ � �����T and a global minimum at ��

�
� ����� �����T �

�

Property ��	
 There is always an open interval for the composite factor of the form

� � ���	 �� for which any case of multiple solutions for the OE algorithm is transformed into

a unimodal MCSE problem�

�

There is no general method to precisely calculate the value of �� that guarantees uni�

modality of the MCSE function� However� it can be heuristically concluded that this thresh�

old value is a direct function of the relative positions of the MSEE and MSOE minimum

points� In fact� the closer the optimal point of the EE algorithm is to the global solution of

the OE algorithm� the smaller the value of �� must be� Additionally� the deeper the valley

of the EE minimum point is with respect to the valleys for the OE algorithm� the closer

to zero the value of �� should also be� This results from the fact that less weighting of the

EE algorithm is necessary to compensate for the multimodality of the MSOE performance

surface in cases when the minimum value of the MSEE function is much deeper than the

values of the MSOE function at its local minima�
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Figure ���
 Example ��� � MCSE performance surfaces
 �A� � � ���� �B� � � ��	� �C�
� � ���� �D� � � ����

��� Transient Analysis of the CSE Algorithm

In the previous section� the stationary points associated to the CSE adaptive IIR �lter

algorithm were characterized and general properties of the MCSE performance surface were

described� In this section� issues related to the convergence of the CSE algorithm are

addressed using two di�erent approaches� namely� the local linearization method and the

ordinary di�erence equation technique�





����� The Local Linearization Approach

An adaptation algorithm when driven by a nondeterministic input x�n� generates a stochas�

tic trajectory in the parameter space� but its ensemble mean E����n�� over all possible input

sequences is a deterministic locus� For the CSE algorithm� one has that

E
h
���n� ��� ���n�

i
� f����n�� ���	�

where

f����n�� � �E
h
�eEE�n���EE�n� � ��� ��eOE�n���OE�n�

i
�����

This function f����n�� can be approximated around a stationary point ��
�
� using the Taylor

series for vector functions� by a linear expansion of the form

f����n�� 
df

d��
j�����

� E
h
���n�� ��

�
i

�����

Using ����� in ���	�� results in

E
h
���n� ��� ���n�

i
 QE

h
���n�� ��

�
i

�����

where Q is the #sensitivity$ matrix given by

Q �
df

d��
j�����

�� �
�

�

d�E
�
e�CSE�n�

�
d��

� j�����
� ������

De�ning the coe�cient error vector as ���n� � ���n�� ��
�
� equation ����� can be rewritten

as

E
h
���n� ��

i
 �I�Q�E

h
���n�

i
������

or equivalently

E
h
���n�

i
 �I�Q�n ����� ������

That is� given initial conditions for ���n� within a small neighborhood of a stationary point

��
�
� the expected value of the coe�cient vector evolves deterministically according to �������

Convergence of this equation� however� does require that the matrix �I �Q� possesses all

eigenvalues inside the unit circle� Moreover� it is necessary for the adaptive �lter to remain

stable throughout the convergence process otherwise the expected values involved in the

above procedure are not guaranteed to exist� Now� since the matrix Q de�ned as above

is symmetric� the eigenvalues of �I � Q� are all real valued� Thus� one �nds that these



�

eigenvalues are smaller than �� if Q is negative de�nite� which implies that the stationary

point ��
�
is a local minimum of E�e�CSE�n��� Also� the eigenvalues are all larger than ��� if

the matrix ��I�Q� is positive de�nite�

Note that such linearization process could be performed at any point in the space of

��� but only a linearization around a stationary point yields an autonomous system with

no forcing function� as given by equation ������� This results from the fact that only at a

stationary point the gradient function f����n�� becomes a null vector�

The local linearization method allows one to analyze the convergence of the CSE algo�

rithm close to a limit ��
�
in a formal fashion� In fact� using this approach the following local

convergence result applies�

Property ��

 Let ��
�
be a local minimum of the MCSE performance surface and assume

that the adaptive �lter remains stable throughout the adaptation process� Convergence of

the CSE algorithm to ��
�
is then guaranteed for a su�ciently small value of �� if the adaptive

�lter is initialized in a su�ciently small neighborhood of this point�

Proof
 Using the linearization approach� its was veri�ed that the adaptation process of

the CSE in a small neighborhood of a MCSE stationary point ��
�
can be modelled by a

process of the form ������� Assuming that ��
�
is a local minimum of the MCSE function�

one has that the symmetric matrix Q de�ned in ������ is negative de�nite and then �I�Q�

has all eigenvalues smaller than one� In addition� using the continuity concept� it can be

veri�ed that there is always an open interval for � � ��	 ��� that guarantees the matrix

��I�Q� to be positive de�nite� In that case� it is valid that �� � ���I�Q�� � �� where ����

represents the set of eigenvalues of a particular matrix� and then equation ������ converges

to zero� implying that ���n� converges to ��
�
�

�

To examine the adaptation process analyzed by the local linearization approach� consider

the following example�

Example ���
 Consider an identi�cation case where na � n�a � �� nb � n�b � �� and

the perturbation signal v�n� is identically null� Then

y�n��b�x�n�� a�y�n� �� ����a�

�y�n���b��n�x�n�� �a��n��y�n� �� ����b�



�

and the mean update vector for the CSE adaptation algorithm is given by

E
h
���n� ��� ���n�

i
� �E

�
� ��eEE�n�y�n� ��� ��� ��eOE�n��y

f�n� ��

�eEE�n�x�n� � ��� ��eOE�n�x
f�n�

�
� ������

Assuming the input signal to be a Gaussian noise with zero mean and unitary variance and

� to be small enough to validate the small step approximation�� equation ������ becomes

E
h
���n� ��� ���n�

i
� �E

�
�� �

�a���a��n		b
�

�

���a�
�
	

������
h

a�b��b��n	
���a��a��n		�

�
�a��n	�b

�

�
�n	

����a�
�
�n		�

i
��b�� �b��n��������

h
b�

���a��a��n		
�

�b��n	
����a�

�
�n		

i
�
�� ������

Linearization of this function using the Taylor series requires its partial di�erentiation with

respect to �a��n� and �b��n� and subsequent evaluation of the result at ��
�
� �a� b��

T � yielding

expressions similar to ������ and ������ with

Q � �

�
� ��a�

�
��a�

�
��a�

�
��	b�

�

���a�
�
	�

���� �� a�b�
���a�

�
	�

���� �� a�b�
���a�

�
	�

�a�
�
���	

���a�
�
	

�
� ����	�

To illustrate the validity of these results� several parameter error trajectories were calcu�

lated for a� � ���� b� � ���� � � ������ three di�erent values of the composite parameter ��

and several initial conditions for the adaptive �lter� The predicted trajectories using equa�

tion ������ are presented on the left�hand side of Figure ��� and the actual trajectories when

the CSE algorithm is used are shown in the right�hand side of this �gure� The crosses on

each trajectory indicate the corresponding progress at every ��� of the �rst ���� iterations�

From this �gure� it is easy to verify that the proposed local analysis complies well with the

obtained actual results when the initial values of ���n� are chosen su�ciently close to the

particular stationary point�

�

����� The Ordinary Di�erence Equation Approach

In this section a broader transient analysis tool is presented for the CSE algorithm in the

sense that it is valid for the entire coe�cient space� as opposed to only a neighborhood of a

given stationary point� The central idea is the association of the stochastic CSE adaptation

algorithm to a deterministic ordinary di�erence equation �ODE� the convergence of which

is easier to be analyzed� The contents of this section follow the approach of Fan in ���� ����

�See Appendix A



	

which complements the work of Benveniste extending the work of Ljung in ����� The main

result included here is expressed as follows�

Property ����
 Let x�n� and v�n� be stationary processes with �nite �rst� second� and

fourth moments� Assume that the denominator polynomial �A�q	 n� describes a stable �lter

for all n and that x�n� and v�n� are ��mixing� as de�ned in Chapter �� Then� the behavior

of the CSE algorithm with constant � and � converges to the solution of the ODE

d ���t�

dt
� V

h
���t�

i
� ����� � ��� ������

where

V
h
���t�

i
� E

h
�eEE�n���EE�n� � ��� ��eOE�n���OE�n�

i
j��� ���t	

������

in probability� such that

P

�
sup

��n��S
k���n�� ��

�
�n��k 
 C���

�
� C

�

��� ������

where S� C� and C
�

are positive constants and ��� is a positive function going to zero as

� decreases�

Proof
 The proof of this result follows directly from the work of Fan in ���� ���� that

shows that the EE and OE algorithms can each be associated to a corresponding ODE� In

that manner� the association of the CSE algorithm to the ODE in ������ and ������ follows

from a direct linear combination of the individual ODEs for the EE and OE schemes�

�

Notice that several common restrictions to the adaptive problem are not imposed in

this theorem as� for instance� adaptive �lter order constraints and statistical independence

of the x�n� and v�n� sequences� thus giving a quite general character to this result� Such

assumptions� however� do become necessary when considering the convergence properties

of the resulting ODE�

The ��mixing condition of the theorem implies that x�n� and v�n� are uncorrelated to

each other for large time separations as indicated before� Moreover� as one of the restric�

tions in this theorem is the requirement that the adaptive �lter has a stable denominator

polynomial at each and every instant of time� a stabilization procedure must be incorpo�

rated to the algorithm� This is normally accomplished by using alternative �lter realizations

as opposed to the standard direct�form structure to implement the adaptive IIR �lter al�

gorithm� The use of lattice�type structures to implement the CSE algorithm� resulting in



�

the required stability monitoring procedure being e�ciently implemented in real time� is

discussed in Chapter � of this dissertation�

In equation ������� sup
��n��S

k���n�� ��
�
�n��k gives a measure of how bad the approximation

of ���n� by ��
�
�n�� is� The greater the quality of the approximation� the smaller the value

of sup
��n��S

k���n�� ��
�
�n��k should be and vice�versa� Equation ������ then implies that the

probability of sup
��n��S

k���n�� ��
�
�n��k being greater than a certain value C��� approximates

zero as � converges to zero� implying that a good approximation has been obtained� Note�

however� that nothing is said about how small � must be for the probability given in ������

to be satisfactory� In fact� although an explicit form of ��� can be obtained with further

assumptions� no explicit expressions are given for this function� C� and C
�

� In general� ����

C� and C
�

are application dependent� such that � is chosen by trading o� the convergence

speed with variance of the converged coe�cients�

The association of the on�line adaptation algorithm to an ODE allows one to analyze the

convergence characteristics of such algorithm in a deterministic manner� greatly simplifying

much of the algebraic manipulation involved in such analytic process� To emphasize this

distinction� �� is used here to denote the deterministic counterpart of the stochastic variable

��� The following theorem makes use of the ODE approach to analyze the convergence of

the CSE algorithm�

Property ����
 The CSE algorithm always converges to a local minimum of the func�

tion W � ���t�� � E�e�CSE�n�� j��� ���t	
� the stationary points of which were studied in Sec�

tion ���

Proof
 Obtaining the time derivative of the Lyapunov function W � ���t�� above de�ned�

one obtains

dW
h
���t�

i
dt

���E
h
�eEE�n���EE�n����� ��eOE�n���OE�n�

iT
j��� ���t	

d ���t�

dt

���E
h
�eEE�n���EE�n����� ��eOE�n���OE�n�

iT
j��� ���t	

�

E
h
�eEE�n���EE�n����� ��eOE�n���OE�n�

i
j��� ���t	

� � ������

with the equality occurring at the local minimum� Hence� Property ���� immediately fol�

lows�

�



�

This theorem is the �rst result that formally demonstrates the descending nature of the CSE

algorithm on a given performance surface as de�ned above� That result is only valid in the

deterministic domain of the variable �� following the result expressed in Property ����� To

illustrate the use of the ODE to predict and analyze the convergence behavior of the CSE

algorithm� consider the following example�

Example ����
 Let the plant and the adaptive �lter be as de�ned in Example ���� It

is straightforward but tedious to show that in this case the CSE algorithm is associated to

the �rst�order ODE given by

dV
h
���t�

i
dt

�

�
� �f�

�
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�
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�
���t�

�
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�
�
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�
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�
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�
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�
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�
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h
�a��t� �b��t�

iT
�

Figures �� and ��� respectively show the predicted trajectories using ������ and ������

and the actual adaptable coe�cient trajectories for distinct values of � and di�erent initial

conditions of the adaptive �lter indicated by the circles in these �gures� For the actual

execution of the CSE algorithm� the convergence parameter was set to � � ������ and the

crosses in each trajectory indicate the corresponding progress after every ��� of the �rst ����

iterations� The trajectories in these �gures are consistent with Figure ��� in Example ����

Notice� however� that no time comparison between the CSE algorithm trajectories and

the ODE trajectories can be made� as opposed to the convergence analysis based on the

local linearization approach given in the previous section� From Figures �� and ���� it is

immediate to verify that the proposed association of a deterministic ODE to the stochastic

CSE algorithm complies well with the obtained results� thus resulting in an easier analysis

of the CSE convergence process based on the ODE deterministic setting�

�
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��� Conclusion

An alternative algorithm for adaptive IIR �ltering based on the composition of the two well

known EE and OE schemes was introduced� The new algorithm� referred to as the CSE

algorithm� utilizes an explicit combination factor that allows better control of its conver�

gence characteristics� Steady�state analysis for the new algorithm was included relating its

stationary points to the ones of the EE and OE algorithms� Two methods were also dis�

cussed to analyze the transient behavior of the CSE algorithm� The �rst method consisted

of a local linearization of the algorithm near a given stationary point� The second approach

was based on the association of an ordinary di�erence equation to the transient process

of the CSE algorithm� thus allowing a more general analysis than the previous method�

Based on these techniques it was possible to verify that the CSE algorithm is an interesting

adaptation tool that manages to take advantage of the positive qualities of the EE and OE

schemes allowing a trade o� between the unimodality of the performance surface and good

stability properties of its corresponding convergence process�
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Figure ��
 Example ��� � Predicted CSE parameter trajectories using the ODE method
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 Example ��� � Actual CSE parameter trajectories
 �A� � � ���� �B� � � ��	�
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Chapter �

Time�Varying Adaptation

Parameters for the CSE Algorithm

��� Introduction

Practical utilization of the composite squared error �CSE� algorithm introduced in the

previous chapter requires the speci�cation of both the convergence parameter � and the

composite factor �� Choosing the values for such parameters is usually left as an open

problem to be addressed by the system designer depending on the application� based on

heuristics or other more subjective insights� In this chapter� some guidelines to facilitate

the CSE implementation using time�varying adaptation parameters able to adjust their

values in order to achieve prescribed objectives are given� The use of variable convergence

factors simpli�es the algorithm design greatly reducing the amount of heuristics required

to achieve a satisfactory performance level with respect to convergence speed� In addition�

the use of time�varying composite factor for the CSE algorithm is considered in an attempt

to obtain convergence to the global minimum� despite possible existence of local minima for

the equation error �EE� algorithm or biased solution for the output error �OE� algorithm�

It is then veri�ed that these techniques can be e�ciently used to achieve a more robust

convergence with the CSE algorithm�
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��� Variable Convergence Factor for the CSE Algorithm

It is clear from the presentation given in this dissertation that the CSE algorithm is basically

composed by two distinct algorithms� Hence� it is natural to conclude that one can utilize

a speci�c convergence factor for each individual algorithm resulting in a modi�ed CSE

algorithm of the form

���n� �� � ���n� �
h
�EE�eEE�n���EE�n� � �OE��� ��eOE�n���OE�n�

i
����

as opposed to the form given in equation ���	� with a unique convergence factor� An

equivalent modi�cation for the quasi�Newton CSE algorithm given in equation ����� yields

���n� �� � ���n���EE�TEE�n� ��eEE�n���EE�n�

��OE��� ��TOE�n� ��eOE�n���OE�n� ����

with

TEE�n� ���
�

�EE
TEE�n��

�
�

EE

�EE

�
TEE�n���EE�n�

��EE
T
�n�TEE�n�

�EE � �
�

EE
��EE

T
�n�TEE�n���EE�n�

�
��a�

TOE�n� ���
�

�OE
TOE�n��

�
�

OE

�OE

�
TOE�n���OE�n���OE

T
�n�TOE�n�

�OE � �
�

OE
��OE

T
�n�TOE�n���OE�n�

�
��b�

with �EE � � � �
�

EE � �
�

EE � �EE��� �OE � � � �
�

OE � and� �
�

OE � �OE��� One can then

utilize time�varying convergence factors �EE � �EE�n� and �OE � �OE�n� to normalize the

CSE adaptation process by forcing these variable parameters to minimize speci�c criteria

associated to each distinct respective algorithm� This approach is discussed in the following

sections for both the steepest�descent and quasi�Newton versions of the CSE algorithm�

First� however� consider the de�nitions below�

De�nition ���
 Consider the EE signal given as seen in ������ by

eEE�n� � y�n�� ��
T
�n���EE�n� ����

The so�called a�posteriori EE signal is de�ned as

EE�n��y�n�� ��
T
�n� ����EE�n�

�eEE�n�����
T
�n� ����EE�n� ����

where ����n� �� � ���n� ��� ���n��

�
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De�nition ���
 Consider the OE signal as in ������

eOE�n� � y�n�� ��
T
�n���MOE�n� ��	�

with ��MOE�n� de�ned in �����d�� The so�called a�posteriori OE signal is de�ned analogously

as above by

OE�n��y�n�� ��
T
�n� ����MOE�n�

�eOE�n�����
T
�n� ����MOE�n� ����

with ����n� �� as before�

�

����� The Steepest�Descent CSE Case

In this section time�varying convergence factors are given for the steepest�descent �SD�

version of the CSE algorithm�

Property ���
 For the SD�EE algorithm� the time�varying convergence factor that

minimizes the a�posteriori squared EE signal is given by

��EE�n� �
�

�SD�EE�n�
����

with �SD�EE�n� � ��
T

EE�n�
��EE�n��

Proof
 From the updating equation for the SD�EE algorithm� ���� with � � �� one gets

����n� �� � �EE�n�eEE�n���EE�n� ����

and then� from ����

�EE�n� � e�EE�n�
h
�� �EE�n���

T

EE�n�
��EE�n�

i�
�����

Therefore� it is straightforward to show that the value of �EE�n� that minimizes the a�

posteriori squared EE is given by �����

�

Property ���
 For the SD�OE algorithm� ���� with � � �� the time�varying conver�

gence factor that minimizes the a�posteriori squared OE signal is given by

��OE�n� �
�

�SD�OE�n�
�����

with �SD�OE�n� � ��
T

MOE�n�
��OE�n��
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Proof
 The proof is entirely analogous to the one given for Property ��

�

Both Properties � and �� are obtained following a simpli�ed approach to the one

seen in ������ In general� in order to deal with the uncertainties of the generally stochastic

adaptive problems� it is common to introduce a safety normalizing parameter � ��� � that

scales the aforementioned time�varying convergence factors ��EE�n� and ��OE�n� to avoid

instability of the adaptation process� Although this procedure introduces a new parameter

to be speci�ed� it has been veri�ed in ���� that the choice for � is not nearly as critical as

the choice of the value for a constant�in�time convergence factor � and hence no essential

heuristics is necessary to determine a good value for �� This property is illustrated in the

example below�

Example ���
 Consider the exact�order identi�cation case for the plant used in Exam�

ple ���� i�e�

H�q� �
����� ���q��

�� �����q�� � ��	����q��
�����

and

�H�q	 n� �
�b��n� � �b��n�q

��

� � �a��n�q�� � �a��n�q��
����

Assume� once again� a zero mean� unitary variance� Gaussian noise as input signal and no

perturbation noise being present in the desired output signal� Let also � � ��� to assure

that both EE and OE algorithms are in e�ect� Consider then the implementation of the SD�

CSE algorithm with �xed convergence factor as in ���	� and with time�varying convergence

factors using equation ����� where

�EE � �EE�n� �
�

�SD�EE�n�
����a�

�OE � �OE�n� �
�

�SD�OE�n�
����b�

with �SD�EE�n� and �SD�OE�n� as de�ned above� Figure �� depicts the required number

of iterations for the CSE signal averaged over �� experiments to reach a ����dB level for

both implementations� From this �gure� it can be clearly inferred that a good interval for

the value of the �xed convergence factor was found to be � � ����	 ����� within which

the ����dB level for the CSE signal was reached in less than ��� iterations with optimal

value � � ������ For the time�varying case� a good interval for the safety parameter was
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approximately � � ����� ����� with optimal value given by � � ����� This illustrates that

the performance of the SD�CSE algorithm with time�varying convergence factors is less

sensitive to the selection of the stepsize than the case with constant factor�
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Figure ��
 Example �� � Number of iterations required for the CSE signal averaged over
�� experiments to reach ����dB as a function of � in the �xed convergence factor case ��o��
and � in the variable convergence factor case ��x��� for the SD�CSE algorithm�

�

It should be pointed out that the whole mechanism inherent to the variable convergence

factors can be understood as a normalization of the internal adaptive signals such that the

con�dence interval for the convergence factor becomes almost independent to the respective

adaptive problem� In that way� while the interval for the values of � that result in good con�

vergence speed is entirely dependent on the particular adaptive problem� the corresponding

interval for � is always approximately the same�

����� The Quasi�Newton CSE Case

In this section time�varying convergence factors are given for the quasi�Newton �QN� version

of the CSE algorithm�

Property ���
 For the QN�EE algorithm� the time�varying convergence factor that

minimizes the a�posteriori squared EE signal is given by

��EE�n� �
�

� � �QN�EE�n�
�����

where �QN�EE�n� � ��
T

EE�n�TEE�n���EE�n��
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Proof
 From the updating equation for the QN�EE algorithm� ���� with � � �� one has

that

����n� �� � �EE�n�eEE�n�TEE�n� ����EE�n� ���	�

and then� from ����

�EE�n� � e�EE�n�
h
�� �EE�n���

T

EE�n�TEE�n� ����EE�n�
i�

�����

From the recursion ��a�� it is valid that

��
T

EE�n�TEE�n� ����EE�n� �
�QN�EE�n�

� � �
�

EE�n� ��QN�EE�n�� ��
�����

with �
�

EE�n� � �EE�n��� and �QN�EE�n� as de�ned above� Hence� it is easy to verify that

the value of �EE�n� that minimizes ����� is given by ������

�

Property ��� �	�
 For the QN�OE algorithm� ���� with � � �� the time�varying

convergence factor that minimizes the a�posteriori squared OE signal is given by

��OE�n� �
�

� � ��
�

QN�OE�n�� �QN�OE�n�
�����

with �
�

QN�OE�n� �
��
T

MOE�n�TOE�n���OE�n� and �QN�OE�n� � ��
T

OE�n�TOE�n���OE�n��

Proof
 The proof for Property �� can be found in �	� and it is entirely analogous to the

one given for Property �	�

�

Both of these properties are obtained following a simpli�ed version of the approach

in ���� that extends the work of Yassa ����� for the QN case� A safety scaling parameter

� � � � � is introduced as in the previous steepest�descent case� This takes the stochastic

nature of the adaptive problem into consideration thus avoiding adaptation instability�

Example ��	
 Consider the use of the QN�CSE algorithm for the same identi�cation

problem described in Example ��� Figure �� depicts the required number of iterations for

the CSE signal averaged over �� experiments to reach a ����dB level using the QN�CSE

algorithm with �xed or time�varying convergence factors� Implementation of the QN�CSE

algorithm using a �xed convergence factor followed the form given in ����� and using time�

varying convergence factors was based equation ����� where

�EE��EE�n� �
��

� � �QN�EE�n�
����a�

�OE��OE�n� �
��

� � ��
�

QN�OE�n�� �QN�OE�n�
����b�
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with �QN�EE�n�� �
�

QN�OE�n�� and �SD�OE�n� as de�ned before� It was veri�ed that a

relatively good interval for the value of the �xed convergence factor would be in this case

� � ����	 ���� within which the ����dB level for the CSE signal was reached in less than

��� iterations� For the time�varying case� a good interval for the safety parameter was

approximately � � ���� �����
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Figure ��
 Example �� � Number of iterations required for the CSE signal averaged over
�� experiments to reach ����dB as a function of � in the �xed convergence factor case ��o��
and � in the variable convergence factor case ��x��� for the QN�CSE algorithm�

�

Examples �� and �� illustrate how the aforementioned time�varying parameters in�u�

ence the adaptation process in such a way that satisfactory convergence speeds are achieved

with a much lower level of heuristics required to specify the algorithm parameters� Similar

results applied to di�erent algorithms and realizations are found� for example� in ����� In

the literature� the use of variable convergence factor in adaptive �ltering is commonly as�

sociated with a faster adaptation process� This� however� is not generally true as it can be

veri�ed from the simulation examples included in this section where the optimal convergence

speeds using �xed or variable parameters were found to be quite comparable� Nevertheless�

the fact that a more judicious choice of a �xed � is necessary to achieve a good level of

performance �refer� for instance� to Figures �� and ��� can be seen as a strong indication

that in practice usage of time�varying convergence factors does result in better adaptation

speed in general�
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��� Variable Composite Factor for the CSE algorithm

As mentioned earlier� the EE algorithm has some interesting convergence properties such

as overall stability and unique solution� Unfortunately� however� the �nal solution for this

algorithm tends to be biased in the presence of a perturbation signal� On the other hand�

the OE algorithm is characterized by possibly unstable adaptation and convergence to

suboptimal solutions� However� the global optimum solution of the OE algorithm is proven

unbiased even in the presence of any kind of perturbation signal statistically independent

of the input signal� Consequently� one may conclude that an ideal kind of adaptation

algorithm would be the one that combines the good initial features of the EE algorithm�

as good stability properties and unique solution� with the good �nal property of the OE

of unbiased global optimum solution� This can be achieved by using the proposed CSE

algorithm with a time�varying composite parameter � � ��n� with value initially set to one

and approximating zero as the adaptation process progresses�

Following the above argument� one simple form to utilize an e�ective time�varying com�

posite factor is based on a recursive updating equation of the form

��n� �����n�� ��r�

�
e�CSE�n�

�
���n�� ��

�
e�EE�n�� e�OE�n�

�
�����

Notice� however� that as the above scheme is based on the minimization of the mean com�

posite square error� ��n� will tend to one if E�e�EE�n��
� � E�e�OE�n��

�� or zero in case of

E�e�EE�n��
� 
 E�e�OE�n��

�� where E�e�EE�n��
� and E�e�OE�n��

� are respectively the minimum

MSEE and MSOE values� In order to force the composite parameter to tend to zero in all

cases� equation ����� should be modi�ed to

��n� �� �

�	

 ��n�� �� je

�
EE�n�� e�OE�n�j	 if ��n� �� 
 �

�	 otherwise
�����

This approach has been used in a series of identi�cation problems such as the example below

with very positive results�

Example ��

 Consider the same insu�cient order identi�cation problem described in

Example ���� where the plant is given by

H�q� �
����� ���q��

�� �����q�� � ��	����q��
����
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and the adaptive �lter is characterized by n�a � � and n�b � �� Assume once again a zero

mean� unitary variance Gaussian noise as input signal x�n� and no perturbation noise being

present in the reference signal� Applying the CSE algorithm with time�varying composite

parameter as described in ����� with ���� � � and �xed � � �� � ������ results in the

coe�cient trajectories depicted in Figure �� where the small circles indicate the start�

ing points� From this �gure� one must observe that� in this example� convergence to the

MSOE global minimum ��
�
� ����� �����T is reached independently of the initial value of

the adaptive �lter coe�cient vector� Compare these trajectories with the ones given in

Example ���� Figure ���d�� where the OE algorithm may converge to a local solution

as expected� depending on its starting point� In addition� the fact that in all cases the

composite parameter was forced to converge to zero� as indicated in Figure ��� assures

the CSE �nal solution to be the exact MSOE global minimum� This is an advantage of

the CSE algorithm over others� including the Steiglitz�McBride algorithm� which does not

necessarily lead to the MSOE global minimum in the insu�cient order cases ����� ����� �����
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Figure �
 Example �� � Convergence in time of adaptive �lter coe�cients using the CSE
algorithm with time�varying composite parameter�

�

In the rest of this section� a geometric interpretation for the CSE algorithm with time�

varying composite parameter ��n� and relationship of this algorithm with some o��line

nonlinear optimization methods are given�

As seen before� adaptation algorithms are often analyzed in the literature as being

iterative procedures that attempt the minimization of a deterministic objective function in

a stochastic approximate form ���� This perspective has proven itself to be quite useful in
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 Example �� � Convergence in time of the time�varying composite parameter

�A� ����� � ���� ���T � �B� ����� � ���� � ���T �

the understanding of many convergence characteristics of a given adaptation algorithm� as

observed� for instance� in Chapter � of the present dissertation� An alternative point of view�

however� interprets an adaptation algorithm as consisting of an exact minimization scheme

of a given stochastic time�varying performance surface� This approach is used� for example�

in the derivation of an adaptation algorithm� when the instantaneous squared value of a

given error signal is used as an objective function� the gradient of which is determined

in order to obtain the corresponding iterative equation� This latter perspective� brilliantly

presented by Stonick in ����� naturally leads to a simple geometric interpretation of the CSE

algorithm with variable composite factor� In fact� as one may have already inferred� using a

varying parameter � with the CSE algorithm can be geometrically visualized as performing

the minimization of a time�varying objective function given by the instantaneous value of

the CSE signal as de�ned in ����� with � � ��n��

Based on this interpretation� to verify convergence of the CSE algorithm to the MSOE

global solution� one must consider the relative position of both the EE single minimum and

the OE global minimum� In fact� in cases where both of these minima are located in the

same valley of the MCSE objective function� convergence to the MSOE global minimum

using the above scheme is assured if the adaptation progresses in such a way that the

adaptive �lter is directed to the EE solution and it is thence redirected to the OE solution

as � varies from one to zero� On the other hand� for the cases where the EE valley does not

coincide with the valley of the MSOE global minimum� more complex strategies could be
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attempted in order to achieve convergence to the global solution�

An interesting relationship exist between the CSE algorithm implemented with variable

composite factor and some o��line nonlinear optimization algorithms belonging to such

groups as of the homotopy continuation method �HCM� and the global nonconvexity method

�GNM�� As described in ����� HCMs are numerical methods that follow paths originating

at known minima of a selected simple problem and terminate at the minima of the original

nonlinear problem of interest� These paths are de�ned by the homotopy function that

combines the original problem and the simple system of equations by making use of a

homotopy parameter which varies between zero and one� A commonly used homotopy

function h���	 �� uses the linear composition of the form

h���	 �� � ��� ��g���� � � f���� �����

where � is the homotopy parameter� g���� �  has known solutions� and f���� �  is the

system of equations to be solved� In the context of adaptive IIR �ltering� f���� �  is de�ned

by setting the MSOE gradient vector equal to zero�

The GNMs are numerical methods that can be seen as special cases of HCMs by de�ning

g���� as a convex function ����� Although� neither HCMs nor GNMs require the deformation

from g���� to f���� to be linear with respect to the composite parameter� the linear form

above presented is the one most widely used in practice� In the context of adaptive IIR

�ltering� the MSEE objective function is quadratic and therefore it can be viewed as a

convex approximation of the MSOE function� Hence� one can interpret the proposed CSE

adaptation algorithm as an on�line version of a linear GNM such that the convex EE problem

is linearly transformed into the OE problem of interest� This relationship between the CSE

algorithm and the two nonlinear approaches is interesting as one may attempt to apply some

of the convergence results for the HCMs and the GNMs known in the respective literature

to the convergence process associated to the CSE algorithm�

In fact� for HCMs it is known that if the system of equations g���� �  presents the

same �nite number of solutions as the system f���� � � there is a theoretical guarantee

that the global optimal solution can be found ����� This result� however� requires the

utilization of multiple identi�ers working in parallel what can be excessively cumbersome

in a computational point of view� For algorithms of the GNM type� global optimality

of the �nal solution is guaranteed when the convex approximation and the intermediate
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performance surfaces are always below the objective function of interest ����� Although this

is not always valid in our adaptive IIR �ltering context� where it is not possible to guarantee

the MCSE to be underneath the MSOE for � � �� ��� this result may still provide some

additional insight for the task of achieving global optimality�

It must be emphasized� however� that the aforementioned theorems shall only apply to

the CSE algorithm convergence process if the variation of the composite factor is performed

in such a slow enough fashion that allows for the adaptable coe�cient vector to track the

intermediary solutions de�ned by the composite system of equations associated to each

value of the parameter ��

��� Conclusion

The use of variable convergence factors and composite parameter was investigated for the

CSE algorithm� It was veri�ed that time�varying adaptation parameters can be considered

very important to the task of simplifying the design of both the steepest�descent and the

quasi�Newton versions of the CSE algorithm with a minimal amount of additional computa�

tional burden� Moreover� the use of a time�varying composite factor for the CSE algorithm

was considered in order to obtain global convergence despite presence of bias in the EE

solution or existence of local minima for the OE algorithm� Overall it was emphatically

veri�ed that the use of these techniques result in an e�cient way to implement the CSE

algorithm greatly simplifying its design�



��

Chapter �

Lattice�Based Adaptive IIR Filters

��� Introduction

Adaptive IIR �lters constitute a potential alternative to adaptive FIR �lters as they are suit�

able for modelling real systems with sharp resonances using signi�cantly fewer coe�cients�

Standard algorithms for adaptive IIR �lters are commonly presented in the literature based

on the direct�form realization to obtain a simpler understanding of the nature of the respec�

tive algorithm as well as of its convergence properties� The direct�form realization� however�

is not suitable for many practical implementations of adaptive �lters because it does not

allow an e�cient on�line pole monitoring as required by several adaptation algorithms to

avoid instability of the adaptive IIR �lter during the convergence process�� Consequently�

several alternative structures have been considered for the implementation of adaptive IIR

�lter algorithms�

The lattice realization ���� ����� ��� is an example of a �lter structure the stability

�It is a well known fact in the literature ���� ����� that the location of the roots of the adaptive��lter

denominator polynomial inside the unit circle is not a necessary neither a su�cient stability condition for

time�varying systems� In fact� even if these roots remain inside the unit circle at every instant of time n� it is

possible for the system to become unstable� Nevertheless� for most practical cases� it can be shown ���� that

if the system is slowly varying in time� a common assumption for adaptive �lters known as the small�step

approximation discussed in Appendix A� the asymptotic stability of the system is indeed associated to the

location of the roots of the denominator polynomial at the interior of the unit circle� Based on these facts�

it is a common practice in the area of adaptive �ltering to relate the stability of the overall time�varying

adaptive �lter to the stability of each and every time�invariant linear system de�ned at each instant of time

n�
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of which can be assured in real time� making this structure well suited for adaptive IIR

�ltering� The relationships between the solutions of adaptation algorithms based on the

lattice and direct�form realizations were �rst studied by Nayeri in ����� In this paper� it

was proven that the convergence points of an adaptation algorithm using lattice structure

present an one�to�one correspondence with the solutions of the direct�form version of the

same algorithm� This property further motivated the idea of using the lattice structure as

an e�cient and equivalent alternative realization for adaptive IIR �lter algorithms�

Initial attempts of applying the lattice structure to adaptive IIR �ltering ����� �	��

have led to computationally complex adaptation algorithms� Subsequent attempts to sim�

plify ��� ���� and accelerate �	��%���� lattice�based adaptive IIR �lter algorithms presented

problems like parameter drift during the convergence process or further increase in the

computational complexity of the algorithm�

In ����� a simpli�ed adaptive IIR lattice �lter was presented based on recursive�in�order

equations for the state variables of the tapped lattice realization� This method was consis�

tent in the sense that it converged to a set of parameters that realized the same transfer

function as the corresponding direct�form algorithm� In �	��� Regalia introduced compu�

tationally e�cient lattice versions for the Steiglitz�McBride �SM� and output error �OE�

algorithms� These simpli�ed algorithms were obtained by exploiting the modularity of an

extended state�space representation for the normalized lattice structure� which enabled Re�

galia to dramatically simplify the calculation of the information vectors for the SM and OE

algorithms� This approach� however� cannot be extended in a straightforward manner to

other adaptation algorithms and it is somewhat speci�c for the normalized lattice structure�

More recently� Miao et al� ���� introduced new algorithms based on a lattice IIR structure

formed by a tapped�delay�line FIR �lter in serial connection with a feedback lattice denom�

inator� In this work� the authors developed recursive�in�order equations for that particular

structure resulting in the implementation of the adaptation algorithms in a very e�cient

form�

In this chapter� the results presented in ����� �	��� and ���� are complemented� The

work here concentrates on the tapped lattice structure used in ����� taking advantage of the

inherent characteristics of that realization ���� ����� Moreover� we obtain recursive�in�order

equations for the numerator and denominator polynomials of the adaptive �lter transfer

function� as opposed to the state�space approach used in ����� This results into simpler
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recursion equations and it also allows the implementation of adaptation algorithms from

the equation error �EE� family of algorithms as� for example� the standard EE ����� the

bias�remedy EE ����� and the composite algorithms of ��	� and of Chapter � ����� These

facts possibly constitute the major contribution of this chapter� The e�cient adaptation

algorithms are then obtained using simpli�cations to the gradient vector following a similar

approach to the one proposed in �	���

In here� the two�multiplier and normalized tapped lattice versions of the CSE algorithm

are presented� However� the proposed methods are quite general and� to the author�s best

knowledge� they can be used to implement a consistent and e�cient version of any currently

known adaptive IIR �lter algorithm as it will be later indicated�

This chapter is organized as follows� In the next section� the direct�form EE� OE� and

CSE algorithms are given following the general framework for the description of adapta�

tion algorithms� Later� the two�multiplier lattice structure is introduced along with a new

technique to implement a given direct�form transfer function� In Section ���� using that

approach� we present an e�cient implementation of the CSE algorithm based on the two�

multiplier lattice realization� Additionally� directions are given to extend the method to

other adaptation algorithms and to the normalized lattice realization� Computer simula�

tions are included to demonstrate the validity and usefulness of the proposed techniques�

��� Direct�Form Adaptive IIR Filter Algorithms

As seen before� a direct�form adaptive �lter is generally described by

�y�n� �

�
�B�q	 n�
�A�q	 n�

�
fx�n�g �����

with �A�q	 n� � � �
Pn�a

i�� �ai�n�q
�i and �B�q	 n� �

Pn�b
j��

�bj�n�q�j � Also� the basic form of a

general adaptive �ltering algorithm can be written as

���n� �� � ���n� � ��n�e�n����n� �����
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where ���n� is the adaptive �lter coe�cient vector which for the direct structure character�

ized above is de�ned as�

��d�n� �
h
�a��n� � � ��an�a�n�

�b��n� � � ��bn�b
�n�
iT

����

For instance� the EE algorithm is de�ned by

eEE�n�� �A�q	 n�fy�n�g � �B�q	 n�fx�n�g ����a�

��EE�n��
�
�y�n� �� � � ��y�n� n�a� x�n� � � �x�n� n�b�

�T
����b�

and for the OE algorithm� one has

eOE�n��y�n�� �y�n� ����a�

��OE�n��
h
��yf�n� �� � � ���yf�n� n�a� x

f�n� � � �xf�n� n�b�
iT

����b�

As before� the CSE algorithm is readily derived from the EE and OE schemes and it is

given by

���n� �� � ���n� � ��n�
h
�eEE�n���EE�n� � ��� ��eOE�n���OE�n�

i
���	�

Later� a di�erent way to implement such algorithms using lattice structures that allow real�

time pole monitoring throughout the entire adaptive convergence process will be described�

��� The Two�Multiplier Tapped Lattice IIR Realization

As described in ���� a rational transfer function of the form

H�z� �
BN �z�

AN �z�
�
b� � b�z

�� � � � �� bNz
�N

� � a�z�� � � � �� aNz�N
�����

can be implemented using an alternative set of parameters ��� � �k� � � � kN h� � � � hN �T

obtained from the following set of equations

Am���z��
�
Am�z�� kmAm�z

���z�m
�
���� k�m� ����a�

Bm���z��Bm�z��Am�z���z�mhm� m � N	 � � � 	 � ����b�

�The subscripts d and � will be used throughout this chapter to associate a given variable respectively

to the direct�form or lattice realizations� More speci�cally� the subscripts �� and �� will refer to the two�

multiplier and normalized lattice structures� respectively�
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where the polynomials Am�z� and Bm�z� are de�ned as

Am�z��am�� � am��z
�� � � � �� am�mz

�m ����a�

Bm�z��bm�� � bm��z
�� � � � �� bm�mz

�m� m � N	 � � � 	 � ����b�

with am�� � �� The ��� coe�cients are then obtained as km � am�m and hm � bm�m� for

m � N	 � � � 	 �� and also h� � b���� As it is stressed in ���� it is important to notice that

the divisions in ����� are always possible� as the km parameters will always be of magnitude

less than one for a stable transfer function H�z�� Using the ��� coe�cients then� the output

signal y�n� of the corresponding two�multiplier lattice �lter to an input signal x�n� can be

calculated by the following set of equations


Fi�n��Fi���n�� ki��Gi�n� ��� i � N � �	 � � � 	 � �����a�

Gj�n��Gj���n� �� � kjFj���n�� j � �	 � � � 	 N �����b�

y�n��
NX
j��

hjGj�n� �����c�

with FN�n� � x�n� and G��n� � F��n��

An alternative approach to implement the H�z� transfer function still using the ��� set

of coe�cients is obtained based on the relationships given in the following lemma�

Lemma ���
 Consider the Am�z� and Bm�z� polynomials for m � N	 � � � 	 � as given

in ����� and the parameter vector ���� Then� the following recursive�in�order equations hold

Am�z��Am���z� �
km
km��

�
Am���z�����k�m���Am���z�

�
z�� �����a�

Bm�z��Bm���z� �
hm
km

�
Am�z�����k�m�Am���z�

�
� m � �	 � � � 	 N �����b�

with A��z� � �� A��z� � � � k�z
��� and B��z� � �h� � h�k�� � h�z

���

�

The proof of this result is obtained from straightforward algebraic manipulation of �����

for the �lter described by ������ whereas the initial conditions for m � �	 � are obtained by

simple algebraic calculations� It is interesting to note that equation ������ includes solely

causal polynomials while equation ����� includes also noncausal terms� implying that the

former is better suited for real�time implementations of lattice�based �lters� In addition�

equation �����a� leads to

A
�

m�z��A
�

m���z� �
km
km��

�
Am���z�����k�m���Am���z�

�
z�� ������
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for the same initial conditions for Am�z� and values of m as before� where the auxiliary

polynomial A
�

m�z� is de�ned as

A
�

m�z� � Am�z�� � � a�z
�� � � � �� amz

�m �����

An important consequence of recursions �����b� and ������ is that the output y�n� of

an IIR �lter with transfer function H�z� to an input signal x�n� can then be obtained by

rewriting the input�output relationship in the time domain as

y�n� � BN �q�fx�n�g � A
�

N �q�fy�n�g ������

To implement this equation with Lemma ���� BN �q� fx�n�g is obtained recursively using

equation �����b� with m � �	 � � � 	 N and� analogously� A
�

N �q� fy�n�g using equation �������

It can be easily seen that the computation e�ort required to compute the output signal y�n�

via the above equation is higher that the one required by the standard form seen in �������

In the next section� however� it will be indicated how the recursions given in Lemma ���

can be used in the e�cient implementation of lattice�based adaptive IIR �lter algorithms�

��� E�cient Lattice�Based Adaptive IIR Filter Algorithms

In Section ���� it was observed that the implementation of an adaptive IIR �lter algorithm

basically requires the calculation of a residual error signal and an information vector� as

depicted in ������ These procedures fundamentally consist of processing present or past

samples of x�n�� y�n�� �y�n� or any other auxiliary signal with the available numerator

and denominator polynomials of the adaptive �lter� In some cases� as for the algorithms

belonging to the EE family� the adaptive �lter denominator polynomial may be even required

to operate as an all�zero �lter to compose the equation error signal� as seen in equation ������

In order to derive lattice IIR algorithms then� all that is necessary is to �nd a possible way to

perform any of this additional processing based solely on the coe�cients ����� To accomplish

that� one must �rst generalize recursions �����b� and ������ to the case of time�varying

coe�cients� This is easily accomplished due to the fact that although these equations are

given in Lemma ��� for a constant�in�time lattice digital �lter� their extension to adaptive

�lters is valid and natural assuming that the �lter coe�cients are slowly variant in time� This

process of small step approximation is a common assumption for adaptation algorithms and

it has been shown to maintain all transient and steady�state properties of an adaptive IIR
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�lter� Using the versions of equations ������������� with time�varying coe�cients� one can

then implement an adaptive IIR �lter algorithm with the two�multiplier lattice realization

in a very general way as it is now demonstrated�

To obtain e�cient lattice�based algorithms� it is suggested the implementation of the

same updating equations relative to the direct�form version of the algorithm� but in this

case using the adaptive lattice set of coe�cients ���� through the time�varying extensions

of the recursions given in Lemma ���� In this way� it is guaranteed that e��n� � ed�n�

and ����n� � ��d�n�� and then an entirely equivalent updating process is obtained with

the additional feature of enabling pole�monitoring during the convergence process to avoid

instability of the adaptive �lter� This fact is formally stated as follows�

Property ���
 The standard direct�form and the above proposed lattice implementa�

tions of any given adaptive IIR �lter algorithm are equivalent processes in the sense that

these two methods result in sets of stationary points corresponding to the same input�output

descriptions of the adaptive �lter obtained as solutions of the adaptation process�

Proof
 This result was �rst discussed for a particular algorithm in �	��� making use of the

fact that the stationary points of an adaptation algorithm are the solutions of the equation


E
h
e�n����n�

i
�  ������

Then� for equivalent direct�form and two�multiplier lattice realizations� the residual errors

are automatically equal� Moreover� with the proposed simpli�cation on the information

vector� the corresponding regression vectors also become identical� and consequently the

following applies

E
h
ed�n���d�n�

i
� �� E

h
e���n������n�

i
�  ����	�

�

Property ��� above indicates the steady�state equivalence of the given lattice version with

the direct�form implementation of an adaptation algorithm� The corresponding result con�

cerning the transient portion of the adaptation process is described in the following�

Property ���
 The standard direct�form and the above proposed lattice implementa�

tions of any given adaptive IIR �lter algorithm possess similar transient processes in the

sense of convergence speed and stability characteristics�

Proof
 This result immediately follows from the fact that the two methods can be

associated to similar ordinary di�erence equations as observed in ���� following the approach

described in ���� and seen in Section ������
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Based on Properties ��� and ��� one can associate in a straightforward manner the well�

known steady�state and transient characteristics of the direct structure implementation of

any adaptation algorithm to the proposed lattice version of the same algorithm� This applies

also� of course� to the CSE algorithm whose direct�form convergence characteristics were

contemplated in Chapter ��

Using the proposed simpli�cation for the regressor vector such that ����n� �
��d�n� and

utilizing the recursive equations ������ and ������� lattice�based algorithms are e�ciently

implemented� requiring O�N� multiplication and division operations as opposed to the

O�N�� operations required by earlier lattice adaptation algorithms ����� �	��� Thus� the

algorithms proposed here and in �	����	�� along with the ones presented in ����� �	��� and �����

present similar computational complexity to their equivalent direct�form counterparts with

the additional property of allowing pole�monitoring to be implemented in real time�

Table ��� includes an easy�to�follow routine describing the implementation of the e�cient

two�multiplier lattice�based version of the CSE algorithm� to which the following comments

apply



 The auxiliary vectors de�ned in step � can be �lled with zeros for a simple initialization

procedure�


 The number of multiplication and division operations at each iteration for the CSE

algorithm add to ��N �


 The update of the �lter coe�cients in step � can also be performed by using a quasi�

Newton type algorithm analogous to the one described in Chapter ��


 The stability monitoring routine in step � must check if any coe�cient �km�n� of the

two�multiplier lattice structure becomes greater or equal to unity in absolute value�

If this happens� the coe�cient must be stabilized by forcing its value to be inside the

open interval �km�n� � ���	 �� ���� This can be accomplished by cancelling the most

recent update of the respective coe�cient or by making it equal to a given prede�ned

stable value�


 The optional use of time�varying scalars � and � to achieve faster or more robust con�

vergence can be done by following similar strategies to the ones previously mentioned

in Chapter  for the direct�form realization�



	

Due to the shortage of space� this chapter focuses solely on lattice realizations of the

CSE algorithm� However� the extension of the proposed methods to other adaptive IIR

�lter algorithms is easily performed� In fact� for any other given algorithm� one must

simply obtain the corresponding error signal and regression vector based on their original

direct�form de�nitions adequately applying the recursion�in�order equations �������������� as

illustrated here for the CSE method� For general collections of adaptive IIR �lter algorithms

the reader may refer to ���� �	��� �����

����� Normalized�Lattice Adaptive IIR Filter Algorithms

The extension of adaptive IIR �lter algorithms from the two�multiplier lattice to the nor�

malized lattice realization follows naturally from the relationships existing between the

coe�cients of these two structures� Indeed� the normalized lattice structure has the set of

coe�cients given by

��� �
h
�� � � ��N h

�

� � � � h
�

N

iT
������

that are related to the entries of ��� by the following equations ����

sin�i�ki� i � �	 � � � 	 N �����a�

h
�

j�
hj
�j

� j � �	 � � � 	 N �����b�

where the parameters �j are given by


�j����j cos�j��� j � N � �	 � � � 	 � ������

with �N � �� Applying these relationships to the equations given in Lemma ���� one obtains

the following equivalent recursive�in�order equations for the normalized lattice realization�

Lemma ���
 Consider the Am�z� and Bm�z� polynomials with auxiliary order m as

de�ned in ������ For the normalized lattice realization� these polynomials may be recursively

computed as

Am�z��Am���z� �
sin�m

sin�m��

�
Am���z�� cos��m��Am���z�

�
z�� �����a�

Bm�z��Bm���z� cos�m �
h
�

m

sin�m

�
Am�z�� cos��mAm���z�

�
� m � �	 � � � 	 N �����b�

with A��z� � �� A��z� � � � sin��z��� and B��z� � �h
�

� cos�� � h
�

� sin��� � h
�

�z
���

�
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These recursions for the normalized lattice form can be obtained by applying the coe�cient

transformations given in ������ to the recursion equations ������ and ������ for the two�

multiplier lattice realization� As a consequence of equation �����a�� one has that

A
�

m�z� � A
�

m���z� �
sin�m
sin�m��

�
Am���z�� cos��m��Am���z�

�
z�� ������

with the auxiliary polynomial A
�

m�z� as de�ned in ������

Applying these recursions to any adaptive IIR �lter algorithm in the same fashion as

demonstrated for the CSE algorithm with the two�multiplier lattice structure� one can

implement the normalized�lattice version of the respective algorithm in a very e�cient

and consistent way� As a reminder� the stability of the normalized lattice realization is

guaranteed even for time�varying �lters as long as the re�ection coe�cients satisfy j �i j �

��� or equivalently j cos�i j � � ���� �	���

��� Simulation Results

Below� we present computer simulations of the given e�cient lattice�based CSE adaptation

algorithm in an attempt to demonstrate its usefulness in practical applications�

Example ���
 Consider the system identi�cation example described in �	�� where the

plant is de�ned as

H�q� �
������� ����	�q��� ����	�q��� ������q��

�� ����q�� � �����q��� �����q��
������

what yields the direct�form� two�multiplier and normalized lattice coe�cient vectors being

respectively given by

�d �
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Consider an adaptive �lter with N �  corresponding to a strictly su�cient order identi�ca�

tion case and let the input signal be a Gaussian noise with zero mean and unitary variance�



	�

Assume also a perturbation signal statistically independent to the input signal consisting

of Gaussian noise with zero mean and variance ��v � ������

Figure ��� depicts the convergence of the adaptive �lter coe�cient vector using the CSE

algorithm with � � � realized by the two�multiplier and normalized lattice structures� It can

be noted that as the perturbation signal is independent of the input signal� both versions of

the CSE algorithm converged to their respective global optimal solutions given above and

indicated by dotted lines in the �gure� In these simulations� the values of the convergence

parameter was optimized for a faster stable convergence via trial and error and it was equal

�� � �����

For the same example� the direct�form OE algorithm and the lattice�form algorithm

described in �	�� were also utilized to identify the given plant� The direct�form version

presented convergence problems due to instability of the adaptive �lter during the adapta�

tion process� To eliminate this problem the convergence parameter had to be signi�cantly

reduced largely increasing the number of iterations to achieve a satisfactory steady�state�

The algorithm in �	�� presented similar adaptation to the given lattice�based algorithms

with the additional burden of requiring O�N�� multiplications per iteration�

Figure ��� shows the convergence trajectories followed by the adaptable coe�cients of

the two�multiplier and normalized versions of the lattice�based CSE algorithm with � � ����

respectively� In both cases� due to the better stability characteristics inherent to the EE

scheme� a higher value to the convergence parameter was utilized� �� � ���	� resulting in

faster general convergence of the adaptive process� It can be observed that due to the

presence of a perturbation signal� the solutions achieved by these methods were biased with

respect to the optimal one represented in this �gure by the dotted lines� It was noticed�

however� that both �nal solutions were equivalent to each other and also to the solution of

the direct�form EE algorithm for the same problem� verifying once again the validity of the

result expressed in Property ����

A similar experiment without the presence of the perturbation signal was then executed

for the lattice�based CSE algorithm with � � ���� As expected� in this case both lattice CSE

versions converged to their respective global solutions given above� as seen in Figure ���

�

As a summary of what is known� the advantages of the �normalized� lattice realization when

applied for adaptive IIR �ltering include
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Figure ���
 Example ��� � Lattice adaptive convergence of the CSE algorithm with � � ���

�A� Two�multiplier denominator coe�cients� �B� Two�multiplier numerator coe�cients� �C�
Normalized denominator coe�cients� �D� Normalized numerator coe�cients�


 Simple pole monitoring during the adaptation process�


 Stability monitoring refers to one coe�cient at a time what can eliminate update

stalemate in cases of convergence close to the stability boundaries�


 The coe�cient mapping from the direct form to a lattice realization is a one�to�

one transformation� As a result� no additional stationary points are created when

implementing an adaptation algorithm with the lattice realization ����� Also� no

reduced�order manifolds ���� are introduced as opposed to what occurs when the
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Figure ���
 Example ��� � Lattice adaptive convergence of the CSE algorithm with � � ��� �
With perturbation noise
 �A� Two�multiplier denominator coe�cients� �B� Two�multiplier
numerator coe�cients� �C� Normalized denominator coe�cients� �D� Normalized numerator
coe�cients�

structures of parallel or cascade of blocks are used ����� Thus lattice�based adaptive

IIR �lter algorithms tend to present convergence speed similar to their respective

direct�form counterparts�


 The normalized lattice structure has proved BIBO stable properties even in cases

of time�varying coe�cients ����� �	��� This fact eliminates the slow adaptation re�

quirement to guarantee BIBO stability of the adaptive �lter during the convergence

process�
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Figure ��
 Example ��� � Lattice adaptive convergence of the CSE algorithm with � �
��� � Without perturbation noise
 �A� Two�multiplier denominator coe�cients� �B� Two�
multiplier numerator coe�cients� �C� Normalized denominator coe�cients� �D� Normalized
numerator coe�cients�


 The normalized lattice realization possesses extremely good sensitivity properties ����

with respect to variations of the coe�cient values� This results into greater indepen�

dence of convergence process with regard to the coe�cient vector initial value and also

into smaller misadjustment of the lattice coe�cients after a steady�state is reached�


 A common problem associated to the two�multiplier lattice realization is the dynamic

range of the signals in the internal nodes of the �lter� This may require some sort of a

signal normalization during the updating routine and also may cause implementation



	�

problems using �xed�point arithmetic� The energy of the signals at the internal nodes

of the normalized lattice realization is unity ���� as the name of the structure indicates�

Consequently� for this realization no normalization routine is required and additional

computational e�ort is saved in the updating procedure of the �lter coe�cients�


 The major disadvantage associated to the normalized lattice structure is the utilization

of the sine and cosine functions� The number of these operations� however� can be

dramatically reduced at each iteration by saving their results in auxiliary variables

during the adaptive processing� In real�time systems� those trigonometric functions

can be implemented via the use of tables or CORDIC algorithms ����� CORDIC

techniques can compute the sine and cosine functions with p bits of accuracy in p

iterations� where each iteration requires only a small number of shifts and �xed point

additions�

��� Conclusion

A new e�cient lattice�based realization was proposed for adaptive IIR �lter algorithms

allowing the adaptive �lter poles to be monitored in real�time� Relationships of the transfer

function polynomials of the direct�form and two lattice realizations were introduced� It was

shown that these equations lead to the implementation of e�cient lattice�based adaptive

IIR �lter algorithms requiring O�N� multiplications per iteration� with N being the order

of the adaptive �lter� Additionally� consistency was achieved in the sense that the proposed

lattice�based approach led to a set of parameters that realizes identical transfer functions

to the ones obtained by corresponding direct�form algorithms� Computer simulations of

the simpli�ed CSE algorithm were included to demonstrate the application of the proposed

methods� The results presented here and the ones previously found in the literature indicate

that lattice structures constitute an e�cient tool for the realization of real�time adaptive

IIR �lters due to the simple stability testing and good convergence speed�



��

Table ���
 Summary of the e�cient two�multiplier lattice CSE adaptation algorithm

step � � Initialize�

The scalars n� �� and �

The adaptive �lter coe�cient vector �����n� �
h
�k��n� � � ��kN �n� �h��n� � � ��hN �n�

iT
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�
��
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�
���
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step � � Compute�

Fm�n� � Fm���n�� �km���n�Gm�n � 	�� for m � N � 	� � � � � �� with FN �n� � x�n�

Gm�n� � Gm���n� 	�  �km�n�Fm���n�� for m � 	� � � � � N � with G��n� � F��n�
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�
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for m � �� �� � � � � N � with �A
�

��q� n�feOE�n�g � �k��n�eOE�n�	�

step � � Obtain� �y�n� �
PN

j��
�hj�n�Gj�n�

eOE �n� � y�n� � �y�n�

eEE�n� � eOE�n�  �A
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	T
��EE��

�n� � ��y�n�	� � � � � y�n�N � x�n� � � �x�n�N ��T

step � � Update� �����n 	� � �����n�  �
h
�eEE �n���EE��

�n�  �	���eOE �n���OE��
�n�

i

step � � Perform the stability monitoring routine for the adaptive �lter �see main text�

step � � Update the scalars n� � �optional�� and � �optional� and auxiliary vectors in step �

Return to step �
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Chapter �

On the DSP Implementation of

Adaptive Filters

��� Introduction

Computer simulations are a common tool for testing general convergence properties of

adaptive �lters� In fact� based on simulation results� one can obtain important insights on�

for instance� convergence speed� stability properties� and global or biased convergence of

any given adaptive algorithm or structure� However� some other signi�cant issues associated

with practical adaptive �lters cannot be analyzed based solely on computer simulations�

These issues include� for example� the maximum processing speed� device cost� maximum

�lter order� and quantization e�ects� For this reason� in this chapter� we describe� perform�

and analyze the implementation of adaptive �lters using real�time systems�

The implementation of adaptive �lters can be performed in the basic forms of high�

level software programming� general�purpose hardware� and application�speci�c or dedi�

cated hardware� The software form� performed in general�purpose computers� is the easiest

and most convenient way� as it can be performed using all kinds and levels of program�

ming languages� However� software�based systems are relatively slow in comparison to the

other two schemes� with the result of being unable to process most types of signals in real

time� Consequently� the software approach is essentially of academic importance being used

mainly in o��line simulations� The use of dedicated hardware requires the design and man�

ufacturing of an integrated circuit built to perform a speci�c adaptive �ltering task as� for
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instance� described in ���� The hardware designed for this type of implementation restricts

several aspects of the adaptive system as the order and the structure of the adaptive �lter�

the adaptation algorithm� and so on� Such an implementation allows the adaptive system

to be extremely fast� reaching processing speeds far higher that the ones achieved by the

other two schemes� However� the cost involved in the stages of design and manufacturing

of the dedicated hardware tends to be extremely high� making this scheme improper for

many practical applications� The implementation of adaptive �lters using a digital signal

processor �DSP� is more �exible� as this type of hardware can be programmed to perform

any form of signal processing task� and it can be seen as a good compromise of processing

speed� cost� and system �exibility when compared to the two other schemes� Today� this is

the choice for the implementation of several practical commercial systems utilizing adaptive

�lters�

In this chapter� to demonstrate the practical usage of adaptive techniques� the imple�

mentation of an adaptive noise canceller on a DSP system is considered� In the following

section� the con�guration of an adaptive noise canceller is presented along with several con�

siderations associated with this type of system� Next� the hardware and software used for

the DSP chip implementation presented in this chapter are described� The results of this

implementation are presented� analyzed� and compared to expected results from theory and

to other implementations found in the literature�

��� Adaptive Noise Cancellation

Figure ��� depicts the adaptive �lter in a noise cancellation con�guration� In this �gure�

the signal s�n� is being corrupted by an additive noise v�n� and a distorted but correlated

version of this noise� v��n�� is also available� The basic idea in this case is to generate

an output �y�n� that closely resembles the corrupting noise v�n� so that the output error

signal would approximate s�n� after appropriate subtraction� In this noise cancellation

application� the signal s�n� is also called the primary or original signal and the source of

the noise signals v�n� and v��n� is also referred to as the secondary input�

Initially� one may think that cancelling the noise from the reference signal y�n� via

subtraction to be a dangerous procedure which� if improperly done� could result in even

an ampli�cation of the noise level� However� adaptive noise cancellation is e�ciently ac�
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Figure ���
 Block diagram of an adaptive noise canceller�

complished in practice with little risk to the original signal s�n� by taking advantage of

an estimate of v�n� obtained from a position in the noise �eld where the original signal is

negligible� In fact� in cases where adaptive techniques can be used for cancelling noise� a

much better degree of noise rejection is often achieved based on adaptive �ltering than using

other �ltering techniques� This is particularly true if the characteristics of the channel over

which the noise is transmitted to the primary sensor are unknown or of a non�xed nature�

Mathematically� obtaining the mean�squared value of the output error as de�ned in

Figure ���� one gets

E
�
e�OE�n�

�
� E

�
s��n�

�
�E

�
�v�n�� �y�n���

�
�����

assuming that s�n� is uncorrelated with both v�n� and v��n�� and all signals in Figure ���

are statistically stationary with zero means� From this equation� it is easy to verify that

when the adaptive �lter is adjusted to minimize E�e�OE�n��� then E��v�n�� �y�n���� is also

minimized� as the signal power E�s��n�� is una�ected throughout the adaptation process�

Consequently� by minimizing the output error power� one maximizes the output signal�to�

noise ratio� as it would be expected from a noise cancellation system�

In a practical implementation of an adaptive noise canceller� some considerations must

be taken into account due to nonideal situation� These considerations include� for example�

e�ects from the presence of uncorrelated noise in either the input x�n� or reference signal

y�n�� e�ects from the presence of components of the original signal s�n� in the input signal

x�n�� and consequences from causality and �nite�length constraints on the �lter realization�

With respect to the problem of noise presence in the real environment� it can be shown

that all input noise components which are correlated with reference noise components are

cancelled� whereas other noncorrelated noise components are not cancelled and will be
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present in the error signal� negatively a�ecting the overall performance of the noise canceller�

The presence of the original signal s�n� in the input x�n� can be shown to cause the error

signal of the adaptive canceller to be a distorted version of s�n�� Furthermore� if the input

signal x�n� contained signal s�n� components and no noise� the signal would be perfectly

cancelled and it would not be part of the error signal eOE�n� of the adaptive system� In

a well implemented system� however� where the reference input is properly obtained� this

situation is not realistic and it should not constitute a major problem� A desirable low level

of signal distortion is obtained if the signal�to�noise ratio at the input x�n� is low enough

and the signal�to�noise ratio at the reference input y�n� is reasonably high�

The analytical solution of the o��line noise cancellation problem can result� as described

in ����� in an ideal optimal con�guration that is both noncausal and of in�nite order� Both

these aspects� however� can not be complied in an on�line practical adaptive implementation�

Nevertheless� the consequences of a causal and �nite�length implementation of an adaptive

noise canceller can be respectively counterbalanced by the inclusion of an appropriate delay

in the primary input path and by the use of an adaptive �lter with enough number of

parameters� thus ensuring an appropriate level of performance for the overall system �����

as it will be seen in our experiments�

Although most of this dissertation is focused on adaptive IIR �ltering� a quick note on

the description of the adaptive FIR noise canceller is now given� as this con�guration will

serve as the basis to which its IIR counterpart is going to be compared to�

����� The FIR Adaptive Noise Canceller

Amongst the several forms of adaptive FIR �lters known in the literature� the most common

con�guration is based on the tapped�delay�line �TDL� structure the output signal �y�n� of

which is obtained as

�y�n� � wT�n�x�n� �����

where w�n� � �w��n� w��n� � � � wN�n��T is the coe�cient vector and x�n� � �x�n� x�n �

�� � � � x�n�N��T is the so�called input signal vector� with N representing the �lter order�

A popular way to adapt the TDL�s coe�cients makes use of the least mean squares

�LMS� algorithm described by ����

w�n� �� � w�n� � �eOE�n�x�n� ����
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with eOE�n� � �y�n�� y�n� as before�

It has been shown that the LMS algorithm can be associated to a quadratic objective

function� due to the linear relationship seen in ������ the minimization of which is per�

formed using the steepest descent method ����� The existence of a unique solution� due

to the quadratic performance surface� and its extremely simple implementation justify the

characterization of the LMS algorithm as the standard method to which all others adaptive

techniques presented in the literature are compared� A deep study on the properties of the

LMS convergence process are naturally beyond the scope of this dissertation and� for this�

the interested reader is referred to �����

��� The DSP�Based Adaptive Noise Canceller

In this section� a complete description of the hardware and the software used in the presented

implementation is given in order to understand the characteristics of the resulting system�

����� Hardware Description

The adaptive noise canceller implemented for this work was based on the TMS��C� digital

signal processor by Texas Instruments Inc� �TI� on the SDSP�C�D board developed by

Loughborough Sound Images Inc� �LSI� with added analog�to�digital �A�D� and digital�to�

analog �D�A� capabilities�

The TMS��C� ��� is a ��bit device with an architecture optimized for computation�

ally intense signal processing and mathematical operations using �oating�point arithmetic�

The �MHz version used in this work has a 	�ns cycle time and operates at a maximum

rate of �	��MIPS �millions of instructions per second� and �MFLOPS �millions of �oat�

ing point operations per second� due to possible performance of parallel multiplication and

addition operations in a single cycle� Along with its optimized integer and �oating�point

arithmetic logic units� the DSP chip integrates �K���bit ROM� �K���bit on�chip RAM�

two timers� parallel and serial interfaces� and a control unit� Moreover� the TMS��C�

uses a ���bit addressing system capable of addressing up to �	�� millions of ��bit words�

As it will be later veri�ed from our experiments� the ���bit mantissa and ��bit exponent

of the TMS��C��s �oating�point format were good enough to keep any �nite�wordlength

e�ect on the overall performance of the adaptive system to a quite imperceptible level�
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The SDSP�C�D SBus board ����� ���� �also referred to as the DSP motherboard� as

opposed to the daughter module which includes the A�D and D�A converters� is a single�

width SBus board� ���mm���	��mm� connected to an SBus slot� and designed for use

with SPARC�SunOS ����� �or greater� compliant systems� The DSP motherboard has

two banks of zero wait�state 	�K���bit �expandable to ����	K���bit� of static RAM

�SRAM� memory� Bank � is used to set up the reset and interrupt routines plus the code for

the LSI�s auxiliary library� the debugger� and the TMS��C� executable program� while

Bank � is generally used for data storage� In addition� there is a block of �K���bit of

dual�port RAM �DPRAM� to which the host computer has also full access via the SBus

interface� If the host access the SRAM� the DSP chip must be held o� the whole of its

external SRAM until the host access is complete� In contrast� both DSP chip and host can

access the DPRAM simultaneously� If access to the same location is requested� arbitration

occurs� but otherwise DPRAM accesses cause no processing disruption to the host or the

DSP chip� what is of particular importance when the DSP chip is performing a real�time

task such as data acquisition� Last� for greater modularity� the DSP motherboard also

allows communication to other boards or devices through very e�cient serial and parallel

interfaces�

The daughter module �DM� ���� presents two �	�bit dual input�output �I�O� channels

with a maximum input sampling rate of ���KHz and maximum output reconstruction

rate of ���KHz� Both I�O channels are provided with low�pass �lters consisting of two

cascaded� second�order� conventional Sallen�Key con�gurations with unity dc gain� Identical

resistor values give a maximally��at Butterworth response with ���dB�octave roll�o� in

the stopband� The cut�o� frequency Fc can be adjusted by interchangeable resistor packs

following the relationship Fc � 	����R� where R is the chosen resistor value in K& and

the resultant Fc is given in KHz� The use of the A�D and D�A capabilities of the DM is

simply a matter of setting up a number of registers� de�ning an interrupt routine� enabling

DSP interrupts� and reading or writing the signal samples� Other characteristics of the DM

include interchannel isolation of ��dB� input impedance of ��K&� and output impedance of

���&� being it capable of driving a load of down to 	��& to a voltage range of �V�
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����� Software Description

An important conclusion drawn during early testing stage was the necessity to disregard the

use of the C language as basic approach for programming the TMS��C�� This resulted

from prohibitively cumbersome executable code being generated by the C compiler� In

fact� for the sake of comparison� consider the o��line version of the LMS algorithm based

on the TI�s C and assembly languages for the respective DSP chip� Table ��� shows the

number of cycles required by each program to implement a single iteration of that particular

adaptation algorithm as a function of the adaptive �lter order and the same results are

graphically represented in Figure ���� Based on these results� the assembly language was

considered the most e�cient form and the only practical alternative to implement real�time

adaptation algorithms for the TMS��C��

Table ���
 Number of DSP cycles per iteration for the o��line LMS algorithm�

Program Version ' of Cycles per Iteration

Standard C �� � N

Optimized C �� � �N

Assembly �� � N
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Figure ���
 Number of cycles per iteration � �lter order for the o��line LMS algorithm
using standard C� optimized C� and assembly languages�

Having opted for the assembly language to program the TMS��C�� two versions of

each of the LMS and CSE algorithms were developed� The �rst version consisted of imple�
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menting the adaptation algorithms with the TMS��C� receiving real prerecorded data

from the Sun station instead of directly from the DM� This allowed quantitative analysis

of the convergence performance of each adaptation algorithm before its real�time imple�

mentation� Further� a rough estimate of the algorithm�s computational complexity was also

obtained since the main code in this case was essentially the same as the one of the real�time

implementation� Testing the o��line version was also useful for a tune�up of the adaptation

algorithms with respect to �lter order� convergence factor� combination parameter� etc� A

second on�line version of each algorithm was implemented on the TMS��C� using the DM

for input and output� These algorithms di�ered from the o��line versions by the addition of

a set of instructions necessary to achieve data�format compatibility between the DM module

and the TMS��C� chip� These additional operations consisted of a proper signal scaling

procedure followed by dc removal and subsequent integer to �oating�point transformation

of the input signals� while for the output signals� the appropriate inverse operations were

included in the reverse order� With these on�line versions� the maximum �lter orders that

could be implemented using the algorithms in real time were determined�

��� Practical Experiments

����� Description of Experiments

The con�guration depicted in Figure ��� was used to compose the input and reference

signals for the noise cancellation experiments performed in this section� Based on that

scheme� three di�erent experiments were devised� The results of these experiments� using

both adaptive FIR and IIR �lters� are presented and discussed in the following sections�

Experiment ���
 A sample of a speech signal containing the message #My name

is Sergio$ �with a touch of Brazilian accent� was generated as original signal s�n� and

additional noise� created by a second person shouting in the background� was sensed by

two di�erent sources as v�n� and v��n�� The obtained signals y�n� � �s�n� � v�n�� and

x�n� � v��n�� sampled at a �	KHz rate for � seconds �with a total of ���� samples�� were

then saved to the respective �les corresponding to the input and reference signals in order

to be utilized by the o��line versions of the adaptation algorithms� This experiment leads

mainly to qualitative results on the overall performance of the adaptive noise canceller due
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to the nonstationary characteristics of the speech signal�

�

Experiment ���
 This experiment deals with the maximum order of an adaptive �lter

that could be implemented with the available hardware� For each distinct FIR and IIR

noise canceller implemented� the on�line versions of both LMS and CSE algorithms were

used to perform real�time noise cancellation to a speech signal being captured as s�n� with

no apparent background noise other than that generated by the microphone system� The

error signal resembling s�n� could be monitored with an oscilloscope after the appropriate

D�A conversion performed by the DM board� For each sampling frequency� the maximum

order of each �lter con�guration could be determined from the signal on the oscilloscope�

For �lter orders above the limit no output signal would be generated by the DM�

�

Experiment ���
 In order to obtain quantitative results for the convergence perfor�

mance of both FIR and IIR types of adaptive systems� in this experiment� some form of a

humming sound with approximately constant amplitude and tone was generated as original

signal s�n�� That signal can be approximately considered as a stationary signal� For the

perturbation signal� the recording noise was used as v�n� and v��n�� The �les corresponding

to the input and reference signals were recorded using a sampling frequency of �	KHz for a

total of ���� samples to be utilized by the o��line versions of the adaptation algorithms�

In order to verify the overall performance of the noise cancellation system� estimates of the

�nal MSOE were obtained for di�erent values of the �lter order using the LMS and CSE

algorithms�

�

����� Experimental Results	 The FIR Case

The results of Experiment ��� using the o��line assembly LMS algorithm with � � ����

and N � �� are depicted in Figure ��� Part �A� shows the reference signal while part

�B� depicts the resulting error signal� In this case� it was veri�ed that the mean squared

value of the error signal was reduced from ��y � ���	� to ��e � ������ during the given

time interval� with the original message becoming quite audible after the adaptive noise

cancelling process�

In Experiment ���� the maximum adaptive �lter order was determined for di�erent values

of the sampling frequency using the real�time LMS algorithm� For this version� the expected
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Figure ��
 Noise cancellation example using the LMS algorithm with � � ���� and N �
��
 �A� Original reference signal� �B� Resulting error signal�

number of cycles per iteration� after incorporating the data�conversion instructions� was

equal ���N � Compare this value to the one for the o��line algorithm shown in Table ����

In Figure ���� the maximum �lter order that could be implemented at a particular sampling

frequency is presented� For the sampling frequency Fs � �	KHz� the maximum �lter order

was N � ��� which showed to be satisfactory for the other experiments�
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Figure ���
 Maximum �lter order � sampling frequency for the real�time implementation
of the LMS algorithm using assembly language�

For Experiment ��� the o��line LMS algorithm was used to obtain quantitative mea�

surements of the overall system performance� as the on�line version does not support I�O
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data recording� Two di�erent estimates of the �nal MSOE were used in this case� A �rst

measurement consisted of the �nal value of the MSOE when the adaptation algorithm was

forced to converge as fast as possible without instability� That value was determined via

trial�and�error experiments obtained by increasing the value of the convergence factor � up

to the point where the adaptive process presented an unstable behavior� A second measure�

ment of MSOE was obtained when the adaptive convergence process was forced to reach a

steady state after a �xed number of iterations� in this case equal ������ and the next �����

samples were used to estimate the MSOE� The obtained MSOE estimates for both cases are

plotted in Figure ���� Notice the improvement of about ��dB achieved by increasing the

order of the adaptive canceller up to N � ���� For higher orders� the rate of improvement

becomes very small�
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Figure ���
 Steady�state mean squared errors of the LMS algorithm for maximum conver�
gence speed ��o�� and for convergence after ����� iterations ��x�� as functions of the adaptive
�lter order N �

In practice� based on these results� a good design would make use of a reasonable high�

order �lter� to achieve the best possible performance level at the particular sampling fre�

quency� and a su�ciently high adaptation parameter� in order to obtain the fastest possible

convergence� without being unstable�

����� Experimental Results	 The IIR Case

The direct�form CSE adaptive IIR �lter algorithm introduced in this dissertation was also

used to implement the adaptive noise canceller�

For the real�time version of the CSE algorithm� the number of cycles necessary for each
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iteration was �� � �n�a � �n�b� where the o��line assembly version required �� � �n�a � �n�b

DSP cycles at each iteration� These relationships present the �rst di�culty when comparing

the results obtained with adaptive IIR techniques with the results achieved by adaptive

FIR �lters� As IIR �lters present numerator and denominator polynomials� their inherent

implementation complexity is a function of two variables� namely n�a and n�b� as opposed to

the single order variable of an FIR �lter� To simplify our analyses� consider n�a � n�b � N �

where N is then the given order of the adaptive IIR �lter�

For Experiment ���� similar qualitative results to the ones obtained for the LMS algo�

rithm were obtained using the CSE algorithm� As an example� when the adaptive �lter

order was set to N � �� the resulting MSOE was reduced from ��y � ���	� to ��e � ������

during the given time interval� when � � ������ and � � ����

The maximum value of N is depicted in Figure ��	 for each sampling frequency for

the real�time adaptive noise canceller implemented with the CSE algorithm using the

TMS��C� assembly language following the scheme described as Experiment ����
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Figure ��	
 Maximum �lter order � sampling frequency for the real�time implementation
of the CSE algorithm using assembly language�

For Experiment ��� estimates for the MSOE were obtained when convergence was forced

at approximately ����� iterations and they are depicted in Figure ��� as a function of N for

the cases when � � ��� �EE algorithm� and � � ��� �OE algorithm�� From this �gure� it can

be easily concluded that in both cases the behavior of the CSE algorithm was essentially

the same with a small edge in performance for the OE algorithm�

To better understand the in�uence of the composite parameter� the MSOE was mea�

sured for di�erent values of � when the �lter order was �xed to N � ��� The results are
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Figure ���
 Steady�state mean squared error of the CSE algorithm for convergence after
����� iterations with � � ��� ��o�� and � � ��� ��x�� as function of the �lter order N �

shown in Figure ��� from which it can be seen that a proper choice of the composite factor

can improve the overall performance of the algorithm� In this case� however� due to the

low selectivity of the poles associated to the noise cancellation process� both EE and OE

algorithms presented similar overall e�ciency� Therefore� variations of � had only limited

in�uence on the convergence performance of the CSE algorithm� Indeed� as previously

mentioned� adaptive IIR �lters and also the CSE algorithm become highly e�ective in cases

when the adaptive problem is associated to high selectivity poles� In these cases� the order

of the adaptive FIR �lter becomes extremely large and the EE and OE algorithms for adap�

tive IIR �lters tend to present faulty behaviors� either converging to a suboptimal solution

or presenting serious stability problems� Furthermore� the experiments included here for

the CSE algorithm assume that n�a � n�b� what is not necessary in general� In fact� for most

practical cases� the number of denominator coe�cients can be greatly reduced in compar�

ison to the number of numerator coe�cients� thus considerably decreasing the amount of

computation required by the CSE algorithm�

��� Comments and Discussions

The results presented in this section indicate that both FIR and IIR types of the DSP�

based adaptive noise cancellers presented quite satisfactory performances� The fact that

adaptive FIR systems were able to e�ciently cancel the disturbance signal is an indication

that the channel through which v��n� is being generated from v�n� is essentially a channel
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Figure ���
 Steady�state mean squared error of the CSE algorithm for convergence after
����� iterations with N � �� as function of the composite factor value ��

with �nite�duration impulse response� This should also explain why the EE and the OE

algorithms presented similar performances� as indicated in Figure ����

The good behavior of both EE and OE algorithms is a positive aspect for the adaptive

IIR �ltering option� even for this case of a system of low�selectivity poles� It should be kept

in mind that in cases where adaptive IIR �lters are bound to outperform their FIR counter�

parts� the adaptive �lter is expected to present long�duration impulse responses indicating

the presence of high�selectivity poles� Such problems include� for instance� cancellation of

acoustic interferences generated by multipath propagation in closed environments ���� or

by propagation through channels characterized by long�duration impulse responses ���� �

For these cases� it is clear that adaptation algorithms and structures others than the OE

and EE algorithms and the direct�form realization are a must to achieve desirable perfor�

mance levels� In such cases� the CSE algorithm and the lattice realization are of particular

importance� as indicated in the previous chapters of this dissertation�

In ��� and ����� other successful applications of adaptive IIR �lters are presented� In

fact� in ��� the authors compare the performance of adaptive IIR and FIR techniques in

an active noise control system� Due to the peculiar recursive nature of the problem� it

was concluded that in that case� adaptive IIR �lters actually outperformed adaptive FIR

�lters by achieving better noise control levels� In ����� adaptive IIR �lter algorithms are

implemented in an acoustic echo canceller con�guration using the ADSP����� chip�

The comparison of computational complexity of di�erent adaptation algorithms depends

on the implementation itself� as well as many other factors� These factors include� for
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instance� the type of DSP chip being used and the programmer�s ability to write the best

possible code for the given algorithm� For example� in software implementations� a division

operation usually takes as much time to be performed as a multiplication operation� This

is not generally true for DSP�based implementations which perform multiplications as fast

as additions or subtractions and many times faster than division operations� that usually

require several CPU cycles to be performed� In addition� when using DSP chips� one must

take into account the time spent to perform tasks like loading data to registers� storing data

in memory� writing and reading data to and from stack� and so on� Due to these issues�

the analyses included in this chapter are not intended to be absolute in their content�

but to represent basic evidence for the sake of a better comparison of essentially distinct

approaches� In practice� one must know the basic properties associated to each and every

form of implementation to better be able to choose between the several practical alternatives�

Commercial DSP chips suited for adaptive �ltering include the Motorola DSP�	��� chip

��� that can implement the LMS algorithm with ��	 taps on a sampling rate up to ��KHz�

As this is already an old design introduced in ����� one can expect more recent devices to

achieve much higher performance levels�

In �		�� a dedicated architecture implementing the recursive least squares �RLS� ����

algorithm for adaptive FIR �lters is performed using pipelining techniques achieving a

processing speed of up to ���MHz� The design� however� is speci�c to a third�order �lter

using a mix of ��bit and ���bit �xed�point representations and it does not represent a

commercial product�

��� Conclusion

The usage of adaptive techniques to process real�time practical signals was considered� The

implementation of an adaptive noise canceller based on the TMS��C� digital signal pro�

cessor of Texas Instruments Inc� was carried out� Both C and assembly programming

languages were considered to encode the adaptation algorithms� but �nal results largely fa�

vored the assembly language as much faster executable code was generated by this approach�

That ultimately resulted in a larger �lter order being possible for the implementation of

the real�time adaptation algorithm� Also� both adaptive FIR and IIR techniques were

considered and emphasis was given to the comparison of their e�ciency with respect to
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computational complexity and overall system performance�

In the particular experiments included here� it was veri�ed that adaptive IIR �lters

presented similar performance to their FIR counterparts� even in cases of short�duration

impulse responses� The practical importance of adaptive IIR �lters� however� is mostly

associated with cases when the adaptive �lter must present long�duration impulse responses�

as for such cases FIR realizations tend to become excessively cumbersome� It must be made

clear� however� that adaptive IIR �lters are not expected to completely substitute adaptive

FIR systems� since in many applications that are not associated with long impulse responses�

adaptive FIR �lters are expected to present satisfactory performances� The bottom line then

is that� due to recent advancements in the topic of adaptive IIR �ltering� as some of the

ones included in this dissertation� an adaptive system designer should be familiar with both

FIR and IIR forms of adaptive technology to judiciously decide on which one to use� based

on the characteristics of the practical application of interest�
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Chapter �

Final Comments and Further

Considerations

��� Final Comments

The object of this dissertation has been to present new robust and e�cient techniques

applicable to adaptive IIR �ltering�

In Chapter � some issues associated to the design of adaptive IIR �lters were outlined

by presenting a structured introduction to the area of adaptive signal processing� It was

veri�ed that a basic adaptive system is generally characterized by the application for which

it has been designed� the adaptive �lter structure and the adaptation algorithm� Examples

were given of adaptive �lter applications and structures� In addition� the so�called equation

error �EE� and output error �OE� adaptive IIR �lter algorithms were introduced following

a prede�ned unifying framework�

In Chapter �� one of the main contributions of this dissertation� the composite squared

error �CSE� adaptive IIR �lter algorithm� was presented� Development of the CSE algorithm

is based on the composition of the EE and OE schemes previously introduced and it makes

use of an explicit composition factor that allows better control of the CSE convergence

characteristics� Steady�state analyses for the CSE algorithm were included relating its

stationary points to the ones of the EE and OE algorithms� Two methods were discussed

for the transient analysis of the CSE algorithm� The �rst method consisted of a local

linearization of the algorithm near a given stationary point� The second approach� based



��

on the association of an ordinary di�erence equation to the CSE algorithm� allowed a more

general analysis than the linearization method covering the complete adaptive parameter

space� Based on these techniques it was veri�ed that the CSE algorithm is an interesting

tool that is able to take advantage of the positive qualities of both the EE and OE schemes�

In Chapter � the use of variable convergence factor and composite parameter for the

CSE algorithm was investigated� It was demonstrated that time�varying convergence factors

for both steepest�descent and quasi�Newton versions of the CSE algorithm can be very

useful in simplifying the convergence parameter choice with a minimal amount of additional

computational burden� Additionally� the use of a time�varying composite factor for the CSE

algorithm was considered in order to obtain global convergence despite existence of a biased

EE solution or of local minimum solutions for the OE algorithm� It was then veri�ed

that these techniques can in fact constitute an e�cient form to obtain faster and global

convergence with the CSE algorithm�

In Chapter �� a new e�cient lattice�based realization was proposed for any adaptive IIR

�lter algorithm allowing the adaptive �lter poles to be monitored in real time� Relationships

of the transfer function polynomials of the direct�form and two lattice realizations were

introduced� It was shown that these equations lead to the implementation of e�cient lattice�

based adaptive IIR �lter algorithms requiring O�N� multiplications�divisions per iteration�

with N being the order of the adaptive �lter� Additionally� consistency was achieved in

the sense that the proposed lattice�based approach led to a set of parameters realizing

identical transfer functions to the ones obtained by corresponding direct�form algorithms�

The implementation of the CSE algorithm using the proposed realization was performed

and examples were given demonstrating its usefulness� The results presented here and the

ones previously found in the literature indicate that lattice structures constitute an e�cient

tool for the realization of real�time adaptive IIR �lters due to the simple stability testing�

e�cient implementation� and good convergence speed�

In Chapter �� the application of adaptive techniques to process real�time practical signals

was investigated� The implementation of an adaptive noise canceller on the TMS��C�

digital signal processor of Texas Instruments Inc� was carried out� Both C and assembly

programming languages were considered to encode the adaptation algorithms� with �nal re�

sults largely favoring the assembly language as much faster executable code was generated

with this approach� That ultimately resulted in a larger �lter order being used when the
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implementation of the real�time adaptation algorithm� Also� both adaptive FIR and IIR

techniques were considered and emphasis was given to the comparison of their e�ciency

with respect to computational complexity and overall system performance� It was demon�

strated that adaptive IIR �lters are also associated to positive qualitative and quantitative

performances when a proper implementation is considered�

��� Further Considerations

The �eld of adaptive IIR �ltering has become a very active research area in the past recent

years� Development of better techniques� as the ones proposed in this dissertation� can

only motivate even more research to be performed in this area� Also� improvements on

implementation devices allow the application of adaptive IIR �lters in a broader range of

practical situations� resulting into even more importance being associated to this topic� In

this section� some possible ways to naturally extend the work presented in this dissertation

are given in an attempt to motivate the interested reader to continue and further advance

the respective subject�

A very important issue related to adaptive �lters is the analysis of the implementation

of the adaptation algorithm based on �nite�precision �xed�point arithmetic� This kind of

numeric representation yields faster implementation of the adaptive processing techniques

than the one achieved with �oating�point representation due to its intrinsic simpli�ed for�

mat� For adaptive FIR �lters� it has been veri�ed that the �nite�precision e�ects include

degeneration of the overall performance of the adaptation algorithm� causing an excessive

squared�error misadjustment on the steady�state performance� and possible instability� The

study of the e�ects resulting from the implementation of adaptive IIR �lters in a �xed�point

format becomes an even more important issue due to the recursive nature of these devices

that make them more susceptible to serious stability problems�

Other very interesting aspect is the study of time�varying convergence parameters for

the CSE algorithm extending the work seen here in Chapter � One possible approach could

be the use of individual parameters for each adaptable coe�cient following the method seen

in ����� Also� other methods to update the composite parameter of the CSE algorithm may

also be attempted in order to obtain global convergence with this algorithm�

For some applications such as synthetic aperture ��	�� a common procedure to simplify
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the design of the overall adaptive system is to use partially adaptive signal processing

techniques� These methods are based on the use of a time�invariant system in combination

with a standard adaptive �lter to process the incoming signals� It has been veri�ed in

the corresponding literature ��	� that this methodology lead to simpler reduced�order sub�

optimal adaptive �lters that are easier to be implemented in practice� A good research line

in this area� following the material included in this dissertation� would be to consider the

use of adaptive IIR techniques for partially adaptive processing with the intent of reducing

even further the number of adaptable coe�cients�

As mentioned before� improvements on the speed and cost of the hardware devices suit�

able to implement adaptive techniques result in an even greater variety of applications to

which adaptive IIR �lters can be used in� Naturally� this class of systems must present

su�ciently robust and reliable convergence properties� as obtained with the proposed tech�

niques given in this dissertation� This larger number of practical situations opens a huge

opportunity to experiment with adaptive IIR �lters extending their usage to applications

other than the ones seen here and known so far� This represents an endless research topic

that will tend to become more and more important the more e�cient and the more reliable

adaptive IIR �lters become�

In Chapter �� the implementation of DSP�based adaptive �lters was considered to per�

form real�time noise cancellation of some acoustic interference� A very important research

topic in that matter would be to analyze and develop speci�c architectures suitable to the

implementation of adaptive IIR �lters� These architectures should take advantage of bene�

�ts like parallel and pipeline processing making them more e�cient to deal with real�time

applications�
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Appendix A

A�� Introduction

The di�erence polynomial operator �DPO� notation is commonly used in the �eld of adap�

tive �lters ����� ���� to simplify most of the somewhat intricate equations that are so often

encountered in that area� However� probably due to its extremely simple characterization�

the DPO notation can sometimes confuse even the most careful reader leading to dubious

or incorrect interpretation of its true meaning� The situation can get even more complicate

when polynomials with time�varying coe�cients are used� In this appendix� in order to

formalize the correct use and interpretation of this important mathematical tool� the DPO

notation is presented and some of its interesting properties are thoroughly discussed�

In order to study the DPO notation� let us �rst introduce some basic concepts and

assumptions necessary to simplify the following discussion� Throughout this text� let � be

the complex in�nite�dimensional vector space of sequences ����� and let x�n� and y�n� be

two elements of � with n integer� i�e�� n � ZZ� Let also i	 j � ZZ and c	 d be complex scalars

in C� The strictly real case can be easily derived from the following discussion by forcing �

to be the vector space of real sequences and restricting c	 d to the set of real numbers IR�

De�nition A��
 The time�shift operator� q�i is an operator that maps � into � and is

described by

q�i 
 �� �

q�ifx�n�g � x�n� i� �A���

As the time�shift operator can be applied to any element in �� this set is said to be the domain

�Although there is no strict distinction between the terms operator and function� it is usual to reserve

the term operator for the case when the domain and image sets are in�nite dimensional and to use the term

function otherwise�



��

of this operator and this is represented by D�q�i� � �� Equivalently� as all sequences in � can

be obtained from the application of the time�shift operator on an element �not necessarily

distinct� of �� � is also said to be the image of the operator� this being indicated by I�q�i� � ��

�

The quantity which an operator acts on is called an operand and� in this text� the curled

brackets f�g will be consistently used to designate the time�shift operation being applied

to the given respective operand� Also� the negative sign on the de�nition of the time�shift

operator is standardly used to make the relationship depicted in equation �A��� appear

causal for positive i� Notice� however� that as the parameter i belongs to the set of integer

numbers ZZ� the above de�nition is not restricted to causal time shifts� A special case of

the above de�nition results when i � � which de�nes the unit delay operator characterized

by q��fx�n�g � x�n � ��� Let us now introduce some important operations associated to

the time�shift operator above presented�

Property A��
 The time�shift operator is a linear operator and then ����

q�ifcx�n� � dy�n�g � cx�n� i� � dy�n� i� �A���

�

Property A��
 A more general result for the time�shift operator results from its own

de�nition and can be written as

q�iff�x�n�	 y�n��g� f�x�n� i�	 y�n� i�� �A��

where f��	 �� is any given function de�ned in the discrete�time domain�

�

A very important fact associated to time�shift operators is that the set of these operators is

itself a vector space� hereby denoted by L���� This results from the fact that basic algebraic

operations can be used with the operator� as seen below� instead of with the operand� as

seen in the previous properties�

Property A��


The addition of time�shift operators is performed as follows

�q�i � q�j�fx�n�g � q�ifx�n�g� q�jfx�n�g � x�n� i� � x�n� j� �A��a�

The multiplication of the time�shift operator by a scalar is given by

�cq�i�fx�n�g � c�q�ifx�n� i�g� � cx�n� i� �A��b�



���

Equations ��a� and ��b� are often combined in just one equation as

�cq�i � dq�j�fx�n�g � cx�n� i� � dx�n� j� �A���

�

Property A��
 The concatenation of time�shift operators is performed as follows

q�jfq�ifx�n�gg � q�jfx�n� i�g � x�n� i� j� � q��i�j	fx�n�g �A�	�

�

Notice the similarity of this operation with the general rule for the multiplication of ex�

ponentials with identical bases� In fact� this property justi�es the option of representing

the time�shift operator by the q�i notation� A similar relationship exists for the division of

time�shift operators�

Property A��
 The division of time�shift operators follows the rule�
q�i

q�j

�
fx�n�g � q��i���j		fx�n�g � x�n� i� j� �A���

�

A di�erent but equivalent way to understand the division operation of two time�shift factors

is illustrated by the following equation

y�n� �

�
q�i

q�j

�
fx�n�g��q�jfy�n�g � q�ifx�n�g

��y�n� j� � x�n� i� �A���

As it can be noticed from this equation� a rational operator of the form q�i

q�j acting on a

signal x�n� can be seen as q�i is operating on x�n�� while the denominator operator q�j

acts on the signal on the other side of the equality sign� This interpretation shows to be

particularly useful in the next section when the di�erence polynomial operator notation is

introduced�

Since L��� is a vector space� there exists an identity operator� always denoted by I �

which is de�ned by the relationship Ifx�n�g � x�n�� For the time�shift operator space

L���� the identity operator is given by I � q��
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A�� The Di	erence Polynomial Operator

An important extension of the time�shift operator is the di�erence polynomial operator

�DPO� concept de�ned below�

De�nition A��
 The extrapolation of equation �A��� for several terms results in

�C�q�fx�n�g��cnc � � � �� c�q
nc�� � c�q

nc�fx�n�g

�cncx�n� � � � �� c�x�n� nc � �� � c�x�n� nc� �A���

where c�	 c�	 � � � 	 cnc are said to be the coe�cients of the DPO �C�q� and nc the order of

�C�q��

�

In the context of adaptive �lters� it is more common to use the causal form of the DPO

notation described by

C�q� � q�nc �C�q� � c� � c�q
�� � � � �� cncq

�nc �A����

Although C�q� is not genuinely a polynomial in the variable q� the form �A���� is the one

used throughout this dissertation and it will be referred to as a DPO� The reason for using

the notation C�q� for the causal DPO shown above instead of C�q��� is due to the close

relationship existing between the DPO notation and the transfer function of a nonrecursive

system� As a matter of fact� the DPO can be seen as a time�domain description of a

discrete�time system equivalent to the transfer function concept in the frequency domain�

This equivalence is clearly inferred from the time�shift property of the Z�transform described

by ����

Zfq�ifx�n�gg � z�iX�z� �A����

where Zf�g denotes the Z�transform of a given discrete�time signal de�ned as ����

Zfx�n�g � X�z� �
��X

k���

z�kx�k� �A����

Another form to understand the dual relationship between the DPO and the transfer func�

tion associated to a nonrecursive system is given below�

Property A�	
 Extending equation �A���� to the concept of transfer function� it follows

that

y�n� � H�q�fx�n�g�� Y �z� � H�z�X�z� �A���



���

where Y �z� and X�z� are respectively the Z�transforms of the y�n� and x�n� sequences�

H�z� is the transfer function between X�z� and Y �z�� and H�q� � H�z� jz�q is the DPO

acting of x�n��

�

At this point� consider the following classi�cation of operators which is useful when analyzing

the operator equation C�q�fx�n�g � y�n��

De�nition A�

 An operator Q that maps the space vector X into the space vector Y

is said to be injective if and only if for each element y � I�Q� there is exactly one element

x � D�Q� such that Qfxg � y� The operator Q is called surjective if and only if its image

set satis�es I�Q� � Y and then we say that Q maps X onto Y � Finally� Q is known as a

bijective operator if and only if it is both injective and surjective�

�

The DPO de�nition implies that this class of operators is associated to straightforward

extensions of Properties A�� and A�� and� therefore� these similar properties are not repeated

here� Some other important properties of the DPO� however� are listed below� where C�q� �

c� � � � �� cncq
�nc and D�q� � d� � � � �� dndq

�nd are assumed to be two generally distinct

DPOs�

Property A��
 It is easy to verify that a given nonidentically null DPO� i�e�� one with

at least one nonzero coe�cient� represents a bijective operator in the subspace of one�sided

sequences x�n�� such that x�n� � �	 �n � ��

�

Although the above property does not apply to the complete space of two�sided sequences ��

the above form does not represent any loss of generality when dealing with adaptive �lters�

as this class of systems is solely used in the processing of causal signals� i�e�� one�sided

sequences� A crucial consequence of the result stated in Property �� is described below�

Property A���
 The inverse DPO exists and it is de�ned by�
�

C�q�

�
fx�n�g � C���q�fx�n�g �A����

in such a way that

C���q�fC�q�fx�n�gg� �C���q�C�q��fx�n�g� x�n� �A����

�



��

Property A���
 The concatenation of direct and inverse DPOs is a commutative

operation� i�e��
�

C�q�

��
�

D�q�
fx�n�g

�
�

�
�

D�q�

��
�

C�q�
fx�n�g

�
�A��	a�

C�q�fD�q�fx�n�gg�D�q�fC�q�fx�n�gg �A��	b��
C�q�

D�q�

�
fx�n�g�

�
�

D�q�

�
fC�q�fx�n�gg

�C�q�

�
�

D�q�
fx�n�g

�
�A��	c�

�

The previous properties suggest that we can perform common algebraic operations directly

on the DPOs and �nally apply the resulting DPO to the signal sequence� As a matter of

fact� this is one of the most important features of the DPO along with its extremely simple

notation� In the next section� however� an extension of the DPO notation that does not

follow these interchangeability properties is introduced�

A�� The Time�Varying Di	erence Polynomial Operator

The time�varying di�erence polynomial operator is a type of DPO where the coe�cients

may vary in time� as seen in the following de�nition�

De�nition A���
 The time�varying di�erence polynomial operator �TVDPO� is de�ned

as

C�q	 n�fx�n�g��c��n� � c��n� � � � �� cnc�n�q
�nc�fx�n�g

�c��n�x�n� � c��n�x�n� �� � � � �� cnc�n�x�n� nc� �A����

The TVDPO notation is largely used in the description� convergence analysis� and stability

analysis of adaptive �lter algorithms ����� ����� Although the de�nition of a TVDPO is

similar to the de�nition of the basic DPO� due to the time�varying characteristic of its

coe�cients the TVDPO does not possess the same properties of the DPO� This fact is

stressed in Property A��� below�



���

Property A���
 The concatenation of a TVDPO with either a DPO or a TVDPO is

not a commutative operation�

�

Example A���
 In order to illustrate this last property� consider the two �rst�order

TVDPOs C�q	 n� � � � c��n�q
�� and D�q	 n� � � � d��n�q

��� with C�q	 n� �� D�q	 n��

De�ning

e��n� � C�q	 n�fD�q	 n�fx�n�gg �A���a�

e��n� � D�q	 n�fC�q	 n�fx�n�gg �A���b�

it is easy to verify that

e��n�� e��n� � �c��n�d��n� ��� c��n� ��d��n��x�n� �� �A����

is generally di�erent from zero� implying that e��n� and e��n� are two distinct sequences�

�

An important consequence of Property A��� is that some regularly used notations for DPOs

may lead to dubious interpretations when applied to a TVDPO� Some examples of it are

given in Property A��	�

Property A���


�C�q	 n���fx�n�g�C�q	 n�fC�q	 n�fx�n�gg

��C��q	 n�fx�n�g �A���a��
C�q	 n�

D�q	 n�

�
fx�n�g�

�
�

D�q	 n�

�
fC�q	 n�fx�n�gg

��C�q	 n�

��
�

D�q	 n�

�
fx�n�g

�
�A���b�

�

Example A���
 To illustrate equation �A���b�� consider C�q	 n� and D�q	 n� as given

in Example A���� Assume that all sequences in this example are null for n � � and let

e��n��C�q�

��
�

D�q	 n�

�
fx�n�g

�
�A���a�

e��n��

�
�

D�q	 n�

�
fC�q�fx�n�gg �A���b�

It can be readily veri�ed that

e����� e���� � �c����d����� c����d�����x��� �A����



���

From this equation� it is easy to see that the coe�cients of C�q	 n� and D�q	 n� being

dependent on time� results in e��n� and e��n� being two distinct sequences in general�

Similar results are obtained for �e��n�� e��n�� with di�erent values of n 	 ��

�

When dealing with adaptive systems� the TVDPO is often used to represent the in�

put�output relationship of adaptive �lters� An approach to ensure that the di�erences

between the left and right hand sides of the inequalities in Property A��	 approximate

zero is to assume that the adaptable coe�cients of the TVDPO are essentially constant�

during at least a certain small number of iterations �usually at the order of the number

of coe�cients of the adaptive �lter�� This approach is called the small step approxima�

tion ���� ��	�� ����� as if an adaptation algorithm with a very small convergence step was

used resulting in equivalently small variations in the values of the �lter coe�cients at each

iteration�

Example A��	
 To illustrate the mechanism of the small�step approximation� consider

the sequence y��n� given by

y��n� � q��
��

c��n� � c��n�q
��

� � d��n�q��

�
fx�n�g

�
�A���

and assume that the coe�cients �c��n�� c��n�� d��n�� vary in time according to

c��n� � � tan���ns����� c��n� � �
�


tan���ns��	�� d��n� � �

��

��
tan���ns���� �A����

with n � �	 �	 � � � 	 ����s�� where the parameter s is used as a time scale to control the speed

of variation of those three coe�cients� The higher the value of s� the faster the coe�cients

change in value� and vice�versa� Notice from �A���� that the coe�cients change in time

following a respective sigmoid path characteristic of the arctangent function� The sigmoid

function is almost constant in the beginning and at the end and it changes fast in its middle

portion� leading to time�variant coe�cients as the ones depicted in Figure A�� for the case

s � ����

The small�step approximation for y��n� is given by

y��n� �

�
c��n�q

�� � c��n�q
��

� � d��n�q��

�
fx�n�g �A����

The main advantage of the small step approximation is the fact that only the current

values of the adaptable coe�cients are required to calculate the present value of a particular

sequence�



��	
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Figure A��
 Example A��� � Time�varying coe�cients c��n�� c��n�� and d��n�� with s � ����

Consider input sequences x�n� which are stochastic and uniformly distributed between

zero and one for all the experiments in this example� Figure A�� shows y��n�� y��n�� and the

di�erence between these two signals� It can be observed that �y��n� � y��n�� is relatively

small compared to the values of the signals� and that this di�erence assumes its largest

value in the period when the coe�cients are varying the most �compare with Figure A����
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Figure A��
 Example A��� � Signals y��n�� y��n�� and �y��n�� y��n�� for � � n � ��� and
�� � n � ����

The validity of the small step approximation can be inferred from Figure A�� In this

�gure� the average maximum value �over a set of ��� experiments� of the di�erence between

the signal y��n� and its approximation y��n� was plotted as a function of the step s used

to update the set of coe�cients �c��n�� c��n�� d��n�� in time� Observe from this �gure that

as the step approximates zero �an extremal case for the small step approximation� the



���

maximum value of the di�erence �y��n��y��n�� becomes almost zero� as expected from the

small step basic assumption�
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Figure A�
 Example A��� � Average maximum value of the di�erence �y��n�� y��n�� as a
function of the time scale s�

�

Another case where a TVDPO is considered as a DPO� i�e� without time�variant coef�

�cients� occurs when the stationary properties of an adaptation algorithm are analyzed� In

such cases� the adaptation process is supposed to have reached steady state and then the

adaptive �lter coe�cients are assumed to be constant� Such analysis is very important in

the characterization of the performance surface and the stationary points of adaptive �lter

algorithms such as the output error and equation error algorithms�

A�� Conclusion

The time�shift operator and two important extensions of it� the di�erence polynomial opera�

tor �DPO� and the time�varying di�erence polynomial operator �TVDPO�� were introduced�

They signi�cantly simplify the notations used to describe and analyze adaptive systems� It

was shown that not all properties of the DPO can be extended to the TVDPO� However�

some of these properties can still be used with TVDPOs when the so�called small step

approximation is used or when steady�state analyses are performed�
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