
AUTOMATIC CHANGE DETECTION IN MOVING CAMERA VIDEOS

Rafael Padilla

Tese de Doutorado apresentada ao Programa
de Pós-graduação em Engenharia Elétrica,
COPPE, da Universidade Federal do Rio de
Janeiro, como parte dos requisitos necessários
à obtenção do título de Doutor em Engenharia
Elétrica.

Orientadores: Eduardo Antônio Barros da
Silva
Sergio Lima Netto

Rio de Janeiro
Outubro de 2021



AUTOMATIC CHANGE DETECTION IN MOVING CAMERA VIDEOS

Rafael Padilla

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO
LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA
DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS
REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR
EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Orientadores: Eduardo Antônio Barros da Silva
Sergio Lima Netto

Aprovada por: Prof. Eduardo Antônio Barros da Silva
Prof. Sergio Lima Netto
Prof. José Gabriel Rodriguez Carneiro Gomes
Prof. Lisandro Lovisolo
Prof. Bruno Luiggi Macchiavello Espinoza

RIO DE JANEIRO, RJ – BRASIL
OUTUBRO DE 2021



Padilla, Rafael
Automatic change detection in moving camera

videos/Rafael Padilla. – Rio de Janeiro: UFRJ/COPPE,
2021.

XX, 177 p.: il.; 29, 7cm.
Orientadores: Eduardo Antônio Barros da Silva

Sergio Lima Netto
Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2021.
Referências Bibliográficas: p. 156 – 177.
1. Anomaly Detection. 2. Video Processing. 3. Signal

Processing. 4. Moving Camera. I. Antônio Barros da
Silva, Eduardo et al. II. Universidade Federal do Rio de
Janeiro, COPPE, Programa de Engenharia Elétrica. III.
Título.

iii



Aos meus pais, irmãos e avós,
que exemplarmente repassaram a

importância da família, da
honestidade, do trabalho e da

persistência.
À Lena e à Jujuba, por

abraçarem comigo este sonho,
pela confiança e por acreditarem

que NÓS conseguiríamos.

iv



Agradecimentos

Quando as coisas estão difíceis, o suor, a luta, o trabalho e a persistência que muitos
precisaram ter para que eu possa desfrutar todas oportunidades, são as maiores
razões pelas quais eu continuarei sempre resistindo. Por isso, agradeço aos meus
avós Vô Chico, Vó Maria, Vô Osmar e Vó Tereza, e aos meus pais Roberto e Suzan,
por todo o esforço e renúncias que precisaram fazer para que eu e meus irmãos
recebêssemos uma boa educação e bons valores. Jamais os decepcionarei.

Aos meus irmãos Vinicius e Rodrigo, por serem minha melhor lembrança e
conexão com a melhor época de nossas vidas.

Agradeço à Lena, minha querida e amada esposa, pela enorme paciência e, prin-
cipalmente pelo companheirismo e amor. O seu apoio, compreensão e confiança
foram fundamentais para que eu realizasse este trabalho. Esta é uma conquista sua.

À Jujuba pelo carinho sincero, brincadeiras, paciência e amizade que só cresce
todos os dias.

Aos meus amigos Jorge, Mike, Veronica, Janica e Nick pela amizade que há anos
mantemos, provando que a distância e o tempo não são capazes de esmaecer nosso
companheirismo.

Ao meu grande amigo Zé Maria que "através da busca levada pelo físico,
metafísico, o ilusório... e de volta faz a descoberta mais importante de sua car-
reira".

A todos professores que tive até hoje, pois sempre me proporcionaram o prazer
do aprendizado e do questionamento.

Aos meus colegas e amigos do laboratório SMT pelo acolhimento, ajuda, ensina-
mentos e momentos de descontração que tivemos.

Aos professores Eduardo Antônio Barros da Silva e Sergio Lima Netto, meus
queridos orientadores, por permitirem que eu faça parte do grupo dos seus orien-
tandos, pelas oportunidades que me deram de participar de projetos que surgiram
ao longo do caminho, pela paciência, pela humanidade, e principalmente por todo
aprendizado que recebi durante o doutorado. "Se eu vi mais longe, foi por estar so-
bre ombros de gigantes". Meus sinceros e profundos agradecimentos. Tenho enorme
admiração por vocês.

v



Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários
para a obtenção do grau de Doutor em Ciências (D.Sc.)

DETECÇÃO AUTOMÁTICA DE MUDANÇAS EM VÍDEOS COM CÂMERAS
MÓVEIS

Rafael Padilla

Outubro/2021

Orientadores: Eduardo Antônio Barros da Silva
Sergio Lima Netto

Programa: Engenharia Elétrica

Neste trabalho, investiga-se a aplicação de técnicas de visão computacional
baseadas em aprendizado de máquina como soluções para o problema de detecção
de anomalias em vídeos capturados com câmeras móveis. Este problema é visto
pela perspectiva de uma base formada por vídeos de referência, sem a presença de
anomalias, e vídeos alvo, onde anomalias estão presentes em alguns quadros. Neste
trabalho o termo ‘anomalias’ representa mudanças nos quadros dos vídeos alvos
pela inclusão de objetos inexistentes nos quadros dos vídeos de referência. Assim,
as técnicas aqui apresentadas têm como objetivo a classificação dos quadros dos
vídeos alvos como anômalos ou não anômalos através de características extraídas
dos quadros previamente alinhados.

Inicialmente, uma técnica de alinhamento temporal dos vídeos é proposta. Uti-
lizando um trabalho anterior como base, um algoritmo de classificação é retreinado,
e seu conjunto de hiperparâmetros é encontrado através de uma busca direcionada
utilizando otimização bayesiana. Para evitar contaminação dos dados, os vídeos
são separados em grupos distintos para treino, validação e teste. Para melhorar o
desempenho do algoritmo de classificação, técnicas que utilizam a análise de com-
ponentes principais (em inglês PCA) são aplicadas como critérios de seleção das
características extraídas dos quadros.

Uma nova técnica de alinhamento geométrico dos quadros e uma rede separada
em módulos são apresentadas. Nesta rede, um módulo de morfologia diferenciável
apresenta originalidade em relação a outras abordagens existentes na literatura, per-
mitindo a realização de operações morfológicas de forma diferenciável. Os resultados
obtidos nesta proposta são superiores aos resultados de trabalhos anteriores.
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In this work, we investigate the application of computer vision techniques based
on machine learning as solutions to the anomaly detection problem in videos with
moving cameras. This problem is analyzed through a dataset consisting of reference
and target videos. In this work, the term ‘anomalies’ represent changes on frames
of target videos by adding object that were not present in the reference videos.
Reference videos do not contain anomalies, which are existent in some frames of
the target videos. The techniques presented here aim to classify the target frames
as anomalous or not anomalous through features extracted from previously aligned
frames.

Initially, a temporal alignment technique is proposed. Based on a previous work,
a classification algorithm is retrained, and its set of hyperparameters is optimized
through a Bayesian optimization process. To avoid data contamination, the videos
are split into folds containing distinct train, validation, and testing sets. As an
attempt to improve the classification algorithm, techniques applying principal com-
ponent analysis (PCA) are applied as selection criteria of the features extracted from
the frames.

A novel technique composed of a geometrical alignment of the frames and mod-
ular network is presented. In this network, a differentiable morphology module is
highlighted as it proposes a novel approach in computing morphological operations
in a differentiable way. The results achieved with our proposed technique overcome
results from previous works.
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Chapter 1

Introduction

In the last decade, the advances of Computer Vision methods have impacted ap-
plications in different areas: health care [7], entertainment [8–11], security [12, 13],
transportation [14–17], medical diagnosis [18–20], manufacturing [21, 22], law [23],
etc. Activities that could not be entirely performed by automated systems have
become feasible with the evolution of the algorithms and hardware. Computer-
aided diagnosis systems, for example, are now feasible due to the accuracy of image
classification algorithms. Self-driven cars also exist due to improvements of object
detection methods, so different classes of objects could be precisely identified.

Similarly, the need for robust and precise methods to detect undesired objects
is also found in other critical applications including waste sorting, road inspection,
surveillance of controlled areas such as shopping centers, stadiums, airports, industry
and train stations [24]. Current object detection methods are object-addressed,
which means only previously known classes of undesired objects can be identified
[25–27]. Situations where the class of the object to be found is unknown prevent
the application of the popular and classical object detection approaches. In those
cases, the anomaly detection approach is adopted, in which a comparative analysis is
performed to find objects which were not present in a predefined reference condition.

In industrial facilities, as offshore platforms, materials left in areas that may
cause accidents, or items capable of producing flames are critical anomalies that
could compromise the safety of the industrial plant and workers. Human visual
inspection in such areas may be problematic due to the limitations of access in
such hazardous environments, demanding more autonomous solutions. A typical
solution to cover large areas remotely is the usage of surveillance systems with
multiple cameras to provide visual coverage of the whole environment [28, 29]. An
alternative to cover wide zones with reduced costs is the usage of moving cameras
to monitor such large areas [28, 30]. Even though this approach may reduce costs
on the acquisition of the images and videos, the process of detecting changes along
the frames becomes even more complex. Problems caused by the movement of the
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camera like jitters, illumination changes, occlusions, and shadows limit the success
of techniques applied with static cameras [31, 32]. Such constraints hinder the
comparison between target and reference videos affecting the quality of the results.

In this thesis, the anomaly detection problem using labeled training videos is
investigated. By that, the anomaly detection is addressed by comparing a newly
acquired video, known as the target video, to a reference video considered free of
anomalies. In this way, an abandoned object, which can be associated to a video
anomaly, is detected as the target and reference videos diverge considerably. For that
purpose we will use the VDAO database (Video Database of Abandoned Objects)
[33] and our results are compared to previous works that also reported results on
this same database.

1.1 Objectives

This thesis covers the problem of anomaly detection in videos acquired with a moving
camera in a cluttered industrial environment. The video database of abandoned
objects in a cluttered industrial environment (VDAO) used in this work contains
two groups of videos: reference and target videos. The former contains videos
captured in the environment without the presence of certain objects, while in the
latter group of videos, objects are inserted in the scene. Thus, in this work the
term ‘anomaly detection’ is seen by the perspective of detecting changes in the
target videos represented by objects added in the scene, characterizing the anomaly.
As the VDAO database contains videos acquired in a real industrial scenario, the
critical anomalies such as fire and smoke are represented by such abandoned objects
of different classes.

The videos of the VDAO database were recorded in an industrial environment,
with pipes, tubes, valves, chains and metal structures. Due to the movement of the
robot and different light conditions, the reflection of light in such metal parts causes
an extra disturb while comparing the same scene in different videos. The fact that
the camera is moving and the structures in the scene are in different depths, the
parallax effect makes the background and foreground appear to move at different
speeds.

The problem this thesis proposes to solve is hampered due to the constraints
presented in the VDAO database. Such difficulties are not only related to the char-
acteristics of the videos such as camera jitters, occlusions and illumination changes,
but also due to the fact that the testing database is made of chunks of all videos.
As all frames in the testing sets are also seen in the training set, a careful process of
division of training, validation and testing sets had to be done. So far, other works
have been developed to solve the anomaly detection on the same database, but this
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is the first thesis applying Deep Neural Networks.
Given a target video, the system proposed by this thesis aims to identify the

presence of an anomalous object in each frame. The classes of such objects are
unknown beforehand and are not considered by training a model of any type. For
that, the target video is first aligned with the reference video. Then, deep features
from frames of both videos (reference and target) are obtained with convolutional
neural networks (CNNs) in a siamese-like structure. Different techniques were ex-
plored in this thesis. First, a random forest (RF) classifier was used to classify both
reference and target features followed by a hyperparameter tuning with Bayesian
optimization. In a comparative approach, a feature selection process was applied
with principal component analysis (PCA) to reduce the space of features before it
is classified by the random forest algorithm. By that, our results are equivalent
to those obtained by previous works on the VDAO database. At last, we propose
an end-to-end pipeline containing a module to enhance the differences between the
target and reference frames, a differential morphology module to eliminate false pos-
itive regions of the target frame, and a classification layer responsible to predict if
the given target frame contains any anomaly or not.

1.2 Contributions

The contributions of this thesis are mainly, but not limited to, are given by the
following points:

• The benchmark videos of the VDAO database used for testing are available,
but without labels. During this thesis, the testing videos were labeled, con-
tributing to future works using the VDAO testing dataset.

• Differently from previous works using the VDAO database, the supervised
approach used in this work requires a careful split of the data. Thus, a division
of the videos into training, validation, and testing sets and different folds is
proposed to avoid data contamination. This type of dataset separation has
not been done in other works using VDAO and it has proved to be a good
strategy to avoid having biased results.

• A real-time temporal alignment of the reference and target videos is proposed.

• A comparative approach using PCA to select deep features (features produced
by a deep neural network) for the binary classification problem with random
forest.

• A novel differential morphological operation module is proposed allowing the
application of morphological operations in a differentiable way. By that, the
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radii of structuring elements can be automatically adjusted during the learn-
ing process. This novel approach can be expanded to other tasks involving
morphological operations.

• The Matthews correlation coefficient (MCC) was used as a metric to compute
the pixel-wise assertiveness of modules of our proposed approach. Due to its
limitation in some cases, we propose modifications in this method, expanding
its application to critical cases.

• A full chapter is dedicated to review metrics used to evaluate object detection.
This chapter was placed as the last chapter, and can be read independently
from the other chapters. This review conducted the development of an open-
source tool implementing different object detection metrics and compatible
with different bounding box formats.

The next section presents the structure used in this thesis.

1.3 This Work

This thesis aims to provide a solution for the anomaly detection problem. For that,
a database containing videos captured with a moving camera was used to train,
validate and test the proposed models. The chapters and sections are organized
to present the approaches in an incremental way. Thus, each chapter presents a
solution following the structure of a common pipeline presented in Figure 1.1.

Figure 1.1: Base pipeline used in this work. Given a reference and target videos,
the goal is to classify each frame of the target video as containing an anomaly
(anomalous) or not (not anomalous).

The input of the proposed method is a pair of videos. The reference video rep-
resents the expected conditions, without anomalies. During the algorithm training
phase, the anomaly is presented in the target video, and during the testing (or
inference phase), the anomaly may or may not be presented in the target video.
As both videos are not temporally synchronized, the first step, represented by the
video alignment block, aims to align the frames of both reference and target videos.
Then, feature extraction techniques will be explored to find a high-level representa-
tion of the aligned frames. All manipulation operations made in the features, such
as feature reduction, feature selection, temporal consistency, morphology, etc. are
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represented in the feature processing block. The last step, the classification block,
outputs the class of each target frame, being called ‘anomalous’ if an anomaly is
presented or ‘not anomalous’ otherwise. The anomaly is represented by an object
added in the target frame which is not in the reference frame.

Along with the chapters, modifications in the pipeline are made and relevant
works in the literature are reviewed accordingly. The reader is informed of the
attempts that did not work as expected, decisions taken along the development
of each phase, results compared with previous works in the same database, and
conclusions. This work is divided as follows:

Chapter 2 defines the problem of anomaly detection, reviews related works and
datasets.

In Chapter 3, a temporal alignment approach is proposed, a deep neural network
is used to extract features from the frames, and a random forest classifier produces
the frame classification. A Bayesian optimization technique is also applied to tune
some hyperparameters of the classifier. The split of the database into folds contain-
ing training, validation, and testing is also covered in this chapter. In the end, the
results of this approach and conclusions are also presented.

In Chapter 4, a feature selection module is added into the pipeline so that deep
features have their dimensions reduced with principal component analysis (PCA).
Different approaches to compute PCAs are applied and their results are compared
and commented on.

Chapter 5 includes new modules into the pipeline. A geometrical alignment
is proposed to improve the quality of the registration between the reference and
target frames. Before the classification module, a dissimilarity module fuses both
reference and target frames producing a binary image highlighting the region where
the anomaly is located. A temporal consistency module removes false positive pixels
in consecutive frames and, before the classification, a novel differentiable morphology
technique is proposed to eliminate the remaining false positive pixels within the
frame level.

Chapter 6 is an independent chapter which is not directly connected to the
previous chapters. In that chapter, a deep review on the subject of object detection
metrics is provided. The reader may sense a clear disconnection from the main idea
of this thesis, but due to the importance and impact this chapter brought to the
scientific community, the authors found it relevant enough to be part of this thesis
and, therefore, was placed as the last chapter before the final conclusions.

Conclusions and main ideas for future works are presented in Chapter 7.
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Chapter 2

Anomaly Detection in Cluttered
Environments

This chapter defines the concept of anomaly detection and reviews the main works
and datasets used in this task. We start by defining the limits between methods of
classical object detection and abandoned anomalous objects in Section 2.1 . Then,
a review of works involving object anomaly detection is presented in Section 2.2.
Next, available datasets covering the task of abandoned objects are analyzed in
Section 2.3, including the VDAO, the best suited dataset for the purpose of this
work. Works using the VDAO database are reviewed and their results are shown in
Section 2.4. Finally, conclusions are presented in Section 2.5.

2.1 Anomaly Detection

The word anomaly comes from the Greek word anomalos, meaning unevenness or
irregularity [34]. Depending on the scenario and circumstances, the representation of
anomalies may vary. In general, anomaly is a non-conforming pattern often referred
as outlier, exception, surprise, aberration, peculiarity, or contaminants [35].

Anomaly detection systems tackle the problem of finding patterns in data that
do not comply with expected behaviors [35]. Within the computer vision context, in
some applications objects placed or removed from a scene or unsought actions can
be considered anomalies. Nevertheless, such anomalous cases depend on a certain
context and are part of the system specifications. For instance, pedestrians walking
on the sidewalk is not considered an uncommon situation, but it can be considered
anomalous (and dangerous) by a system if pedestrians are detected crossing a busy
highway [14]. Likewise, certain objects like guns and abandoned luggage can be
considered anomalies in public crowded places [12, 36, 37]. In industrial facilities, as
offshore platforms, materials left in areas that may cause accidents or items capable
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of producing flames are critical anomalies that could lead to severe consequences if
not detected in time [33]. There is a current need for surveillance systems designed
to monitor certain areas and raise alerts if predefined anomalous situations or objects
are observed.

The anomaly detection task in the context of this work is seen as detecting
changes in a scene given two videos. Non structural changes such as in illuminations,
small differences in sizes and positions of the objects caused by the movement of
the robot, must be ignored by the system. Only objects that are in the scene in a
particular video, which were not presented in a reference video must be detected.
That is why the reader must be aware of the fact that anomaly is here understood
as a representative change in the scene given the inclusion of a previous non existing
object.

In view of critical tasks to be identified by surveillance systems, anomalous ob-
jects left in a scene can be considered very critical, specially if they can threaten
personal safety or put operations in risk [36]. Detecting undesired objects is a need
in many applications such as waste sorting, road inspection, supervision of controlled
areas such as shopping centers, stadiums, airports, train stations and so on [24].

Supervised object detection methods are object-addressed, where only previously
known classes of objects can be identified [25–27, 38–41]. Regarding surveillance
systems, depending on the application, there is an enormous amount of object classes
that could be classified as anomalies, making popular object detectors useless in such
applications [13].

To overcome such problem, some anomaly detection systems are designed to com-
pare a given input video to another reference video, which represents normal envi-
ronmental conditions [42]. As an anomaly usually involves rare activities, designing
a dataset with uncommon situations is very challenging. In addition, capturing
undesired anomalies such as fire, flood, and smoke in real scenarios may represent
risks. Each dataset characterizes anomalies in a different perspective. The VDAO
dataset used in this thesis represents anomalies as abandoned objects. But before
covering the datasets, works proposing solutions for the anomaly detection task are
presented in the next section.

2.2 Review of Anomaly Detection Works

Given an input video, the goal of anomaly detection algorithms is to precisely recog-
nize the moment or the position of an anomalous action or object. In this task, the
videos are recorded with surveillance cameras, whose position and type determine
the approach employed by different works. With respect to video capture, surveil-
lance systems can be classified into two types: systems using static cameras and
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systems using moving cameras. The first category includes non-moving cameras,
which can be static cameras or PTZ (Pan-Tilt-Zoom) cameras. Static cameras do
not rotate and are limited to a much narrower view of the scene. PTZ cameras al-
low zooming and rotations, expanding the view of the region. The second category,
systems using moving cameras, provides a wider visual coverage of the environment
by applying a reduced number of cameras.

In videos with static cameras, background subtraction has been widely applied to
detect anomalies [43–45]. In [46], the authors consider frequent local motions in the
background such as waving trees and grass and apply a visual attention mechanism
to infer a complete background. A framework was proposed to detect abandoned
objects and identify their owners in [47]. Some works apply static cameras to detect
moving objects, but allow a small amount of movement usually due to some kind of
camera jitters [48–50].

On the other hand, in a more challenging scenario, works such as [28, 30, 51]
explore the usage of moving cameras to supervise large areas. Even though moving
cameras may cover larger areas and reduce costs, detecting changes along the frames
becomes a more complex task. The camera movements and speed may vary along
the route and, as the camera is moving, shadows, occlusions, and light conditions are
frequently changing, which limits the success of techniques used by static cameras
[31, 32, 52]. The work [28] was able to detect abandoned objects along a road
by mounting a camera on a moving car. By that, the reference video without
abandoned objects was recorded along the path. Then, target videos recorded along
the same path were processed to find such objects. Global positioning system (GPS)
coordinates were used to align the reference and target frames and a homography
was used to estimate the affine transformations between the corresponding frames.
In the end, the frames are compared with a normalized cross-correlation image.
Similarly, [30] performed the detection of anomalies in train tracks by recording
videos with a camera mounted on a train. After aligning the frames, different
similarity measurements were applied to detect the presence of anomalies in the
scenes. In both works, a reference video with no suspicious object in the scene is
compared to a target video, with possible anomalous objects.

Considering that anomalous events are uncommon situations, ordinary (non-
anomalous) events in videos are more likely to be reconstructible based on training
data. Thereby, a common approach is to build a model using only non-anomalous
events from the training set of videos. Sparse linear combinations of similar patterns
are considered to be a good representation of the expected non-anomalous activities
with a low reconstruction error. In contrast, as the anomalous events are not pre-
sented in the training data, these events will produce high reconstruction errors [53].
The reconstruction of frames using previously learned coefficients is the essence of
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approaches using sparse coding to detect anomalies in videos. Constrained by a dic-
tionary whose columns are basis vectors for reconstructing non-anomalous events,
the work [54] applies a spatio-temporal sliding window to scan videos. Salient points
detected in regions of successive frames determine cuboids of events. By projecting a
cuboid onto the set of the sparse coding basis vectors, a reconstruction vector is ob-
tained and its reconstruction error is measured, thus determining if the input event
is anomalous or not. In this approach, the basis vector dictionaries are updated in
a non-supervised way, thus it does not require prior assumptions of the anomalous
events.

The work in [55] affirms that the optimization of sparse coefficients is extremely
time consuming, becoming the bottleneck of dictionary learning based approaches.
An architecture similar to stacked recurrent neural networks (sRNN) is then pro-
posed to update the sparse coefficients reducing computational costs. Instead of us-
ing a predetermined similarity measurement of consecutive frames, a data-dependent
similarity measurement is used. In this work, multiple datasets with static cameras
were used.

Surveillance videos were used to monitor abnormal activities of crowds with
a static camera in [56]. A feature space is represented by a histogram built with
motion vectors from background subtraction of non-anomalous frames. A dictionary
with low rank coefficients is learned during the training phase by optimizing the
reconstruction error. In the testing stage, the error of the reconstructed coefficient
vectors is expected to be low for non-anomalous samples and, therefore, determines
the presence of anomalous activities.

Many works take the advantage of deep learning-based methods to model the
spatio-temporal relation in videos to detect anomalies. In [57], a spatio-temporal
CNN was trained to extract crowd motion patterns and classify anomalous and
non-anomalous events. Also to identify unusual crowd activities, a deep Gaussian
mixture model was used in [58] to represent normal activities in videos captured with
static cameras. The work [59] combines a U-Net with a long short-term memory
(LSTM) network to represent spatial and temporal information to identify abnormal
events in videos with static cameras. A residual spatio-temporal autoencoder was
trained in [60] using non-anomalous videos. As normal frames are reconstructed with
lower errors than the anomalous frames, a threshold is set to identify the anomalies.

In [61], the so popular generative adversarial networks (GANs) were used to
detect anomalies in surveillence videos. The work in [62] applies three denoising
autoencoders to learn individual and mixed motion features from videos. The ap-
pearance, motion and joint representations of sequential frames are individually
classified by one-class support vector machines (SVMs) . The results are fused by a
single decision module that determines the presence of the anomalies.
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As anomalies are usually sporadic and specific events, most databases used by
the aforementioned works were specially designed with this purpose. The realism
and spontaneity of some actions do not always correspond to the reality, specially
when actions are performed by individuals. The realistic scenarios must also be
faithfully represented in these videos, so that real surveillance systems can bene-
fit from models trained on other datasets. It is also not hard to find databases
which represent anomalous situations in a very realistic way, encompassing con-
strains found in real conditions. Nevertheless, in their majority, reference videos
to represent expected normal conditions are not included in the databases. Thus,
next section is dedicated to overview different databases used as benchmark by most
anomaly detection systems.

2.3 Available Databases

As previously stated, the definition of anomaly varies according to the target prob-
lem. For a system to be able to identify correctly in which frame or position the
anomaly is, it is necessary to use a video database representing such events in an ac-
curate and realistic way. Public available datasets to attend the problem of anomaly
detection are created for specific purposes with limited classes of anomalies and sce-
narios. The most popular ones are described below:

• The UCF-Crime [63] consists of videos captured by still cameras representing
13 anomalies such as abuse, fighting, robbery, burglary, etc.

• The UMN: Detection of Unusual Crowd Activity dataset [64] presents videos
of people walking around and the anomaly is characterized by only running
action.

• The UCSD: Pedestrian Anomaly Dataset [65] gathers surveillance videos
recorded in a single place. They characterize anomalies as activities performed
in determined sites, e.g. a group of people riding bicycles in the walkways.

• The Avenue dataset [66] has short videos with some unrealistic anomalies, such
as paper throwing, loitering, and running.

• The Subway dataset [29] consists of cameras positioned in the entrance and
exit of a subway station. The anomalies are labeled as people walking in wrong
directions, loitering near the exit, and skipping payment.

• The work [67] presents the CDNET, a popular database designed for motion
and change detection in the background. It contains 53 video sequences, split
into 11 categories, covering various movements of the background with a static
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camera. Until now, none of the mentioned databases represents the anomalies
as abandoned objects.

Among datasets to represent abandoned/lost objects, we can mention [68], which
contains videos recorded with four different static cameras capturing left-luggage of
different types such as briefcase, suitcase, backpack, etc. The i-LIDS dataset [69]
covers 6 different real world footage including abandoned baggage detection and
doorway surveillance. These videos were also recorded with static CCTV cameras
and not all videos are labeled. Table 2.1 summarizes some of the most widely used
datasets for the task of anomaly detection.

So far, to the best of our knowledge, the only dataset that addresses the anomaly
detection problem as abandoned objects with a moving camera in industrial envi-
ronments and provides reference videos free of anomalies is the video database of
abandoned objects, here simply referred to as VDAO. The VDAO database is de-
scribed in details in the next subsection.

2.3.1 The VDAO Database

Our proposal is within the context of monitoring offshore platforms, aiming to alert
threatening objects that may cause risk to the safety of workers, operations, and
wildlife presented in such areas. The VDAO database [33] fits perfectly in the
context of anomaly detection with moving cameras in an industrial environment.
After a strong research on other datasets used to detect anomalies, we found that
the VDAO is the best suited one for this kind of problem. As the videos in the
VDAO database were recorded in a real industrial plant of an oil and gas company,
the scenes and structures seen in the videos are real and very common in this kind
of environment. The main reasons that lead us to choose the VDAO among the
other datasets are:

• The scenes are real industrial environments, containing pipes, valves, metallic
objects and structures found in oil and gas industries.

• Anomalies are represented as objects of different classes placed in the scene.
Most of the other datasets represent anomalies as actions.

• Videos are recorded under different illuminations, which not only makes this
dataset more realistic but also increases the difficulty to detect the objects.

• The camera is moving, being an alternative to cover large areas. Most of other
datasets use static cameras.

The VDAO is one of the most challenging databases covering anomaly detection
in large areas. The VDAO, presented in [33] and available at [1], is a collection
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Table 2.1: Popular datasets exploring anomaly detections.

Dataset
Number

of
videos

Number of
anomalies

(unusual events)

Examples
of

anomalies

Types
of

Camera(s)

UCF-Crime [63] 1900 13

Abuse,Arrest,
Assault,

Accident,
Vandalism, etc

stationary

UMN [64] 1 with
11 different shots 1 People running stationary

UCSD [65] 98 5

non-pedestrian
entities in

the walkways
(bikers,

skaters, etc),
anomalous

pedestrian motion
patterns

stationary

Avenue [66] 37 14
people running,
throwing objects,

loitering, etc
stationary

The Subway
(entrance and

exit) [29]
2 19

people walking in
wrong directions,

no payment,
loitering, etc

stationary

PETS 2006 [68] not informed 1 lugagges left
unnatended stationary

i-LIDS [69] not informed 6
abandoned baggage,

parked vehicle,
people, etc

stationary

CDNet [67] 31 does not apply does not apply
stationary,
PTZ and

thermal cameras)

VDAO [1] 77 1 abandoned objects moving
camera

of videos recorded in an industrial environment surrounded by pipes, valves, and
illumination changes. The 77 videos found in the VDAO database were recorded
by a camera mounted on an iRobot Roomba, going through a 6-meter path in a
back-and-forth movement on a predefined trajectory. Each video has a duration
of approximately 8 minutes. Two different cameras, Axis P1346 and Dlink DCS-
3717, were used to record the videos, both with resolution 1280 x 720 pixels and
24 frames per second. A total of 24 objects were placed in the scenario, simulating
objects that do not belong to the environment in normal expected conditions. Two
groups of videos were obtained: reference and target videos. Reference videos are
those in which abandoned objects are not present and target videos contain one
or more abandoned objects, which could be partially occluded as shown in Figure
2.1. Among the target videos, 15 distinct objects were added in the scene, resulting
in a video with multiple objects (Figure 2.2). The other 9 objects were placed in
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the scenario producing videos with a single object (Figure 2.3). Each video with
multiple objects is approximately 18-minute long, and videos containing a single
object have approximately the duration of 6 minutes. Available annotation files
contain bounding boxes representing the position of the objects in every frame.
The partial occlusions of the objects and the variation of illumination in VDAO
database hamper the task of object detection. Shadows of the objects, reflections
of light on metal parts of the scenario, camera vibrations, and speed difference of
the robot during the videos acquisition are some complications that prevent the
perfect alignment of the reference and target frames. The videos are organized into
10 tables, each indicating the illumination type used during the acquisition and if
the target videos contain a single or multiple objects.

(a) Reference frame (b) Target frame

(c) Reference frame (d) Target frame

Figure 2.1: Samples of reference and target frames of the VDAO database [1]. Refer-
ence frames (a) its their corresponding target frames (b) with an abandoned object:
a pink bottle on the top right corner; (c) Reference frame and its corresponding
target frame (d) with an abandoned object: green box on the right side of the
image.

VDAO-200: The Testing Database

The first works developed with the VDAO database used a 200-frame long subset
for benchmark [70–72]. This auxiliary testing database is available at [73], and
contains 59 single-object videos with 9 different objects in different positions under
2 illumination conditions. The classes of objects included in this set are: black
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

(n) (o)

Figure 2.2: Objects used in videos with multiple objects (the scales of the images
were changed for a better representation): (a) string roll; (b) bag; (c) white box; (d)
lamp bulb box; (e) spotlight box; (f) mug; (g) blue coat; (h) wrench; (i) bottle; (j)
blue box; (k) backpack; (l) pink backpack; (m) bottle cap; (n) umbrella; (o) green
box.

backpack, black coat, brown box, camera box, dark-blue box, pink bottle, shoe, towel,
white jar. Table 2.2 presents the number of videos for each object class.

All 59 videos of the testing set are short-duration patches of the VDAO videos
containing single objects. Among all 60 single-object videos of the original VDAO,
only 1 is not present in the VDAO-200 database. This makes a fair split of videos
between training and testing sets without intersection a difficult task. VDAO is
not only a challenging dataset due to the constraints found in the videos (jitters,
illumination, shadows, etc.), but also because the division of the videos into training,
validation and testing sets without having the same video in more than one set is
also challenging. A solution to this problem was used by [2], where their training
sets are split into folds, so the frames in the testing set were never seen during the
training. Section 3.5 is dedicated to cover the approach used by our work as an
attempt to overcome such problem.

In the next section, the works that applied different techniques in the VDAO
database are discussed.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 2.3: Objects used in videos with single objects (the scales of the images were
changed for a better representation): (a) shoe; (b) dark-blue box; (c)camera box;
(d) pink bottle; (e) black backpack; (f) white jar; (g) brown box; (h) towel; (i) black
coat.

Table 2.2: Number of videos and frames for each target object in the VDAO-200
database.

objects videos frames
dark-blue box 6 1200
black backpack 10 2000

black coat 6 1200
brown box 6 1200
camera box 6 1200
pink bottle 7 1400

shoe 6 1200
towel 6 1200

white jar 6 1200

2.4 Anomaly Detection with VDAO Database

Concerning the anomaly detection in the VDAO database, different works have at-
tempted to identify anomalies within the frame level, being able to classify frames as
anomalous our non-anomalous. Next subsections are dedicated to describe the three
types of approaches applied in the VDAO considering anomaly detection within the
frame level. In the end, their results are compared.

2.4.1 Using Spatio-Temporal Codebooks

Traditional spatio-temporal composition (STC) [74] methods are used to break
videos into small 3D volumes and to calculate the probability of spatio-temporal
patterns. However, if applied to videos recorded with a moving camera, a lot of
false detections may occur. The work in [70] proposes a modified STC algorithm to
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overcome such problem and applies its solution on the VDAO and UCSD databases.
In their work the authors suggest a two-step dictionary to improve the anomaly
detections. Their main contribution is a spatio-temporal feature extraction process
obtained by filtering the video sequence.

The modified STC method, namely STC-mc (STC-moving camera) breaks down
the videos into small volumes that are represented by codewords from a codebook.
Probabilities of occurrence of spatio-temporal compositions of the codewords are
then calculated. The compositions with the lowest probabilities are candidates to
be anomalous. Three parameters were defined based on experimental tests: standard
deviation σ for the Gaussian temporal smoothing filter; weight of the time derivative
λ; and the threshold limiting the maximum distance ε1 to consider two different
codewords. Figure 2.4 represents this workflow.

Figure 2.4: Main steps of STC-mc method. The blocks in gray are the original steps
of the STC method. The white blocks represent their contributions. (Image was
adapted from [70].

In their initial step, the frame sequences are split into 3D volumes. A descriptor
for each volume is obtained by applying a time derivative of each pixel in the vol-
ume. This descriptor is sensitive to the camera movement, so a Gaussian filter with
kernel size 5 is used to temporally smooth the derivatives variations. The standard
deviation σ of the filter is a hyperparameter found experimentally. The descriptor
for each volume is a vector of dimension 1 × 245. To reduce the redundancy present
in the spatio-temporal volumes, similar volumes are clustered and, for each group, a
codeword is generated to represent these volumes. The set of codewords forms the
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codebook. Based on the Euclidean distance, each volume is related to a codeword
with a weight. The probability of the volumes within a larger region is calculated.
By applying a threshold on the probability, it is possible to measure how likely an
anomaly is in each volume. For the VDAO database, the threshold was not enough
to detect the anomalous events, so an additional codebook was introduced.

2.4.2 Sparse-Representation of the VDAO

Inspired by the low-rank subspace decomposition, named Robust Subspace Recovery
(RoSuRe), [72] represents a video by a data matrix given by:

X = LW + E, (2.1)

where matrix L represents the union of subspaces and each column Lj represents
a sampling matrix of a subspace Sj, matrix W is a sparse block-diagonal matrix,
so that LW = L with Wii = 0, and matrix E is a matrix of perturbations. By
assuming that W and E are sparse, Equation 2.1 can be solved by the following
minimization problem:

min
W,E
||W ||1 + λ||E||1 s.t.


X = L+ E

LW = L

Wii = 0

. (2.2)

Given a reference video, its data matrix is represented by Xr = LrWr + Er,
whose columns represent a frame of the reference video. The low-rank linear part
of the reference video is Lr and Er is the sparse error matrix. The data matrix
representation of a target video is Xt = LtWt + Et. The authors consider the
low-rank part of the target video (Lt) equals to the low-rank part of the reference
video (Lr), so that Xt = LrWt + Et. The sparse error matrix Et is said to contain
the anomalies. Therefore, Equation 2.1 is then modified to a new version namely
mcRoSuRe (moving camera Robust Subspace Recovery) given by

min
W,E
||W ||1 + λ||E||1 s.t.LrW = X − E. (2.3)

In the end, this procedure results into Equation 2.4, whose sparse matrix E,
representing the remaining error, is expected to concentrate just the abandoned
objects in Xt that are not present in Xr, that is

Et = ErW + E. (2.4)

Another work that explores low-rank representation of target videos in the VDAO
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database is [71]. The authors improved the mcRoSuRe developing an accelerated
version of the algorithm, referred to as mcRoSuRe-A. The main idea to reduce
the computational cost is to replace Xr by a much smaller matrix X ′r. Besides
the works covered in this section, the results of the mcRoSuRe-A are compared to
other two works: detection of abandoned objects with a moving camera (DAOMC)
[28] and the moving-camera background subtraction (MCBS) [30]. Also, a detailed
computational analysis shows that the mcRoSuRe-A runs 100 times faster than the
original mcRoSuRe.

More recently, the mcRoSuRe algorithm was modified to a newer version called
moving-camera domain-transformation sparse representation (mcDTSR), with great
improvements of its results [52]. In this work, the transformed-domain optimization
problem was turned into a two-stage iterative process. First, an inner loop esti-
mates the best geometric transformation between the frames, then, the best matrix
factorization is estimated. We revisit all these works and compare their results in
Subsection 2.4.4.

2.4.3 Extracting Features from VDAO Videos with CNNs

The first work to explore deep convolutional neural networks (CNNs) in the VDAO
is [2]. Initially, reference and target frames were temporally aligned using DTW (dy-
namic time warping) [3, 75], a popular algorithm to measure similarities between two
temporal sequences. Then, convolutional layers of the residual network-50 (Resnet-
50) [4] were used to extract features of both reference and target frames. Layers of
17 depths of the network were chosen to extract the features. An average pooling
layer was inserted at the end of every layer to reduce the number of parameters. For
each layer L = {1, 2, 3, ..., 17}, this process resulted in n pairs of reference and tar-
get feature maps. Each feature map obtained from the target frame was subtracted
from the feature map obtained from its corresponding reference frame, resulting in
a single tensor of features. In the end, a random forest classifier [76] was used to
classify each each frame as anomalous (containing an abandoned object) and not
anomalous (without an abandoned object). The goal of their work was to identify
which convolutional layers obtain the best discriminant features to be fed to a ran-
dom forest classifier. Figure 2.5 shows the scheme proposed in [2]. Note the average
pooling used to reduce the number of features is not presented in this scheme.

After predicting the class of every frame, the authors use a majority voting
window to minimize incorrect predictions. Along the sequence of frames, some were
misclassified either as false positive (FP) or False Negative (FN) and, thus, the
predictions of neighboring frames were used to improve the results. For example, to
correct the classification of the ith frame (Fi), the prevailing classification of frames
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(a) (b)

Figure 2.5: Scheme proposed in [2]. (a) Two aligned frames, target TF and reference
RF , are passed through the convolutional layers of Resnet-50. Their feature maps
obtained from different layers are subtracted. (b) The layer selector is a term used
by the authors to say that features originated from the same layer are fed to a
classifier and the layer with the best result is selected. (Images were adapted from
[2])

ranging from i− 2 to i+ 2 was assigned to frame Fi.
Their experiments were also performed replacing the random forest classifier with

a fully-connected (FC) layer (2-layer perceptron). The best results were obtained by
the random forest classifier with features extracted from Layer 4, the 3rd residual
layer.

2.4.4 Experimental Results with VDAO Database

Within the scope of the problem covered in this work, given the classification of
an input frame, a true positive (TP) it is considered if the input frame has an
abandoned object in the scene and the classifier correctly labeled it as anomalous.
If the classifier could not identify an existing anomaly in the input frame, it is
considered a FN. Thus, the desired result is obtained when the model considers
all anomalous frames as positives and all non-anomalous frames as negatives. Such
evaluations can be measured by means of the true positive rate (TPR) and false
positive rate (FPR), expressed as

TPR =
TP

number of positive ground-truth samples
(2.5)

and

FPR =
FP

number of negative ground-truth samples
. (2.6)

TPR is the proportion of TP frames among all frames that contain the anomalies
in a given set. FPR is the proportion of FP frames among all frames that do not
contain anomalies in a given set.
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The trade-off between TRP and FPR can be measured with the receiver operat-
ing characteristic (ROC) curve as exemplified in Figure 2.6. Each point in the ROC
curve represents an operating point, whose best value is obtained when TPR=1 and
FPR=0, representing the best possible classification.

Figure 2.6: Example of ROC curve of a mock classification example. The distance
between the ideal point (TPR=1, FPR=0) to the best operating point (in green) is
called DIS, whose ideal value is 0.

The benchmark metric used by the works in Table 2.4 to evaluate the classifica-
tions of target frames in the VDAO-200 database is the DIS, which is the minimum
distance of an operating point to the point of ideal performance as shown in Fig-
ure 2.6. The DIS metric is computed by

DIS =

√
(1− TPR)2 + FPR2. (2.7)

Table 2.3 compares the results obtained by [2] using different convolutional layers
as feature extractors. Layer 4, the 3rd residual layer, obtained the lowest DIS,
therefore, the best result.

Now, considering all the works that used the VDAO database as benchmarking
for the anomaly detection problem, Table 2.4 summarizes True Positive Rate (TPR),
False Positive Rate (FPR) and DIS. The best results are highlighted.

Even though the MCBS method [30] obtained the highest TPR, their FPR was
the worst. The lowest FPR was obtained by [2], but with lower TPR than [52],
which reached the best DIS.

The work developed in [2] has a potential for improvement and was used as
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Table 2.3: Classification results on VDAO frames applying CNN to extract features
reported in [2]. TPR, FPR and DIS values are calculated using Equations (2.5),
(2.6) and (2.7) respectively.

CNN + RF
Layer TPR FPR DIS

1 0.68 0.32 0.45
2 0.73 0.30 0.40
3 0.69 0.24 0.39
4 0.74 0.25 0.36
5 0.68 0.27 0.42
6 0.68 0.27 0.42

Table 2.4: Classification results on VDAO frames achieved by different works. TPR,
FPR and DIS values are calculated using Equations (2.5), (2.6) and (2.7) respec-
tively.

Method TPR FPR DIS
STC-mc [70] 0.48 0.41 0.66
DAOMC [28] 0.89 0.46 0.47
MCBS [30] 0.99 0.98 0.98

mcRoSuRe-A [71] 0.95 0.37 0.37
CNN+MLP [2] 0.66 0.28 0.44
CNN+RF [2] 0.74 0.25 0.36
mcDTSR [52] 0.88 0.26 0.29

starting point for this thesis. In [2], the features extracted with the first convolu-
tional layers of the Resnet-50 were used to train a random forest classifier, whose
hyperparameters were not totally optimized. The number of trees in the forest was
limited to 100 without limiting their depths. In order to avoid misclassification
of individual frames, a voting window with fixed size of 5 was used, which means
the final classification of each frame considered the results of two previous and two
following frames. They did not evaluate other voting window sizes. The threshold
of the probabilities of the class was the only parameter optimized by [2], leaving a
gap to be explored. For that, their results were first checked with an independent
implementation, then, some parameters were explored with a Bayesian optimizer
algorithm to help finding the best combination of trees, depth, voting window, and
threshold.

2.5 Conclusion

This chapter reviews the concept of anomaly detection and how it differs from the
object detection task. Different approaches to detect anomalies in videos were re-
viewed, including popular databases used to train and evaluate such systems. The
VDAO database and its testing set, the VDAO-200, both adopted by our work, were
presented. The evaluation metric DIS, used to benchmark results on the VDAO-200,
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was explained, and the approaches using the VDAO and their results were described.
Based on the work [2], the scheme shown in Figure 1.1 was modified resulting

in a new pipeline and is described in the next chapter. In the proposed pipeline, a
temporal alignment block is introduced to associate a reference frame with a target
one. A Bayesian optimizer block was also inserted into the pipeline so the best
hyperparameters can be used to train a random forest classifier.
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Chapter 3

Deep Learning-Based Anomaly
Detection

In this chapter a novel strategy used to extract, classify, and find the best parameters
to identify anomalous frames is described. Based on a reference video, without
anomalies, the process presented in this chapter is able to classify each frame of
an unseen video determining the presence or absence of anomalies. The first work
exploring features extraction with CNNs [2] in the VDAO database, described in
Chapter 2, was improved. With a similar structure, our results surpass the ones of
the aforementioned work, having the advantage of operating in real time. Figure 3.1
shows the processing stages covered in this chapter.

Figure 3.1: Pipeline proposed in this chapter. A pooling layer is used to reduce the
feature dimensions, and a hyperparameter optimization block is introduced to find
the best classifier configuration.

Initially, both target and reference videos are synchronized with a video align-
ment technique, which is presented in Section 3.1. Each pair of synchronized ref-
erence and target frames is then passed by a pre-trained feature extraction deep
neural network to produce a pair of deep-feature tensors. As proposed by [2], the
deep features are spatially reduced by a pooling operation. Then, these features
are subtracted producing a single tensor of features. The feature extraction module
is discussed in Section 3.2. In the classification phase, a random forest classifier is
trained to categorize the tensor of features as anomalous or not anomalous. The
hyperparameters of the classifier are found through an iterative hyperparameter op-
timization process. The classifier and the hyperparameter optimization blocks are
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covered in Section 3.3 and Section 3.4, respectively. To avoid data contamination, a
split of the videos into folds is necessary as described in Section 3.5. Two approaches
are used to optimize the hyperparameters. First, the same set of hyperparameters
is used by all folds. The other strategy is to obtain an optimized set of hyperparam-
eters for each fold. In the end, the results and conclusions are presented in Sections
3.7 and 3.8 respectively.

3.1 Temporal Video Alignment

Dynamic time warping (DTW) [3] is a very popular algorithm used to align two
temporal sequences. DTW has been widely applied to explore similarities in videos
[77] and audio signals [10]. Although DTW obtains a global optimal solution, it does
not necessarily obtain the best alignment for each individual sample [78]. Different
works suggest modifications in DTW in order to support specific applications. The
work in [79], for instance, proposes changes in the original DTW to correct the so-
called singularities, which occur when an undesirable behavior shows up during the
alignment. In some works, a singularity can appear when a single point on a time
series maps onto a large section of the other time series, as shown in Figure 3.2.

(a) (b)

Figure 3.2: Alignment of signals performed with DTW [3]. (a) signals to be aligned.
(b) alignment produced by DTW. Note that a short region of the continuous line
matches a large region of the dotted line. Images adapted from [79].

Not all works using the VDAO database applied DTW to align the frames. The
work in [80], for example, uses a maximum-likelihood approach based on the video
motion data to estimate when the robot reaches the end of the rectilinear track.
In that work, the authors consider that the robot is moving with a constant speed
along the track, until it reaches the end of its course. By knowing the initial and
final position of the robot, the frames in-between are properly aligned.

As our work considers [2] as baseline, it would be natural to use DTW as the
temporal alignment method. Nonetheless, a drawback of this method is that it
prevents the alignment from being performed in real time, once both signals have to
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be fully acquired beforehand. In practical cases, the anomaly must be detected as
soon as possible, and waiting for the whole target video to be acquired may preclude
real time applications.

To address this issue, our work proposes a very simple temporal alignment based
on a fixed-length sliding window that moves on the reference signal. By receiving a
target frame, our approach finds the most similar reference frame within a limited
region in the reference video.

Similarly to the standard DTW, we also consider that the first frame of the
target video is aligned with the reference video. For that, we developed a tool to
visually align the first frame of all target videos of the VDAO database with their
respective reference frame, as shown in Figure 3.3.

Figure 3.3: Tool developed to help the alignment frames of two videos. On the
left, the first frame of the trajectory of the robot regarding the target video obj-
sing-amb-part01-video02.avi is selected. On the most-right, a frame of the reference
video ref-sing-amb-part01-video02.avi is shown. In the center, the difference between
the target and reference frames is displayed. By navigating through the reference
frames and observing their difference images, it is possible to find the reference frame
that best matches the target frame.

Given a target video T , we visually prealign its initial frame T0 to its best
frame correspondence of the reference video R. Let us suppose that the best visual
correspondence of the target frame T0 is the jth frame of the reference video, so that
T0 → Rj as in Figure 3.4. The correspondence of the next target frame T1 in R is
found by measuring the distance of T1 with all frames within a window limited by
Rj−a and Rj+b, as detailed in Figure 3.5. The search window Wa,b limits the search
range for the best match. In summary, the alignment process of the videos can be
interpreted as finding the correspondence of a target frame Ti in R within window
centered in Rj with size (b+ a+ 1), such that Ti−1 → Rj−1.

By limiting the size of the window Wa,b = W5,5 (a = 5 and b = 5) to 11, we
set the search in a fixed region of 11 frames in the reference video. This way we
avoid the need to measure similarities in temporally distant frames. The window
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Figure 3.4: Initially, the target frame T0 is visually aligned with the jth frame in the
reference video (T0 → Rj).

Figure 3.5: Alignment of target frame T1 considering a search window Wa,b. The
alignment of a target frame T1 is performed by finding its best reference correspon-
dence within a search window Wa,b, centered in the frame Rj, which is the best
match of T1’s previous frame, so that T0 → Rj.

size equals to 11 was obtained empirically.
The similarity between a target and a reference frame was measured with the

Frobenius distance, defined as:

similarity(Ti, Rj) =

√√√√ M∑
x

N∑
y

(Ti(x, y)−Rj(x, y))2. (3.1)

Although the alignment method used in our work does not find the globally
optimal alignment as in DTW, it has some advantages:

• Real time: Differently from the standard DTW, our method does not demand
both signals to be fully acquired to start the alignment process. If that were
the case, one would have to wait for the complete acquisition of the target video
to start the alignment, leading to undesired delay in our anomaly detector.

• Frames may have inverted orders: as the alignment permits correspondences,
such that Ti → Rj and Ti+1 → Rz with z < j, two consecutive reference frames
may exchange positions. An example is shown in Figure 3.6. In practice, this
alignment compensates undesired movements of the robot and small camera
jitters during the video acquisition.
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Figure 3.6: Example matching the target frame T1 with reference frame Rj−2, which
is temporally behind the match of T0.

Differently than a neural network, where the samples are passed to the model in
batches, the random forest classifier needs to receive all training samples simulta-
neously to build the trees. Therefore, the temporal alignment was used separately
from the pipeline to align the training samples.

After the video synchronization, all frames of the training target videos are
matched with a frame of their corresponding reference video. Each pair of aligned
frames (Ti → Rj) is passed by a sequence of convolutional layers to have their
features extracted, and evaluated by a random forest classifier.

During the acquisition of some target videos, the robot moved along a wider
path. In consequence, some target videos show parts of the scenario that are not
present in the reference videos and vice versa. Thus, if the robot moved in a longer
path in a reference video than its associated target video, the far end frames of the
reference video are manually discarded. Consequently, all scenes in the target video
can be found in the reference video.

The number of aligned frames per video used for training is presented in Ta-
ble 3.1. About 23% of the frames are anomalous and 77% of the frames do not
contain anomalies. An auxiliary list containing the position of the aligned frames is
available online at [81].

Table 3.1: Number of frames per video in the VDAO database after temporal align-
ment.

# video anomalous not anomalous total
1 obj-sing-amb-part01-video01 1,732 (22%) 5, 987 (78%) 7,719

2 obj-sing-amb-part01-video02 1,884 (24%) 5,827 (76%) 7,711

3 obj-sing-amb-part01-video03 2,120 (27%) 5,596 (73%) 7,716

4 obj-sing-amb-part01-video04 821 (21%) 3,038 (79%) 3,859

5 obj-sing-amb-part01-video05 812 (21%) 3,045 (79%) 3,857

6 obj-sing-amb-part01-video06 1,488 (19%) 6,228 (81%) 7,716

7 obj-sing-amb-part01-video07 2,200 (29%) 5,514 (71%) 7,714

8 obj-sing-amb-part01-video08 1,200 (16%) 6,504 (84%) 7,704
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Table 3.1 – continued from previous page
# video anomalous not anomalous total
9 obj-sing-amb-part01-video09 1,933 (25%) 5,772 (75%) 7,705

10 obj-sing-amb-part01-video10 2,180 (28%) 5,529 (72%) 7,709

11 obj-sing-amb-part02-video01 1,946 (20%) 7,672 (80%) 9,618

12 obj-sing-amb-part02-video02 1,900 (20%) 7,744 (80%) 9,644

13 obj-sing-amb-part02-video03 428 (04%) 9,175 (96%) 9,603

14 obj-sing-amb-part02-video04 1,857 (19%) 7,777 (81%) 9,634

15 obj-sing-amb-part02-video05 1,808 (19%) 7,793 (81%) 9,601

16 obj-sing-amb-part03-video01 2,780 (29%) 6,829 (71%) 9,609

17 obj-sing-amb-part03-video02 1,534 (16%) 8,066 (84%) 9,600

18 obj-sing-amb-part03-video03 1,868 (19%) 7,735 (81%) 9,603

19 obj-sing-amb-part03-video04 505 (11%) 4,292 (89%) 4,797

20 obj-sing-amb-part03-video05 521 (11%) 4,275 (89%) 4,796

21 obj-sing-amb-part03-video06 2,395 (25%) 7,196 (75%) 9,591

22 obj-sing-amb-part03-video07 2,649 (28%) 6,968 (72%) 9,617

23 obj-sing-amb-part03-video08 3,170 (33%) 6,454 (67%) 9,624

24 obj-sing-amb-part03-video09 3,251 (34%) 6,341 (66%) 9,592

25 obj-sing-amb-part03-video10 2,167 (23%) 7,444 (77%) 9,611

26 obj-sing-amb-part03-video11 3,743 (39%) 5,852 (61%) 9,595

27 obj-sing-amb-part03-video12 1,092 (23%) 3,703 (77%) 4,795

28 obj-sing-amb-part03-video13 1,057 (22%) 3,734 (78%) 4,791

29 obj-sing-amb-part03-video14 1,213 (25%) 3,584 (75%) 4,797

30 obj-sing-amb-part03-video15 1,222 (26%) 3,567 (74%) 4,789

31 obj-sing-amb-part03-video16 2,272 (24%) 7,314 (76%) 9,586

32 obj-sing-amb-part03-video17 2,993 (31%) 6,616 (69%) 9,609

33 obj-sing-ext-part01-video01 1,744 (23%) 5,990 (77%) 7,734

34 obj-sing-ext-part01-video02 1,883 (24%) 5,878 (76%) 7,761

35 obj-sing-ext-part01-video03 2,135 (28%) 5,621 (72%) 7,756

36 obj-sing-ext-part01-video04 1,667 (22%) 6,065 (78%) 7,732

37 obj-sing-ext-part01-video05 1,494 (19%) 6,254 (81%) 7,748

38 obj-sing-ext-part01-video06 2,197 (28%) 5,530 (72%) 7,727

39 obj-sing-ext-part01-video07 1,234 (16%) 6,491 (84%) 7,725

40 obj-sing-ext-part01-video08 1,924 (25%) 5,803 (75%) 7,727

41 obj-sing-ext-part01-video09 2,236 (29%) 5,509 (71%) 7,745

42 obj-sing-ext-part02-video01 1,958 (20%) 7,653 (80%) 9,611

43 obj-sing-ext-part02-video02 1,906 (20%) 7,742 (80%) 9,648

44 obj-sing-ext-part02-video03 454 (05%) 9,153 (95%) 9,607
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Table 3.1 – continued from previous page
# video anomalous not anomalous total
45 obj-sing-ext-part02-video04 1,913 (20%) 7,694 (80%) 9,607

46 obj-sing-ext-part02-video05 1,807 (19%) 7,787 (81%) 9,594

47 obj-sing-ext-part03-video01 2,839 (30%) 6,757 (70%) 9,596

48 obj-sing-ext-part03-video02 1,514 (16%) 8,061 (84%) 9,575

49 obj-sing-ext-part03-video03 1,882 (20%) 7,708 (80%) 9,590

50 obj-sing-ext-part03-video04 1,032 (11%) 8,561 (89%) 9,593

51 obj-sing-ext-part03-video05 2,395 (25%) 7,197 (75%) 9,592

52 obj-sing-ext-part03-video06 2,610 (27%) 6,994 (73%) 9,604

53 obj-sing-ext-part03-video07 3,143 (33%) 6,454 (67%) 9,597

54 obj-sing-ext-part03-video08 3,315 (35%) 6,284 (65%) 9,599

55 obj-sing-ext-part03-video09 2,175 (23%) 7,416 (77%) 9,591

56 obj-sing-ext-part03-video10 3,756 (39%) 5,841 (61%) 9,597

57 obj-sing-ext-part03-video11 2,128 (22%) 7,448 (78%) 9,576

58 obj-sing-ext-part03-video12 2,279 (24%) 7,318 (76%) 9,597

59 obj-sing-ext-part03-video13 2,447 (26%) 7,132 (74%) 9,579

60 obj-sing-ext-part03-video14 2,975 (31%) 6,616 (69%) 9,591

Total 117,783 (23%) 386,128 (77%) 503,911

As it can be noted in Table 3.1, the training set contains more non anomalous
samples than anomalous ones. For training, the classes were balanced, so that the
number of samples of both classes are the same.

3.2 Extracting Features with Resnet-50

After AlexNet [26] won the ImageNet [82] challenge in 2012, the state-of-the-art
architectures have been growing deeper and deeper. More recent studies have shown
that not only depth, but also width and resolution can lead to better performance
[83]. Usually, the deeper the network gets, the more parameters the learning process
has to find, demanding more hardware memory. The trade-offs between efficiency,
depth and accuracy have been explored by different models [84, 85].

ResNet [4], a short name for Residual Network, is a deep CNN architecture in-
spired by the results obtained by deep models on the ImageNet dataset. Although
the deeper the models are, the better results they tend to produce [4], the prob-
lem of vanishing gradients is even more likely to occur in such cases. To overcome
this problem, ResNet architectures propose a bypass structure, also named as iden-
tity mapping, that combines features from shallower layers to deeper layers. Such
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mapping is presented in residual blocks along the layers of ResNets, as shown in
Figure 3.7.

Figure 3.7: Residual block (adapted from [4]).

The identity mapping F(x) + x takes the feature map x from a previous layer
and performs an element-wise addition with the F(x), the output of the stacked
layers. The element-wise addition requires the dimensions of x and F to be equal.
In cases where the previous layer dimensions do not match the output, usually a
1x1 convolution is applied in x, so it can have the same dimensions of F(x).

The original work Resnet released 5 architectures (Resnet-18, Resnet-34, Resnet-
50, Resnet-101, and Resnet-152), differing by the number of convolutional layers.
To keep consistency with our baseline work [2], and have comparable results, the
Resnet-50 architecture was also used in our work to extract features from both
reference and target frames.

Resnet-50 is 50-layer deep formed by 1 convolutional layer, 1 max pooling, 1
average pooling and 4 different stages. Each stage consists of repeated convolutional
layers and 1 identity block. Figure 3.8 shows the original structure of Resnet-50
architecture.

Instead of training the whole network from scratch to adjust over 26 million
trainable parameters [4, 84], a pre-trained Resnet-50 model with Imagenet [82] was
used. By using such pre-trained model, we eliminate the need of the long training
phase, which also demands a variety of training samples.

Our goal is straightforward: to obtain features from the aligned pair of frames
Ti → Rj by convolutional layers and let a classifier determine the existence of
anomalies in the frame Ti. Instead of using the total number of convolutional layers,
we investigate which layer can provide the most adequate features to our problem.
The spatial dimension of a feature map, given byWout and Hout, follows the relations
given by:

Wout =
W −Dw + 2P

Sw
+ 1, (3.2)

Hout =
H −Dh + 2P

Sh
+ 1, (3.3)

where Dw and Dh are the horizontal and vertical dimensions of the filter, respec-
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Figure 3.8: Original Resnet-50 architecture is formed by 50 layers, being 48 con-
volutional divided into 4 stages (here represented by different colors). Each stage
contains 3, 4, 6 and 3 residual blocks respectively. The arrows indicate the identity
mapping. The red outlined arrows indicate that the dimension of the feature map
increases and 1x1 convolutions are applied to make the dimensions match.

tively, W and H represent the horizontal and vertical dimensions of the input image
or feature map, P is the amount of padding, being 3, 1, or 0 in Resnet-50. The
stride step along horizontal and vertical directions is given by Sw and Sh respec-
tively. The stack of feature maps can be represented by a tensor of features, whose
depth is given by the number of convolutional filters. For example, if we consider a
201x201x3 (width, height, and channels) input image to be passed through the first
convolutional layer, composed by 64 7x7x3 filters with stride step 2 and padding 3,
the output tensor will have dimensions 101x101x64.

The work [2] evaluated tensors generated by 17 distinctive layers of the Resnet-
50. If the original frames of the VDAO with resolution 720x1280 were used, the
dimensions of the feature maps would be very high, making the training of the
classification step extremely costly, and requiring a lot of storage space. To work
around this issue, the authors from [2] reduced the input frame resolution by half in
each dimension (360x640) and average pooling layers were used in the end of each
output layer. Figure 3.9 shows the modified architecture including the extra average
pooling used to reduce the feature maps. In our work, for the sake of comparison,
we also evaluate the outputs produced by the same 17 layers considering the same
pooling sizes and the same input resolution.

A comparison of the feature map sizes extracted with and without pooling is
shown in Table 3.2. The pooling operation reduces the total number of features
drastically. In some layers the reductions were up to 99.9%.
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Figure 3.9: Modified Resnet-50 architecture proposed by [2]. After extracting the
feature maps from each point of the network, average poolings with different sizes
21× 21, 28× 28, 14× 14, or 7× 7) were used to reduce the number of features.

A popular CNN model that uses the same weights to work with two different
input is the so called siamese convolutional neural networks [86]. Given two different
inputs, they are passed by two identical CNNs to produce two feature tensors,
one for each CNN. These tensors are then compared by some loss function that is
able to distinguish how different the provided inputs are. Similarly to the siamese
convolutional neural networks, given a pair of aligned target and reference frames,
convolutional layers are used to extract features of a pair of images. In our case,
Resnet-50 convolutional layers are used as siamese networks, as they receive a pair
of reference and target frames and produces two feature tensors: one containing the
features of the reference frame, and the other containing the features of the target
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Table 3.2: Dimensions of feature tensors in the format channels, height, width
produced by different Resnet-50 layers given an RGB input frame of dimensions
360x640x3. The modified version (on the right) introduces a pooling layer to reduce
the spatial dimension of the feature maps.

original Resnet-50 modified Resnet-50 [2]

layer output
dimension

total
features

pooling
size

output
dimension

total
features

conv 1 64× 180× 320 ∼ 3.68 M 20× 20 64× 9× 16 9,216
residual 1 256× 90× 160 ∼ 3.68 M 30× 32 256× 3× 5 3,840
residual 2 256× 90× 160 ∼ 3.68 M 30× 32 256× 3× 5 3,840
residual 3 256× 90× 160 ∼ 3.68 M 30× 32 256× 3× 5 3,840
residual 4 512× 45× 80 ∼ 1.84 M 15× 20 512× 3× 4 6,144
residual 5 512× 45× 80 ∼ 1.84 M 15× 20 512× 3× 4 6,144
residual 6 512× 45× 80 ∼ 1.84 M 15× 20 512× 3× 4 6,144
residual 7 512× 45× 80 ∼ 1.84 M 15× 20 512× 3× 4 6,144
residual 8 1,024× 23× 40 ∼ 0.94 M 23× 20 1,024× 1× 2 2,048
residual 9 1,024× 23× 40 ∼0.94 M 23× 20 1,024× 1× 2 2,048
residual 10 1,024× 23, 40 ∼0.94 M 23× 20 1,024× 1× 2 2,048
residual 11 1,024× 23, 40 ∼0.94 M 23× 20 1,024× 1× 2 2,048
residual 12 1,024× 23, 40 ∼0.94 M 23× 20 1,024× 1× 2 2,048
residual 13 1,024× 23, 40 ∼0.94 M 23× 20 1,024× 1× 2 2,048
residual 14 2,048× 12, 20 ∼0.49 M 12× 10 2,048× 1× 2 4,096
residual 15 2,048× 12, 20 ∼0.49 M 12× 10 2,048× 1× 2 4,096
residual 16 2,048× 12, 20 ∼0.49 M 12× 10 2,048× 1× 2 4,096

frame. As suggested in [2], after the average pooling operation, an element-wise
subtraction is applied on the reference and target feature tensors and the result is a
single feature tensor.

In this chapter, considering the pooling and subtraction operations applied in the
deep features, we want to investigate which layer of the Resnet-50 is able to produce
the best discriminative features for a random forest classifier to distinguish if the
target frame Ti is anomalous or not. During the attainment of the feature maps, a
massive amount of data is extracted and stored. The subtracted deep features of
the 17 sections of the Resnet-50 represent a massive amount of data, requiring 245
GB of storage space.

Next section covers the classification step performed on the feature maps.

3.3 Random Forest for Image Classification

Ensemble-learning methods use multiple learning models to construct a set of hy-
potheses to improve the performance of a regression or classification problem [87].
Experimental evidences have shown that ensemble methods are more accurate if

33



compared to methods that use a single hypothesis [88, 89]. Random forest is an
ensemble method that combines tree predictors, such that each tree depends on
the values of features randomly sampled. Its generalization error converges as the
number of trees in the forest increases and depends on the classification strength of
each individual tree [76]. The final prediction is obtained by the combination of the
results of the trees in the forest.

Random forest classifiers are widely used in computer vision problems involv-
ing different tasks. Reference [90] successfully predicts 3D positions of body joints
using a random forest classifier to categorize pixels of a depth-image. In [21], the
problem of matching feature points was solved with a classification technique. They
showed that random forest classifier is more efficient for the keypoint recognition
problem in comparison to k-means and nearest neighbor classifiers. The work in [91]
employed features obtained by sub-windows at arbitrary positions and scales using
random forest to classify images, outperforming k-means in training and testing
time, memory consumption, and classification accuracy.

An advantage of the random forest among other classifiers is the fact that only
few hyperparameters have to be set during the training. Instead of using the default
values used by [2], in this work we make a guided search to tune the following
hyperparameters:

• Maximum number of trees: as the random forest classifier is an ensemble
of decision trees, the number of trees in the forest can be adjusted. The work
in [92] states that there is a limit beyond which increasing the number of trees
does not result in better accuracy, and a larger number of trees in a forest may
only increase its computational cost.

• Maximum depth allowed: The deeper the trees are, the more splits they
may have and, consequently, the ability to capture more information about
the data is increased [93].

• Threshold: As the random forest is an ensemble of trees, the predicted class
probabilities of an input sample are computed as the mean predicted class
probabilities of all the trees in the forest. By default, a random forest classifier
labels a frame as anomalous if the predicted probability of belonging to the
anomalous class is greater than or equal to 0.5. In this work, the threshold for
the predicted class probabilities is considered a hyperparameter to be adjusted.

• Voting window: As this solution should be applied to videos, and a frame-
based classifier is being used, to eliminate the misclassification of a small num-
ber of frames in a group of consecutive frames, a voting window considers the
results of consecutive frames. The voting window hyperparameter is adjusted
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apart from the random forest classifier as it is not related to the classifier. The
intention of using this voting window is to eliminate false predictions.

To form a final optimal classifier, it is necessary to find the best combination
among the four hyperparameters aforementioned. Practical experiments were per-
formed to define limits of each hyperparameter as shown in Table 3.3.

Table 3.3: Ranges of values used by the hyperparameter tuning.

parameter minimum limit maximum limit
trees 1 210

max depth 1 150
threshold 0.4 0.6

voting window 0 100

In the next section the method used to search for the best hyperparameters will
be described.

3.4 Hyperparameter Optimization

Classification models usually have many hyperparameters to be adjusted. It can
be a challenging task to choose the right values when the number of degrees of
freedom is high [94]. The most popular approaches to fine-tune the parameters are:
grid search [95, 96], randomized search [97, 98] and Bayesian optimization methods
[99–101].

The work in [97] investigates the hyperparameter optimization using grid search
and randomized search. It states that randomly chosen trials are more efficient
for hyperparameter optimization than grid search and that Bayesian optimization
methods are more promising due to the weights it gives to each dimension.

In this work, as there are 4 hyperparameters to be tuned (trees, max depth,
threshold, and voting window size), for each one of the 17 Resnet-50 layers used to
obtain the features (see Figure 3.9), we decided to apply the Bayesian optimization
due to its robustness and also it does not require much supervision [99, 100, 102]
nor hyperparameters adjustments.

Bayesian optimization is an iterative process that constructs a posterior distri-
bution of functions to best describe a function to be optimized. In each iteration,
a different combination of parameters is tested by the model, improving the poste-
rior distribution. A Bayesian process is used to decide the next evaluation points
based on the exploration-exploitation trade-off. Along the process, the algorithm
becomes more certain of which regions in the parameter space are worth exploring.
The Bayesian optimization process used in this work follows the implementation

35



in [102], which considers a Gaussian process (GP) to express assumptions of the un-
known classification function that we want to optimize. This implementation follows
the work in [100].

As the number of iterations is undetermined, we allowed the Bayesian opti-
mization to explore 1,000 combinations of parameters for each layer. During each
iteration, a different combination of parameters (trees, max depth, threshold and
voting window) is evaluated by the optimizer.

The videos were separated into 9 folds, each having their own training, valida-
tion and testing sets. The Bayesian optimization process was performed in each
validation fold independently as it will be explained further in Section 3.5.

Since the robot speed is relatively slow, consecutive frames are very similar. To
avoid using a high number of similar frames to train the classifier, we decided to
sample the training frames skipping every 17 frames of the training videos. Also,
as shown in Table 3.1, the number of positive pairs Ti → Rj (where Ti contains
anomalies) in the training set is proportionally less than the number of negative
pairs Ti → Rj (where Ti do not contain anomalies), thereby, the quantity of samples
of both classes (anomalous and not anomalous) was balanced.

Before presenting the methodology used to compute the results obtained by
each layer, next section details the methodology used to separate the samples into
training, validation and test sets.

3.5 Database Subdivision

Historically, previous works that used the VDAO database [2, 52, 70–72, 80, 103, 104]
compare their results using the VDAO-200 testing database. As already cited in Sec-
tion 2.3.1, 59 out of the 60 single-object videos of the VDAO database are presented
in the VDAO-200 testing set. To avoid contaminating the training set with videos
from the testing set, we split the samples into folds and perform cross-validation in
each fold to find the hyperparameters for our models using the validation samples.

As there are nine classes of objects in the VDAO database, initially the videos
are separated into nine folds. Each fold is characterized by the class of the object
left out. In other words, the fold Fshoe represents the fold containing the videos
with all objects but the shoe, which is left out for testing. Thus, the videos with
the object shoe does not influence the training nor the validation of the fold Fshoe.
Table 3.4 contains the classes of objects used in all folds.

Inside each fold, a cross-validation process is run considering the proportion of
7:1 (videos of seven objects for training and videos of one object for validation).
This proportion was obtained after experimenting different proportions (7:1, 6:2,
5:3 and 4:4). Our experiments revealed that the closest results between training
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Table 3.4: Folds containing videos of each class. Each one of the 9 folds contains
videos of 8 classes, leaving one class out, which is used exclusively for testing.

Folds black
backpack

black
coat

brown
box

camera
box

dark-blue
box

pink
bottle shoe towel white

jar
Fblack backpack 7 3 3 3 3 3 3 3 3

Fblack coat 3 7 3 3 3 3 3 3 3

Fbrown box 3 3 7 3 3 3 3 3 3

Fcamera box 3 3 3 7 3 3 3 3 3

Fdark-blue box 3 3 3 3 7 3 3 3 3

Fpink bottle 3 3 3 3 3 7 3 3 3

Fshoe 3 3 3 3 3 3 7 3 3

Ftowel 3 3 3 3 3 3 3 7 3

Fwhite jar 3 3 3 3 3 3 3 3 7

and validation are obtained with the proportion 7:1, as it uses more objects for
training. Table 3.5 illustrates the division of the videos into training and validation
inside the fold Fwhite jar. Each column of the table represents the classes of objects
used in this fold. By omitting the object white jar (restricted for testing), among the
eight remaining objects, there are eight possible sets considering seven classes for
training and one class for validation. Applying the same idea to all nine folds, there
is a total of 72 sets (9 × 8 = 72) considering seven classes of objects for training,
one class for validation and one for testing.

The training and validation samples of each set are used by the Bayesian op-
timization process to find the best hyperparameters to produce the final random
forest classifier used for testing. The training samples are used to train a random
forest classifier, which is evaluated in its corresponding validation samples. This
way, the iterative Bayesian optimization process aims to find the best hyperparam-
eters (trees, depth, threshold and voting window) by evaluating a set of classifiers
given validation samples. Once the Bayesian optimization process is completed,
the hyperparameters associated to the best result are used to train a final classifier
with both training and validation samples. The final classifier is then evaluated
on the testing samples. In next section, the iterative process used by the Bayesian
optimization process is explained, and the computation of the results is clarified.
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Table 3.5: Objects used in the videos to train and validate for the fold Fwhite jar.
The videos with the target object (white jar) are left out and will be used in the
test only.

sets black
backpack

black
coat

brown
box

camera
box

dark-blue
box

pink
bottle shoe towel

1 validation training training training training training training training
2 training validation training training training training training training
3 training training validation training training training training training
4 training training training validation training training training training
5 training training training training validation training training training
6 training training training training training validation training training
7 training training training training training training validation training
8 training training training training training training training validation

3.6 Performance Assessment

This section is dedicated to explain how the results are evaluated during the valida-
tion and testing phases.

The cross-validation process is utilized to select a collection of hyperparameters
(amount of trees, depth, threshold and voting window) to train a random forest
classifier, which will be evaluated on testing samples. As previously explained, the
database is split into nine folds, each containing videos of one object to be used in the
testing phase, and the remaining objects are separated into training and validation
sets. Regarding the application of the hyperparameters to be used in the testing
samples of each fold, in this work we considered two approaches:

• approach A: the same set of hyperparameters is shared among all final classi-
fiers used for testing in all folds.

• approach B: each final classifier used for testing uses a specific set of hyperpa-
rameters selected especially for each fold.

Approach A involves the generation of 9 distinct classifiers, but they all use the
same hyperparameters. In this strategy, the searching process of the unique hyper-
parameters involves a single run of the Bayesian optimization process considering
72 sets, being eight sets for each fold.

Approach B also involves the generation of nine distinct classifiers, each trained
with specific hyperparameters found independently by the Bayesian optimization
process. In this approach, the proportion 7:1 was used (videos of 7 objects are used
for training and videos of 1 object are used for validation). To obtain the classifier
used to test the object white jar, for instance, all sets of Table 3.5 were used.

The iterative Bayesian optimization process applied in the cross-validation stage
carries the selection of such hyperparameters. The scheme in Figure 3.10 illustrates
the cross-validation process considering a total of s sets.
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Figure 3.10: Scheme representing the selection of the hyperparameters with cross-
validation. The hyperparameter optimization process provides four hyperparame-
ters. In each set (in a total of s) classifier is trained with the provided hyperpa-
rameters, evaluated on its respective validation set. The individual results of each
set (TPi, FPi, TNi and FNi) are used to compute the DISoverall metric, which is fed
back to the hyperparameter optimization process.

Each set i uses the hyperparameters provided by the Bayesian optimizer to train
a random forest classifier with its respective training samples. Then, the classifier of
each set i is evaluated on its respective validation samples, producing four results:
TPi, FPi, TNi and FNi, being, respectively, the total number of true positive (TP),
false positive (FP), true negative (TN) and false negative (FN) frames computed
in all validation videos of the set i. The results of all sets are combined by the
DISoverall metric and fed back to the Bayesian optimizer, which will provide new
hyperparameters. In this work we repeated this loop 1,000 times and selected the
hyperparameters that provided the best DISoverall metric to produce the final random
forest classifier to be used in the testing phase.

The assessment of a classifier is measured with the DISoverall metric, which con-
siders all frames of all evaluated videos, and is the same metric applied in [2]. The
TPR and FPR used to calculate the DIS in Equation (2.7) accounts the total amount
of TP, FP, TN and FN frames in all evaluated videos considering the s sets, and is
given by

TPR =

s∑
i=1

TPi
s∑
i=1

(TPi + FNi)
(3.4)

and

FPR =

s∑
i=1

FPi
s∑
i=1

(FPi + TNi)
, (3.5)
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where s is the total amount of sets,
s∑
i=1

(TPi+FNi) is the number of positive ground-

truth frames in all s sets and
s∑
i=1

(FPi+TNi) is the number of negative ground-truth

frames in all s sets.
Finally, the DISoverall is computed by plugging Equations (3.4) and (3.5) into

Equation (2.7), which becomes

DISoverall =

√√√√√√√
(

1−

s∑
i=1

TPi
s∑
i=1

(TPi + FNi)

)2

+

( s∑
i=1

FPi
s∑
i=1

(FPi + TNi)

)2

. (3.6)

.
By using the TPR and FPR (Equations 3.4 and 3.5, respectively) to calculate

the DIS (see Equation 2.7), the obtained result is similar to concatenating every
video in the validation sets to form a single video and calculates a unique DIS for
this longer video.

In approach A, the selection of the hyperparameters illustrated in Figure 3.10
is performed uniquely for all nine folds. Thus, a total of 72 sets (s = 72) are
evaluated in each iteration of the Bayesian process using the proportion 7:1 (videos
of seven objects for training and videos of one object for validation). The advantage
brought by this approach is to use the same hyperparameters to create all final
classifiers evaluated on the testing samples of each fold. However, in each iteration
of the validation process, approach A considers all possible 72 folds to compute a
DISoverall metric to be fed to the Bayesian optimization, and the final result takes
into consideration all object classes producing somehow contaminated results.

In approach B, the selection of the hyperparameters illustrated in Figure 3.10
is performed once for each fold. Therefore, the cross-validation process is run nine
times (one for each fold) consisting of eight evaluation sets (s = 8) in each iteration
of the Bayesian process. See Table 3.5 as a reference for fold Fwhite jar. In approach B,
the validation phase for each fold is run independently, being very time-consuming.

In this work, results of approaches A and B will be presented.
When the Bayesian optimization finishes all 1, 000 iterations, the set of parame-

ters which obtained the lowest DISoverall among all iterations is considered the best
set of hyperparameters. In the testing phase, for each fold (Fshoe, Fwhite jar, etc), a
random forest classifier is trained using the best set of hyperparameters found in
the validation phase. As explained in Section 3.5, in each fold videos of one class
are left out for testing. Therefore, the random forest classifier used for testing in
fold Fshoe is trained with videos of 8 classes (black backpack, black coat, brown box,
camera box, dark-blue box, pink bottle, towel, and white jar). The videos of the
class shoe from the VDAO-200 dataset are used for testing. The DISoverall value
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considered as the final testing result is obtained with Equation (3.6).
In the next section, the hyperparameters obtained by the Bayesian optimization

for approaches A and B will be presented, as well as the results in the validation
and testing sets.

3.7 Experimental Results

In this section the results obtained by the proposed pipeline shown in Figure 3.1
are discussed. The best hyperparameter sets obtained by each layer during the
validation phase, and the performance achieved for each layer in the testing sets is
also presented.

Before presenting the results with the proposed pipeline, we first compared the
results in a reduced version of pipeline using two types of pooling operations: average
pooling and max pooling. In this initial experiment, the hyperparameter optimizer
was not used and the goal is to verify if a max pooling operation reaches better
results than the average pooling suggested by [2]. Thus, for each layer, the two
types of pooling operations were used to train a random forest classifier with fixed
hyperparameters considering 100 trees, fixed threshold equals to 0.5, unlimited max-
imum depth, and no voting window was considered. As in this experiment there
was no hyperparameter tuning, the validation set was not used, and in each fold
eight objects were used to train the classifier and one object was used for testing.
The DIS metric was used to compare the results obtained in the testing set which
are presented in Table 3.6.

As it can be noted in Table 3.6, the average pooling operation obtained better
results in 15 layers and in only two deep layers the max pooling performed better.
Therefore, we opted to continue using the average pooling in our pipeline and not
using the max pooling.

Now, considering the full pipeline with the average pooling operation and the
hyperparameter optimization used in the cross-validation, 1,000 iterations were per-
formed. The hyperparameter set which obtained the best DIS value was used to
train the final classifier used for testing. As explained in the previous section, the
approaches A and B are going to be evaluated.

3.7.1 Results with Approach A

The cross-validation performed by approach A aims to find a unique set of hyperpa-
rameters used to test the final classifiers in all nine folds and, therefore, is computa-
tionally less expensive than approach B. Thus, in this approach, the random forest
classifier is trained using the scheme from Figure 3.10 and the cross-validation is
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Table 3.6: Comparative DIS values obtained in the testing sets with features output
by each Resnet-50 layer and reduced with average pooling and max pooling opera-
tions. The hyperparameters were not optimized, having the same values in [2]. The
results are calculated with Equation (3.6).

avg pooling max pooling
conv 1 0.3933 0.4443

residual 1 0.3941 0.4830
residual 2 0.3927 0.4891
residual 3 0.3881 0.5290
residual 4 0.4192 0.5574
residual 5 0.4002 0.5238
residual 6 0.3972 0.5372
residual 7 0.4187 0.5265
residual 8 0.5062 0.5639
residual 9 0.5190 0.5886
residual 10 0.4915 0.5457
residual 11 0.5032 0.5391
residual 12 0.4989 0.5273
residual 13 0.5172 0.5307
residual 14 0.5287 0.5164
residual 15 0.5103 0.5201
residual 16 0.5322 0.5239

applied once for all folds. The hyperparameters, validation and testing DIS values
for each layer are shown in Table 3.7. The evolution of the cross-validation process
is shown in Figure 3.11.

Regarding the validation results, it is evident from Figure 3.11 that the first seven
layers (conv1, residual1, residual2, residual3, residual4, residual5, and residual6)
obtained the best results. Also, it is noticeable that as better combinations are
being found throughout the process, the DIS decreases. For most of the layers, the
most expressive reductions of the DIS occur before iteration 400. Layer residual 3
is the layer that reached the best results in both validation and testing sets.

In Figure 3.12, another way to represent the evolution of the cross-validation
results obtained by layer residual 3 can be seen. It is noted that in the first itera-
tions the optimizer explores parameters that do not obtain the best overall results.
When new combinations are explored, the Bayesian optimizer tends to use improved
combinations of hyperparameters and, therefore, the DIS tends to keep low in the
last iterations.

For each layer, a different Bayesian optimization was run and the best combina-
tion of parameters found per layer are presented in Table 3.7. The same configuration
of hyperparameters found during the cross-validation was applied in the testing set.
Table 3.7 also contains the results obtained for each layer in the testing set. As it
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Table 3.7: Results obtained with approach A for all layers with average pooling,
where the cross-validation selects a unique set of hyperparameters to be used for all
folds. The DIS values were calculated with Equation (3.6).

hyperparameters

# layer trees max
depth threshold voting

window
DIS

validation
DIS
test

1 conv1 143 111 0.54 27 0.3846 0.3856
2 residual 1 175 94 0.49 28 0.3872 0.3542
3 residual 2 144 88 0.49 10 0.3758 0.3630
4 residual 3 152 148 0.51 28 0.3584 0.3500
5 residual 4 176 31 0.41 31 0.3853 0.3976
6 residual 5 170 92 0.46 22 0.3762 0.3724
7 residual 6 179 91 0.45 38 0.3634 0.3713
8 residual 7 92 88 0.45 28 0.3716 0.3845
9 residual 8 15 135 0.47 30 0.493 0.4831
10 residual 9 82 10 0.42 18 0.4887 0.5064
11 residual 10 94 10 0.42 27 0.4617 0.4757
12 residual 11 113 15 0.42 19 0.4656 0.4893
13 residual 12 169 17 0.41 20 0.4792 0.5021
14 residual 13 142 25 0.44 15 0.4768 0.4895
15 residual 14 89 29 0.46 14 0.509 0.5144
16 residual 15 150 49 0.49 11 0.4965 0.5216
17 residual 16 83 33 0.47 14 0.5074 0.5280

can be noted, the results in validation and testing sets of the 4th layer (residual 3)
surpass all the other layers, with a DIS of 0.3584 and 0.35 respectively. The last
layer (residual 16) obtained the worst result with a DIS of 0.5280 in the test set.

A graphical comparison between the validation and testing results of all layers
is shown in the Figure 3.13. The limits highlighted by the blue shadow represent
the standard deviation obtained in the validation set. The testing results are within
the standard deviation limits. The standard deviation presented in Figure 3.13 was
calculated among the DIS obtained by the 72 validation sets.

3.7.2 Results with Approach B

Considering approach B, the results were evaluated for the layer which obtained the
best results with the average pooling: the residual 3. The hyperparameters found for
each fold were obtaining training random forest classifiers using the scheme shown
in Figure 3.10 and are shown in Table 3.8.

In this approach, the Bayesian optimizer was run independently for each fold
and, therefore, different hyperparameters were found for each fold. Thus, for each
type of object left in the scene, a specific classifier was trained. The number of trees
is the parameter that presented the highest variation among all folds. By computing
the DISoverall using Equation 3.6, which gathers the classification results of all videos
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Figure 3.11: Best results obtained by the Bayesian optimization during the cross-
validation process for all layers. The gap existing between DIS=0.39 (residual 1
layer) and= DIS=0.46 (residual 9 layer), in the last iteration, makes evident the
difference of quality of features generated by shallower and deeper layers. The best
results (lowest DIS) are obtained by shallower layers.

Table 3.8: Hyperparameters obtained with approach B for the best layer (residual
3), with features reduced with average pooling. As the cross-validation was run
independently for each fold, individual hyperparameters are obtained for each fold.

hyperparameters

fold trees max
depth threshold voting

window
Fblack backpack 17 140 0.41 12
Fblack coat 145 145 0.45 10
Fbrown box 30 134 0.53 18
Fcamera box 50 128 0.52 38
Fdark-blue box 40 130 0.42 25
Fpink bottle 52 125 0.58 1
Fshoe 35 99 0.43 19
Ftowel 55 141 0.52 22
Fwhite jar 135 148 0.57 13

in a single metric, the DISoverall in the testing set is 0.3795.
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Figure 3.12: DIS values obtained along the iterations during the cross-validation of
the 4th layer (residual 3) in approach A. Each square represents the DIS obtained
by a random forest classifier with a different set of hyperparameters. The best 10
results are outlined in blue.

Figure 3.13: Results obtained by each layer in the validation and testing sets. The
blue region represents the standard deviation among the DIS obtained by the 72
validation sets.
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3.8 Conclusions

This chapter presented the methodology and results obtained by fine tuning a ran-
dom forest classifier able to distinguish anomalous frames of the VDAO database.
The baseline work proposed by [2] was modified in the following parts:

• Replace the DTW algorithm used to align the frames by a new one, able to
run in real time. With the proposed algorithm, we eliminate the need to wait
for the testing video to be fully acquired.

• A Bayesian optimizer was used to find the best combination of four hyperpa-
rameters (amount of trees, max depth of trees, threshold and voting window).

• The best set of hyperparameters to produce a final classifier to be applied in
the testing sets was chosen through two cross-validation approaches. Approach
A obtains a unique set of hyperparameters for all classifiers and are applied in
the testing sets of all folds, while approach B finds one set of hyperparameters
per fold.

By the obtained results, we concluded that:

• The application of a simpler technique to align the frames temporally, allowing
real-time classification of the frames, did not compromise the results.

• Using a random forest classifier with Resnet-50 features yields a powerful clas-
sification method well adapted to detect anomalies in the VDAO database.

• The Bayesian optimizer does not require several adjustments to run and proved
to be a useful tool to find the best hyperparameters for our model.

• The average pooling operation suggested by [2] obtained better results than
a max pooling operation in 15 layers. For that reason the average operation
was used in the pooling module of our proposed pipeline.

• Even though approach A is less burdensome to run (as only one cross-validation
process is required for all folds), there is a data leaking between training and
testing sets.

• Approach A produced better results than approach B, which was not affected
by data leaking between training and testing sets. Being DISoverall = 0.35 the
result obtained by approach A and DISoverall = 0.3795 the result of approach
B.
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• Shallower layers obtain the best results in validation and in test sets. This
could be explained due to the fact that features produced by shallower layers
are related to high level features (such as borders and salient edges), and the
channel-wise subtraction of the reference and target feature maps accentuates
the spatial differences.

• The 4th layer (residual 3) obtained the lowest DIS, performing better than all
other layers. The same conclusion was observed by [2].

• The results obtained by fine tuning the model surpass the results obtained by
the previous work [2], modifying the DIS in the testing set from 0.36 to 0.35.

• The experiments described in this chapter allowed a better comprehension and
performance of the proposed system.

Besides the robustness of the random forest classifier and the hyperparameter
tuning approach, the results were not significantly improved in comparison to the
work in [2]. The aggressive spatial reduction of the features with the average pooling
suggested that a better selection of the features might improve the performance of
the classifier. In the next chapter, a feature selection technique was added into the
pipeline replacing the average pooling used in the current chapter.
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Chapter 4

Deep Features Selection with PCA
and Classification with Random
Forest

As described in the previous chapter, the pooling layer suggested by [2] reduces 99%
of the features output by the Resnet-50 (see Table 3.2). In the current chapter, the
pipeline presented in Chapter 3 is modified. The pooling layer is removed and two
new blocks are introduced. The feature reduction process is now performed with
principal component analysis (PCA), and the criterion used to select the features
is based on their variances, also referred to as energy criterion. Due to the com-
putational complexity, different types of PCA are computed and their results are
compared.

The pipeline in Figure 4.1 illustrates the classification process of the target frames
with the new approach. Similarly to the previous pipeline, the aligned frames pass
through the Resnet-50, and their output features are obtained. Instead of reducing
both feature tensors with the pooling operations, they are now subtracted before
being reduced. The PCA, which is represented by two processes, transforms the
features into a new basis composed by the principal components (PC), and the
features with the highest variances are selected. Finally, the random forest classifier
performs the anomaly detection task based on the selected features.

Figure 4.1: Pipeline proposed in this chapter using PCA to transform the features
into a new basis composed by the principal components (PC), and a selection crite-
rion determines the features used by the classifier.
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Section 4.1 briefly reviews relevant works applying PCA to reduce dimensionality
and describes three PCA algorithms, that we refer to as: the traditional PCA, the
separable PCA, and the incremental PCA. The subsequent Section 4.2 includes
experimental results using PCA to transform and select deep features, which are
used to train the classifier. Finally, in Section 4.3, the results are compiled and
conclusions are presented.

4.1 Feature Selection with PCA

Feature selection techniques have been widely applied to different tasks involving
machine learning. Selecting a subset of relevant features is important in cases where
high dimensional features are available. The three main problems that feature selec-
tion helps solving are pointed by [105]: the curse of dimensionality, overfitting, and
data storage. The former refers to the phenomenon of the data becoming sparse as
the dimension of data is increased, thus affecting the effectiveness of algorithms de-
signed for low dimensional data. In such cases, although data is represented in high
dimensions, the relevant information needed by the learning model is concentrated
in only a few dimensions. This may also lead to the second mentioned problem,
overfitting, which frequently occurs in models with more parameters than can be
justified by the data, having their performance affected in unseen data. The latter
issue involves the memory required to store high dimensional data and the compu-
tational costs for data processing, which can be prohibitive specially in video related
applications.

Algorithms dealing with high dimensional data benefit from feature selection
techniques, whose goals include reducing computational time, building simpler and
understandable data, and describing the input data in an efficient way, so more
comprehensive and lighter models can be used [105, 106].

PCA is a powerful tool to reduce the dimensionality of data, being present in
areas such as image compression [107], face recognition [108, 109], data visualiza-
tion [110, 111], data retrieval [112, 113], etc. The popular works [8, 114] were the
first published works to use the Karhunen-Loeve transform to represent human faces
efficiently through PCA. The eigenvectors, obtained from the covariance matrix gen-
erated from a set of images containing human faces, are used to represent the set
of human faces as ghost-like images, called eigenfaces. Each image from the dataset
can then be retrieved as a linear combination of the eigenvectors. The term eigenface
first appeared in the work in [115] and was used to represent the eigenvectors, which
form the basis of all face images in the set. By measuring the distance between the
projected face images of two distinct individuals into the eigenfaces, the method is
able to indicate if both faces belong to the same individual.
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In the medical field, data is usually represented by multi-spectral images in a high
dimensional space. The work in [7] applied PCA in structural magnetic resonance
neuro images to reduce the dimensionality of the samples, which are used by an SVM
classifier to identify Alzheimer’s disease in patients. The work in [116] used PCA
to reduce the dimensionality of deep features obtained from computed tomography
(CT) images of lungs before classification. By selecting only 3.3% of the features,
PCA was able to reduce the training time of the model and reached 97.92% accuracy,
a little less than the 98.74% of accuracy if all features were used. To detect brain
tumor in magnetic resonance images, the works [117, 118] used PCA for feature
selection. In [117], PCA was also able to separate lesion areas from brain images,
and the remaining areas were classified into one of seven types of brain diseases,
reaching an accuracy of 96%.

Hyperspectral images aggregate spatial and spectral information in different
wavelengths, being widely applied in satellite images with applications in agriculture,
defense, topography, botany, etc. Such images involve a large number of features,
which are usually selected before being processed. The work in [119] used PCA to
reduce the dimensionality of hyperspectral data, retaining only key features of aerial
images. To achieve real-time performance, the work in [120] used an incremental
PCA to reduce bands of hyperspectral images, reducing the processing time by about
17%. In [121], three different datasets were used to incorporate spatial and spectral
information using PCA, reducing the amount of redundant information captured in
different wavelengths.

Extracting features from images with deep CNNs also produces high dimensional
features, which increases memory usage, as well as training and inference time. The
work in [122] investigates the application of PCA to deep features, measuring the
memory consumption and accuracy in image classification problems with SVM. In
their experiments, the PCA algorithm not only reduced the dimension of image
features and computational time, but also improved the classification accuracy.

Motivated by the success of the vast amount of works using PCA, we will explore
the application of PCA in the deep features output by the 4th layer of the Resnet-
50, which are used to classify the VDAO frames. Before presenting the application
of PCA in the context of this work, a brief explanation of the traditional PCA
algorithm is provided, and the complexity involved in such method is discussed. Two
alternative approaches to compute the PCA transform are presented afterwards: the
separable PCA and the iterative PCA.
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4.1.1 Traditional PCA Transform

The goal of PCA is to identify the most meaningful basis to represent data. For that,
a transformation matrix P is computed. In the traditional PCA transformation, also
referred to as Karhunen-Loeve transform (KLT) and holistic PCA [109], an m × n
image I is first changed to a one-dimensional vector x ∈ Rd×1, where d = m × n.
The set of N samples X = {x1,x2, ...,xN} is used to calculate the covariance matrix
or scatter matrix S, which is given by

S =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T , (4.1)

where x̄ is the mean vector of all N images.
Each image I contains a total of d pixels and the covariance matrix S ∈ Rd×d is

a symmetric positive semi-definite matrix. Thus, its eigenvalues {λ1, λ2, ..., λd} are
all real and non-negative, and its eigenvectors {v1,v2, ...,vd} are orthogonal.

The set of the eigenvectors of matrix S forms the new basis, where the samples
will be projected to. The higher the eigenvalue, the higher the variance of the data
is along the direction of its associated eigenvector. Therefore, the eigenvalues are
ordered in such a way that {λ1 ≥ λ2 ≥ ... ≥ λd}, so the variance of the transformed
data is greater in the vi direction than in vi+1 direction.

The transformation of X into Y by matrix P is represented by

Y = PX. (4.2)

The PCA algorithm is implemented when the transform matrix P is composed
column-wise by the ordered unitary eigenvectors {v1,v2, ...,vd}, which in this case
are also referred to as the principal components (PCs).

As the basis vectors are ordered by their eigenvalues, each successive dimension of
the resulting matrix Y, represented by its rows, is ranked according to variance. So,
instead of representing the transformed data with all d dimensions (all rows of Y),
it is possible to leave only the dimensions of the data with the highest variance. The
cumulative variance, also referred to as energy e, is used to eliminate the dimensions
of the data, whose energy are below a certain energy threshold, that is

e =
d∑
i=1

λi. (4.3)

In summary, PCA is a transformation of the data X by a linear combination of
its basis vectors. The transformation is performed by matrix P, made of the ordered
unitary eigenvectors of the covariance matrix S. Geometrically, P can be seen as a
rotation and scaling transformation matrix. The transformed data can be expressed
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by its first dimensions (first rows of Y), where most of the data energy is contained.

Computational Complexity Involved in Computing the Traditional PCA
Approach

Although PCA can be applied to all types of features, the computational complexity
to compute its transformation matrix increases drastically as the dimension of the
data [123] increases. In the case of our feature tensor with more than 3 million
features as an example, the computation of the eigenvectors and eigenvalues of the
covariance matrix would be extremely costly, hindering the usage of the traditional
PCA approach. The work [124] reviews the computational complexity of different
PCA approaches. Besides its computational complexity, another problem caused by
applying PCA in high dimensional data is the overfitting of the projection, which
occurs when the number of features is much greater than the number of samples
(t >> N) [123, 125].

As alternatives for the traditional PCA, different methods have been proposed.
The work in [108] proposes the two-dimensional PCA (2DPCA), a method applied
to two-dimensional matrices rather than to one-dimensional vectors, being compu-
tationally more efficient than the traditional PCA. Three works of the same au-
thor [109, 126, 127] present the bi-directional PCA (BDPCA), which assumes that
the transform kernel of PCA is separable, being a generalization of the 2DPCA ap-
proach. The work in [128] proposes the NGLRAM, a non-iterative version of the
generalized low-rank approximations of matrices (GLRAM) algorithm. An interest-
ing comparison of the aforementioned works is presented in [123], where the authors
consolidate the definition of alternative PCAs into the concept of separable PCA
(SPCA), one of the methods used in our work, which is described in Subsection 4.1.2.

Other approaches suggest incremental and iterative ways to compute the PCA
transform. The work in [129] is one of the first ones to propose an incremental
computation of PCs, the algorithm called non-linear estimation by iterative par-
tial least squares (NIPALS-PCA). But if many samples are a linear combination
of other samples, NIPALS-PCA suffers from loss of orthogonality due to the errors
accumulated along iterations. Iterative principal components estimation can also be
formulated in a probabilistic way, as in Bayesian PCA (BPCA) [130]. BPCA uses
the expectation maximization algorithm to compute the PCs, making assumptions
on the input data, and considers that the estimation error obeys a normal distribu-
tion. The work in [131] presents the SVDimpute method, which was first proposed
to estimate missing values in DNA sequences. It estimates the PCs through singular
value decomposition in an iterative way. As SVDs can only be computed on complete
matrices, the SVDimpute is robust to noisy and incomplete data. A comparative
analysis of the performance of iterative PCA approaches is made in [132], which con-
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cludes that iterative methods such as BPCA, SVDimpute, and NIPALS-PCA are less
time-efficient due to their iterations. Such time-inefficient probabilistic approaches
inspired implementations of iterative PCA algorithms in GPUs and dedicated hard-
ware [133]. The candid covariance-free incremental PCA (CCIPCA) [134, 135] uses
a sequence of samples to calculate very efficiently the transform matrix without
estimating the covariance matrix. With this technique, it is possible to improve
the transform matrix when more samples are available, being suited for real-time
applications with high-dimensional inputs. The CCIPCA is explained in details in
Subsection 4.1.3.

4.1.2 Separable PCA

In the scope of this work, for each sample (one aligned pair of reference and target
frames), the 4th Resnet-50 layer outputs a 3-dimensional feature tensor with dimen-
sions 90× 160× 256. If the traditional PCA was applied, the 3-dimensional feature
tensor would first have to be changed to a one-dimensional vector xi with more than
3,686,400 features, leading to the high-dimensional problems discussed previously.

An alternative to the conventional PCA is the separable PCA, which is an ap-
proximation that yields computational efficiency gains and allows the computation
of the PCA in each dimension of the feature tensor separately. The work in [123]
demonstrates that existing methods such as BD-PCA, 2DPCA and NGLRAM are
either special cases or equivalent cases to the separable PCA.

To explain the separable PCA, let us consider one sample as the feature tensor
xi represented by the 3-dimensional block shown in Figure 4.2.

Figure 4.2: Feature tensor represented as a 3-dimensional block with three axes v,
h and d.

In the current work, each pair of aligned reference and target frames produces
a 3-dimensional feature block xi with three axes (v, h, d), formed by the V = 90

columns, H = 160 rows and D = 256 channels. Each block xi can be represented
with three types of one-dimensional vectors as in Figure 4.3. These three different
representations of one-dimensional feature vectors of sample xi are here defined as:

• xvi (m, k): one-dimensional vector ∈ RV×1 in the direction v, located on the
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(a) xvi (m, k) (b) xhi (n, k) (c) xdi (n,m)

Figure 4.3: Tubes representing one-dimensional feature vectors in each direction. (a)
feature vector xvi (m, k) in the direction v, (b) feature vector xhi (n, k) in the direction
h, and (c) feature vector xdi (n,m) in the direction d.

mth column and kth channel of the feature tensor (see Figure 4.3 (a)),

• xhi (n, k): one-dimensional vector ∈ RH×1 in the direction h, located on the
nth row and kth channel of the feature tensor (see Figure 4.3 (b)), and

• xdi (n,m): one-dimensional vector in the direction d ∈ RD×1 located on the nth
row and mth column of the feature tensor (see Figure 4.3 (c)).

The separable PCA computes individual transformations applied along each axis
of the feature tensor. Adopting the same approach used in [109], we can define exclu-
sive covariance matrices for each axis of the feature block. The scattered matrices for
each direction v, h and d, are shown in Equations (4.4), (4.5) and (4.6) respectively.

Sv =
1

NHD

N∑
i=1

H∑
m=1

D∑
k=1

(xvi (m, k)− x̄v)(xvi (m, k)− x̄v)T , (4.4)

where the product H × D is the total number of vertical vectors xvi (m, k) in each
feature block xi as seen in Figure 4.3(a), and x̄v is the mean vertical vector computed
with all N samples.

Sh =
1

NVD

N∑
i=1

V∑
n=1

D∑
k=1

(xhi (n, k)− x̄h)(xhi (n, k)− x̄h)T , (4.5)

where the product V ×D is the total number of horizontal vectors xhi (n, k) in each
feature block xi as seen in Figure 4.3(b), and x̄h is the mean horizontal vector
computed with all N samples.

Sd =
1

NVH

N∑
i=1

V∑
n=1

H∑
m=1

(xdi (n,m)− x̄d)(xdi (n,m)− x̄d)T , (4.6)

where the product V × H is the total number of channel-wise vectors xdi (n,m) in
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each feature block xi as seen in Figure 4.3(c), and x̄d is the mean channel-wise vector
computed with all N samples.

If the traditional PCA was used, the covariance matrix S would be a square
VHD×VHD matrix, leading to an extremely high computational cost to obtain its
eigenvectors and eigenvalues. As the dimensions of the covariance matrices Sv,
Sh and Sd are now V×V, H×H and D×D respectively, the computational cost to
calculate the eigenvalues and eigenvectors is reduced drastically.

As done in the traditional PCA, for each covariance matrix, a transformation
matrix is obtained by computing its eigenvectors ordered by their respective eigen-
values. Thus, the transformation matrix in direction v is Pv ∈ RV×V , whose rows
are the ordered eigenvalues of Sv. The transformation matrix in direction h is
Ph ∈ RH×H , whose rows are the ordered eigenvalues of Sh. And the transformation
matrix in direction d is Pd ∈ RD×D, whose rows are the ordered eigenvalues of Sd.

Let us consider the sample to be transformed a 3-dimensional feature block
xi ∈ RV×H×D. The first transformation Pv is applied to each vector xvi (m, k) in
direction v.

yvi (m, k) = Pvxvi (m, k). (4.7)

The resulting 3-dimensional block yi ∈ RV×H×D will have its vectors yhi (n, k),
in direction h, transformed by Ph:

thi (n, k) = Phyhi (n, k). (4.8)

The resulting 3-dimensional block ti ∈ RV×H×D will have its vectors tdi (n,m), in
direction d, transformed by Pd:

zhi (n, k) = Pdtdi (n,m). (4.9)

The 3-dimensional block zi ∈ RV×H×D is the final transformed sample xi with
three consecutive one-dimensional PCAs. To summarize the separable PCA pro-
cess, the first PCA transforms xi considering its vectors in direction v, generating
the 3-dimensional feature block yi. The second PCA transforms yi considering its
vectors in direction h, producing the 3-dimensional feature block ti. The third PCA
transforms ti considering its vectors in direction d, creating the final 3-dimensional
feature block zi.

4.1.3 Incremental PCA

The popularization of PCA motivated researchers to find alternatives to compute
the transformation matrix incrementally, preventing a new computation of the trans-
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form matrix when new samples are available. The works in [134] and [135] propose
the candid covariance-free incremental PCA (CCIPCA), which uses a sequence of
samples to calculate the transform matrix without estimating the covariance ma-
trix. With this technique, it is possible to improve the transform matrix when more
samples are available, being suited for real-time applications with high-dimensional
inputs.

The computation of the eigenvectors incrementally is done as follows. Suppose
the vectors {x0,x1, ...} are acquired sequentially, and each xi is a d-dimensional
vector. Let us assume that all xi vectors have zero mean, which can be calculated
incrementally as new samples are available. By definition, an eigenvalue λ associated
to its eigenvector t of matrix A satisfies

λt = At. (4.10)

By replacing matrix A with the covariance definition from Equation (4.1), and
replacing t from Equation (4.10) with its estimate t(i) in the ith step, we obtain
the following expression for v(n) = λt:

v(n) =
1

n

n∑
i=1

xix
T
i t(i), (4.11)

where v(n) is the estimate of v in the nth step. With the estimate of v, the
eigenvector t and eigenvalue λ can be computed since λ = ‖v‖ and t = v/ ‖v‖.
Considering t = v/ ‖v‖, we may choose t(i) as v(i− 1)/ ‖v(i− 1)‖, resulting in the
incremental expression:

v(n) =
1

n

n∑
i=1

xix
T
i

v(i− 1)

‖v(i− 1)‖
(4.12)

The first direction of data spread is given by the first sample x1, so v(0) = x1.
Equation (4.12) can be written in its recursive form, becoming:

v(n) =
n− 1

n
v(n− 1) +

1

n
xnx

T
n

v(n− 1)

‖v(n− 1)‖
, (4.13)

where (n− 1)/n is the weight for the last estimate and 1/n is the weight for a new
incoming data. An amnesic parameter L could be added in (4.13) giving more weight
to new data, so older data will eventually have less contribution, which becomes:

v(n) =
n− 1− L

n
v(n− 1) +

1 + L

n
xnx

T
n

v(n− 1)

‖v(n− 1)‖
. (4.14)

The CCIPCA considers the computation of all k eigenvectors given an incoming
sample xi, and defines vj(i) as the estimation of the jth eigenvector given the i
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incoming sample (or in the ith step). The full algorithm is presented in Algorithm 1.

Algorithm 1: Incremental PCA (CCIPCA) algorithm proposed in [134]
and [135].
Data: Available samples
for i=1, 2, ... do // loop through the indexes of the samples

xi(1)← xi;
for j=1, 2, ... do // loop through the indexes of the
eigenvectors
if j == i then

vj(i)← xi(j);
end
if j < i then

// jth eigenvector with ith sample using Equation (4.14)
vj(i)← i−1−L

i
vj(i− 1) + 1+L

i
xi(j)xi(j)

T vj(i−1)

‖vj(i−1)‖ ;

// Update sample i value for the next eigenvector j

xi(j + 1)← xi(j)− xi(j)
T vj(i)

‖vj(i)‖
vj(i)

‖vj(i)‖ ;

end
if j > i then

vj(i)← 0;
end

end
end

The performance and accuracy tests reported in [134] and [135] show a fast
convergence rate of the CCIPCA algorithm with low computational cost.

4.2 Experimental Results with PCA

As reviewed in the previous section, different variations of PCAs can be used to re-
duce computational burden. As described in Chapter 3, the best anomaly-detection
results were obtained by features extracted from the 4th layer (residual 3 ) of the
Resnet-50 backbone. Thus, in order to obtain a possible improvement of the DIS
metric, the feature reduction techniques using PCA are applied in the deep features
produced by the 4th layer.

The pipeline used in the experiments described here is illustrated in Figure 4.4.
For each pair of aligned reference and target frames, a total of 3,686,400 features are
output by Resnet-50’s 4th layer distributed in a 3-dimensional feature tensor. Both
reference and target tensors are subtracted, and the resulting feature tensor has its
dimensions reduced with PCA. To keep a fair comparison to the previous pipeline,
the same number of features produced by the pooling operation are selected (3,840

features). By that, our intention is to evaluate how the PCA transformation and
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the variance energy criterion can improve the classification of the target frames, and
if it is possible to achieve similar results with fewer features.

Figure 4.4: Feature selection scheme used to obtain features with the 4th convolu-
tional layer of the Resnet-50 using PCA. Given a feature tensor with about 3 million
features, the best 3,840 features are selected. This is the same number of features
used by the classifier in the previous pipeline.

First, a separable PCA is applied to the 3-dimensional feature tensor considering
all three directions. In an initial experiment, the same number of features used by
the random forest classifier were selected using the energy criterion, and the hyper-
parameters of the classifier were chosen with the Bayesian optimization process. In
a second experiment still using the separable PCA, in an attempt to decrease the
number of features, the Bayesian optimization was also responsible by selecting the
best number of PCs. Next, two other experiments were performed, one using tradi-
tional PCA to compute what we refer to as spatial PCA, and another experiment
using the incremental PCA to compute the PCA in blocks. In all experiments, the
bounds used by the Bayesian optimization to find the best hyperparameters were
the same, being

• max depth: from 1 to 150,

• trees: from 1 to 210,

• threshold: from 0.4 to 0.6,

• voting window: from 1 to 150.

4.2.1 Experimental Results with Separable PCA

The features output by the layer 4 (residual 3rd layer) are first transformed with
separable PCA and selected using the energy criterion. The two experiments covered
in this subsection use the same methodology from Chapter 3, illustrated in the
scheme of Figure 3.10: 72 random forest classifiers are trained with frames extracted

58



from videos of 5 objects. Each classifier is used to validate videos of 3 objects, which
are the videos of the object that were neither used during training nor validation
are used for testing. The validation results are used by a Bayesian optimization
process to find the best hyperparameters (number of trees, max depth, threshold
and voting window). The iterative process ran 1,000 times, with 10 first iterations
used for random exploration.

In the first experiment, the features are transformed with separable PCA and the
same number of features used by the pooling is selected based on the energy criteria.
In the second experiment, the number of principal components was selected by the
Bayesian optimization process, in an attempt to reduce the number of features.

Selecting the Same Number of Features as the Average Pooling

In this experiment, the fixed number of features with the highest energy (variance)
were selected. In the previous chapter, the number of features was reduced to 3,840

with the average pooling, thus we decided to keep the same number of features,
transforming them with PCA and using the 3,840 features with the highest energy.
As there are 72 sets containing distinct training samples, the amount of energy
contained in 3,840 features with the highest energy varies among the sets. In average,
among all 72 sets, the 3,840 principal components concentrate 6.6% of the total
energy with a standard deviation of 1.78%.

For each set, the transformation matrices Pv, Ph and Pd are calculated using
the training samples, and are used to transform the training and validation samples.
For the testing phase, the transformation matrices are computed considering the
samples of the training and validation sets, which are also used to train a new
classifier with the hyperparameters chosen during the validation phase. Figure 4.5
shows the DISoverall obtained along the 1,000 iterations during training/validation.

For a better comparison with results from Chapter 3, where the average pooling
operation was used, Table 4.1 presents the validation results with both approaches.
Classifiers trained with features transformed and selected with separable PCA ob-
tained better validation results in videos with all objects (lower DIS). The DISoverall,
which considers videos with all objects, also performed better. Table 4.2 compares
the hyperparameters found by the Bayesian optimization process using the selection
of features with separable PCA and the average pooling.

Results obtained in the testing phase are shown in Table 4.3. Differently from
the validation, in the testing phase not all classifiers performed better with features
obtained with separable PCA. Besides the significant improvements reached with
some classes of objects, the final DISoverall result with separable PCA did not have
a considerable deviation from the pooling approach.

So far, as the results with the average pooling were not significantly changed
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Figure 4.5: DISoverall results calculated with Equation (3.6). These results are ob-
tained during training/validation phase with the 3,840 features with the highest
energy transformed with the separable PCA.

Table 4.1: DIS values, calculated with Equation (3.6), for each object class obtained
during validation with 3,840 features.

DISoverall
(average pooling)

DISoverall
(separable PCA)

black backpack 0.3957 0.3878
black coat 0.3886 0.3595
brown box 0.4075 0.3434
camera box 0.3948 0.3777

dark-blue box 0.4424 0.3369
pink bottle 0.3941 0.3783

shoe 0.3999 0.3114
towel 0.3542 0.3493

white jar 0.3816 0.3275
DISoverall 0.3584 0.3329

when the separable PCA was applied, a question is raised: can the number of
features (3,840) be reduced, while achieving the same results? To answer this ques-
tion, instead of performing a grid search with multiple experiments using different
amounts of features, a guided search using the Bayesian optimizer is performed.
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Table 4.2: Hyperparameters found by the Bayesian optimization during the train-
ing/validation with 3,840 features selected with average pooling and separable PCA.

iteration trees max depth threshold voting window
average pooling 377 152 148 0.51 28
separable PCA 533 168 137 0.53 18

Table 4.3: DIS values, calculated with Equation (3.6), obtained in the testing sets
with 3,840 features selected with average pooling and separable PCA.

DISoverall
(average pooling)

DISoverall
(separable PCA)

black backpack 0.4003 0.5728
black coat 0.3169 0.3379
brown box 0.3036 0.3889
camera box 0.4025 0.3767

dark-blue box 0.2145 0.1903
pink bottle 0.4869 0.4766

shoe 0.2041 0.2115
towel 0.7134 0.3295

white jar 0.4677 0.4011
DISoverall 0.3500 0.3527

Selecting the Principal Components Used to Transform Features with
Separable PCA

In a second experiment, besides selecting random forest training hyperparameters,
we also let the Bayesian optimizer select the amount of principal components within
the interval of 1 and 3,840 principal components. By that, we want to evaluate if a
significant reduction of features can achieve, at least, the same results. Figure 4.6
shows the DISoverall obtained along the training/validation iterations.

The results and hyperparameters obtained with separable PCA can be seen in
Table 4.4. The validation and testing DIS results practically did not change, but a
significant reduction on the number of features was achieved. Both separable PCA
approaches had slightly better results in the validation set in comparison with the
average pooling approach. But, essentially, the results in the testing set are about
the same. The advantage of using the separable PCA is that the same results can be
obtained, but with 25% less features. Considering all 72 sets, the average amount
of energy contained in the 2,850 features is practically the same as in the 3,840

features, being 6.45% with standard deviation equals to 1.93%.
In these experiments, the Bayesian optimization process takes too long to run

with the 72 sets (about 21 days running in a machine Intel(R) Xeon(R) Gold 5120
CPU @ 2.20GHz with 125 GB of RAM), and the set of hyperparameters with the
most significant gains in the DIS metric are achieved in the first iterations of the total
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Figure 4.6: DIS values, calculated with Equation (3.6), obtained during train-
ing/validation. Features were transformed with separable PCA and the Bayesian
optimization process selected the amount of principal components.

Table 4.4: Comparative DIS results calculated with Equation (3.6), and hyper-
parameters used to train random forest classifiers with features transformed with
separable PCA and average pooling operation.

feature reduction
approach features trees max

depth threshold voting
window

DIS
validation

DIS
testing

average
pooling 3840 30 93 0.53 25 0.3584 0.3500

separable PCA
fixed PC 3840 168 137 0.53 18 0.3328 0.3527

separable PCA
selecting PC 2850 152 148 0.51 28 0.3320 0.3587

1,000 used. That being said, the further experiments will run with 300 iterations
considering only two classes of objects for testing (shoe and dark-blue box). These
two classes were chosen among the others, because the results of these classes using
the separable PCA approach deviate a lot in comparison with the average pooling
approach, as it can be seen in Table 4.1. Therefore, if a substantial improvement
is noted in the metrics of these two classes, we can extend to the other classes.
For a matter of comparison, we repeated the tests in this section with these new
considerations.

Under this new configuration, to perform the test with videos containing the
shoe, a classifier was trained with videos of all objects, except videos containing the
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shoe. The Bayesian optimizer was run for 300 iterations (being 10 iterations used
for exploration), so the best hyperparameters used by the classifier were selected.
In the end, the trained classifier with the best hyperparameters was used to test the
videos containing the object shoe. A similar procedure was done to test the videos
containing the object dark-blue box.

The object shoe obtained a DIS equal to 0.1879 with features reduced with the
average pooling operation, and 0.1862 when features were selected using the sepa-
rable PCA. The object dark-blue box obtained a DIS equals to 0.0645 with features
reduced with the average pooling operation, and 0.0703 using features selected with
the separable PCA. In these new experiments, the classifiers performed better than
in the previous experiments. This might be explained because instead of using
videos of 5 objects to train, we are now using videos of 9 classes of objects, making
the classifier more robust. As noted before, the classifiers performed similarly with
features reduced with average pooling and with separable PCA.

4.2.2 Experimental Results with Spatial PCA

In Resnet-50, the 4th layer (residual 3) outputs a 3-dimensional feature tensor, which
is formed by 256 2-dimensional feature maps. In this case, a PCA transform could
be applied in each 2-dimensional feature map using the traditional PCA approach.

Figure 4.7: A 3-dimensional feature tensor represented as 256 2-dimensional feature
maps and 256 one-dimensional vectors.

By changing each 2-dimensional feature map ∈ R90×160 into a one-dimensional
vector xi ∈ R14400×1, each pair of aligned reference and target frames can be rep-
resented by the set {x1,x2, ...,x256} as illustrated in Figure 4.7. The 256 one-
dimensional feature vectors of N training samples could be stacked together produc-
ing X = {x1,x2, ...,xN.256}, which can be plugged into Equation (4.1) to compute
the traditional PCA transformation. The computation of PCA using the traditional
PCA method is now feasible, since the covariance matrix is 14400× 14400.

Each 2-dimensional feature map ∈ R90×160 is now transformed with the tradi-
tional PCA, and for each feature map, we select the 15 features with the highest
energy. This way, for each sample (feature tensor), the same number of features
used in the previous approaches (3,840) are used to train the classifier.
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As done in the last experiment with average pooling, we evaluated the perfor-
mance of the spatial PCA with videos of two objects only: shoe and dark-blue box.
With features reduced with the spatial PCA, the DIS value for the class shoe was
0.2361 and for the class dark-blue box it was 0.1033. For both objects, the perfor-
mance of the classifiers using the spatial PCA was inferior than the one obtained
with the average pooling and separable PCA approaches, which refrained us from
evaluating this scheme for the other object classes. With average pooling, the ob-
jects shoe and dark-blue box obtained the DIS values 0.1879 and 0.0645 respectively.
When separable PCA was applied, the objects shoe and dark-blue box obtained the
DIS values 0.1862 and 0.0703 respectively.

4.2.3 Experimental Results with Incremental PCA in Blocks

Inspired by the idea of the pooling operation, which reduces the feature maps spa-
tially, the PCA transform could be applied in blocks to output the same spatial
dimension produced by the pooling. In the image domain, the average pooling takes
the average value considering a region of 30×32, with a total of 960 pixels. A PCA is
now computed using the features in regions 30×32 in each channel and, after trans-
forming them to the new basis, only the feature with the most energy is selected.
Figure 4.8 illustrates the 3-dimensional feature tensor 90× 160 with D = 256 chan-
nels. By changing each 30 × 32 × 1 block into one-dimensional vector xi ∈ R960×1,
each pair of aligned reference and target frames results into 15D = 3,840 vectors.
The 3,840 one-dimensional feature vectors of N training samples could be stacked
together producing X = {x1,x2, ...,x3,840N}, and used to calculate the PCA trans-
form with the traditional PCA approach. As each sub-block 30×32×1 transformed
with PCA results into one feature, for a 3-dimensional block 90× 160× 256, a total
of 3,840 features are selected, which is the same number of features produced by the
pooling operation.

In this approach, the incremental PCA was applied to compute the PCA in
blocks. The results obtained by a classifier trained with samples transformed with
PCA in blocks were not better than the ones from previous experiments. The tests
for the class shoe resulted in a DIS equal to 0.2228, and with the class dark-blue
box are 0.0983 against 0.1879 and 0.0645, respectively, obtained with the average
pooling scheme.
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Figure 4.8: Representation of the feature tensor V×H×D into 15 smaller blocks,
which are represented by 15D one-dimensional vectors.

4.3 Final Results and Conclusions

In this chapter, the average pooling was replaced by a feature selection approach
using different PCA approaches. The criterion to select features was performed
based on their variances. Three techniques, namely traditional PCA, separable
PCA and incremental PCA, were applied to compute the transformation matrix
used by PCA in different configurations of the 3-dimensional feature tensor. The
metric used to compare these experiments was the DIS value, the same metric used
in previous chapters and computed with Equation (3.6).

To overcome the long computational processing time needed to train the classi-
fiers using the Bayesian optimization for all classes of objects, only the experiments
using the separable PCA were performed considering all classes of objects. An extra
experiment was executed with all classes of objects, letting the Bayesian optimiza-
tion process choose the amount of principal components.

In the experiment aiming to reduce the amount of PCs (described in Subsec-
tion 4.2.1), the Bayesian optimization process was also used to optimize the amount
of PCs, whose bounds used in the searching process were defined as being from 1 to
3,840.

Our results show that the feature selection criterion applied to features trans-
formed with separable PCA obtained similar results when average pooling was used
with the same number of features (3,840). Even though the validation results were
slightly better when separable PCA was applied, the testing results practically did
not change. The energy contained in the 3,840 features represents 6.6% of the to-
tal energy in the original 3.6 million features. In another experiment the Bayesian
optimization process was used to select the number of principal components, reduc-
ing the amount of features to 2,850, which keeps 6.45% of the total energy from
the original feature tensor. The drop of 25% in the number of features does not
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affect the DIS results in both validation and testing sets. Therefore, the Bayesian
optimization proved to be an effective tool that led to a reduction in the number of
features, while keeping the same results.

In another group of experiments, only two classes of objects were used for testing.
Table 4.5 presents the results for each approach.

Table 4.5: Testing results with DIS values calculated with Equation (3.6) for two
classes of objects considering 3,840 features.

shoe dark-blue box
average pooling 0.1879 0.0645
separable PCA 0.1862 0.0703
spatial PCA 0.2361 0.1033

incremental PCA in blocks 0.2228 0.0983

Although features transformed and reduced with separable PCA obtained nearly
the same results of features reduced with pooling, different PCA approaches were
not able to provide better results than the ones obtained with the average pooling.
Thus, our experiments show that features transformed with PCA and selected using
the variation criteria did not provide any positive improvement in the DIS metric
in comparison with a non-selective criterion, such as the average pooling operation.

These results suggest that the pre-trained Resnet-50 already outputs features
decorrelated and discriminative enough in a way that PCA is not able to improve
them for our classification results. In this work, PCA transformation does not
worsen the capability of the features to classify the VDAO frames. Also, a possible
explanation for the invariability of the results obtained with high energy features
criteria, is the fact that low energy features are in fact important for this classification
task. But a confirmation of this fact demands deeper investigations that could be
performed in a future work. The lessons learned from this chapter motivated us
to explore a new approach, without PCA. In this sense, a new approach using an
end-to-end training network is proposed and presented in the next chapter.
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Chapter 5

An End-to-End Differentiable
Anomaly Detection Pipeline

The two previous chapters investigated pipelines for anomaly detection in videos
based on the extraction of deep features from the reference and target frames using
twin networks. In both pipelines, essentially, a random forest classifier receives
as input the difference between features from the two networks and decides if a
frame contains an abandoned object. A natural path to design a pipeline with
improved performance would be to replace, as input to the random forest classifier,
the difference between the features of the twin networks by their concatenation.
Unfortunately, given the size of the training set provided by the VDAO dataset, the
feature concatenation generates large input samples. As the random forest classifier
requires all training samples simultaneously to be constructed, large input samples
prevent its application. Even though the difference of features of the twin networks
reduces the number of features by half, it is still necessary to apply feature reduction
techniques to make the random forest application feasible.

The experiments and results presented in Chapters 3 and 4 confirmed that such
approaches limit the classification performance. Since the mere use of the difference
between features of the twin networks disregards a great deal of valuable information
that could be used to improve the detection performance, a way to exploit richer
information provided by the full feature tensors without leading to a prohibitively
large number of parameters would be welcome.

In this chapter, a new pipeline is proposed to deal with this issue. It is illus-
trated in Figure 5.1. It consists of modules separated according to their functions:
video alignment, feature extraction, feature processing, and classification. Initially,
a geometrical alignment is performed on each pair of reference and target frames
previously aligned with the temporal alignment present in Chapter 3, Section 3.1.
Given the pair of re-aligned frames, their features are individually extracted from
the 4th convolutional layer of the Resnet-50 model. A dissimilarity module (DM)
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aims to exploit richer information provided by the feature tensors from the twin net-
works producing a single binary image. The temporal consistency module (TCM)
is responsible to remove possible false positive regions in consecutive frames while
maintaining the true positive ones. To remove persistent remaining false positive
regions in each frame, as well as filling false negative holes, a mathematical morphol-
ogy module (MM) is introduced to simulate morphological open and close operations
using a circular structuring element with a learnable radius. An innovation proposed
in this thesis is that the MM is differentiable with respect to the radii of the opening
and closing structuring elements, and therefore become learnable parameters using
backpropagation. In the end, based on the number of positive pixels in the resulting
image, the classification module (CM) predicts the class of the input target frame
(anomalous or not anomalous). With the exception of the alignment stage, that
performs a sort of pre-processing of the data, the whole structure is differentiable
in the parameters of the proposed pipeline and allows end-to-end training using the
backpropagation algorithm.

(a)

(b)

Figure 5.1: Pipeline proposed in this chapter. A pre-processing module is introduced
to align temporally and geometrically a pair of reference and target videos (a). Three
modules (DM, TCM, and MM) are responsible for processing the features extracted
from Resnet-50 (frozen) in order to feed a classification module (CM) as illustrated
in (b).

The design of each module will be specified in subsequent sections. A sample
with results obtained by each module is shown in Figure 5.2. The goal of the DM is
to combine both reference and target feature tensors producing a binary-like image,
whose white pixels represent regions of the target frame with the most discrepancies
in comparison to the target frame. A sample of an output produced by the DM
can be seen in Figure 5.2 (c). Due to the different illuminations, shadows, and
misalignment of both reference and target videos, the binarized image produced by
the DM may contain white pixels in regions where the anomalies are not present.
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During the construction of the network, it was noted large false positive regions in the
image output by the DM. This problem drove the development of further modules
to eliminate false positive pixels while maintaining the true positive ones. Thereby,
the temporal consistency module (TCM) and the mathematical morphology module
(MM) were designed to eliminate specific problems, as discussed later.

Figure 5.2: Examples of output by each module proposed in this chapter. Given a
pair of aligned reference and target frames (a) and (b) respectively, the DM converts
their pair of feature tensors into a single binary image (c). The TCM removes FP
pixels that do not persist in consecutive frames, as seen in (d). The MM applies
two morphological operations, opening, and closing, resulting in images (e) and (f),
respectively. Based on the number of pixels in (f), the CM outputs the classification
of the target frame, as in (g).

The TCM aims to eliminate the white pixels presented in images generated by
the DM that do not persist in consecutive frames. This module removes the blinking-
pixel effect of some areas of the image, which may be caused by the illumination
changes and misalignment of both target and reference frames. As an anomalous
object is expected to be noticeable in successive frames, they should not be elimi-
nated by the TCM. Figure 5.2 (d) shows an output image produced by the TCM.
Note that some FP pixels are eliminated by the TCM.

The MM is designed to apply differentiable morphological operations to remove
the pixels that could not be removed by the TCM while trying to preserve the shape
of anomalous objects. In the MM module, the opening and closing operations are
performed in sequence with a circular structuring element, whose radius is optimized
during the learning process. Figures 5.2 (e) and (f) show the output images pro-
duced by the opening and closing operations, respectively. Note that FP pixels are
eliminated by the opening operation, and the area of the object is partially expanded
by the closing operation.

69



Based on the number of white pixels left by the MM, the CM learns a threshold
value to classify the image as anomalous or not anomalous. The classification given
by the CM refers to the presence or absence of anomalies in the target, which can
be seen in Figure 5.2 (g).

In Section 5.1, the proposed geometrical alignment of the reference and target
frames is covered. During the training phase, images output by the DM, TCM, and
MM are compared to binary ground-truth images with the Matthews correlation co-
efficient (MCC) metric, as described in Section 5.2. The dissimilarity module (DM),
temporal consistency module (TCM), differentiable morphology module (MM), and
classification module (CM) are presented in Sections 5.3, 5.4, 5.5 and 5.6, respec-
tively. In section 5.7, the training, validation and testing processes are reviewed.
Results are presented in Section 5.8 and conclusions in Section 5.9.

5.1 Geometric Alignment

The temporal alignment described in Section 3.1 aims to find the best reference
frame given a target one. Even though such approach provides a real-time alignment,
bringing advantage in comparison to other works using the VDAO database [31, 33,
80, 103], it solves the alignment problem only to a certain extent. During the first
experiments with the pipeline proposed in the current chapter, we noticed that the
classification results drop significantly in parts of the videos where the alignment
is visually deficient. The poor results occur due to the incapacity of the temporal
alignment to correct different camera movements, which occur in about 1/3 of the
robot path in all videos.

As the results of previous works [31, 80, 103] on the VDAO database were ob-
tained using geometrical alignment techniques, in order to better evaluate our pro-
posed pipeline against those from [31, 80, 103], we opted to develop an alternative
geometrical alignment on top of the temporal alignment. To assess our temporal
alignment, the root mean squared difference (RMSD), also referred to as root mean
squared error (RMSE), is used. RMSE is a conventional intensity-based quantita-
tive metric used to compare the similarity of two images and has been employed
by different works to evaluate the registration accuracy of video frames [9, 136]. It
can be computed by measuring the differences of the pixels intensities of the target
image Ti and reference image Rj as

RMSE(Ti, Rj) =

√√√√ 1

MN

M−1∑
x=0

N−1∑
y=0

(
Ti(x, y)−Rj(x, y)

)2

. (5.1)

As shown in Figure 5.3, the absolute difference of misaligned regions of a reference
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and a target frame is visually distinguishable from the one of well-aligned regions. A
badly aligned pair of frames is highly correlated to a high RMSE value. Therefore, by
analyzing the RMSE values along temporally aligned frames of a pair of reference
and target videos, it is possible to notice in which parts of the video the camera
movement impairs the quality of the overall alignment and, consequently, impacts
the quality of the outcomes of the dissimilarity module.

(a) Reference (b) Target (c) Absolute difference

Figure 5.3: Example of reference (a) and target (b) frames temporally aligned and
their absolute difference (c). This pair represents frame 180 from Figure 5.4 with
RMSE=0.1685.

Figure 5.4: RMSE between corresponding frames of the reference and target videos
aligned with the temporal alignment approach.

The plot in Figure 5.4 shows RMSE values of all temporally aligned frames
of a target and reference video pair. The blue line represents the RMSE values
considering the pixels of the whole frame, while the green line represents the RMSE
excluding the pixels of the bounding boxes encompassing the anomalous object. The
region between frames 120 and 220 represents a segment of the robot’s track with
vibrations that tend to increase the geometric misalignment between reference and
target frames, and thus lead to high RMSE values.

As pixels of anomalous objects in the target frame differ considerably from pixels
in the same region in the reference frame, the RMSE is expected to be higher
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only in parts of the videos where the target frames contain the anomalous object
(represented by the pink regions in Figure 5.4). Nevertheless, this is not always
true, since misaligned regions can increase the computed RMSE considerably. This
is illustrated in Figures 5.3, 5.5 and 5.6. Figure 5.5 shows a pair of well-aligned
frames from a relatively low RMSE region where the object is not present, and
Figure 5.6 shows a pair of well-aligned frames in which the object is present in
the bottom-left part of the target frame. Figure 5.3 shows a pair of frames with
a high RMSE value in which the object is not present. Comparing these three
examples, one notes that the presence of the object in the bottom-left corner of the
target frame of Figure 5.6(b) corresponds to a region with relatively high values in
the absolute difference image, highlighting the presence of the anomalous object.
Similarly, regions containing high RMSE values are also present in the image with
absolute difference of Figure 5.3(c). Such regions do not correspond to the presence
of any anomalous object, but they do represent misaligned regions.

(a) Reference (b) Target (c) Absolute difference

Figure 5.5: Example of reference (a) and target (b) frames temporally aligned, and
their absolute difference (c). This pair represents frame 0 from Figure 5.4 with
RMSE=0.0141.

(a) Reference (b) Target (c) Absolute difference

Figure 5.6: Example of reference (a) and target (b) frames temporally aligned,
and their absolute difference (c). This pair represents frame 28 from Figure 5.4.
Excluding the bounding box region containing the object, the computed RMSE is
0.0126.

To overcome the misalignment caused by the camera movement, which makes
the DM to produce false positive pixels, a pre-processing operation that performs
geometrical alignment is proposed. The quantitative criterion used to measure the
efficiency of the proposed method is the RMSE, and visual results showing the
improvement in the quality of the absolute difference will be presented in the end
of this section.

To perform the geometrical alignment between the temporally aligned target
and reference frames, an homography represented by a transformation matrix H
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is used to transform geometrically the reference image by means of a rotation and
translation. By that, we expect to improve the overall alignment of given target and
reference frames. Let us consider the following isometric transformation H applied
at the pixel coordinates (x, y) of the reference frame Rj to rotate and translate the
position of its pixels. The transformation matrix H is represented as

x′ = Hxx
′

y′

1

 =

cos(θ) − sin(θ) tx

sin(θ) cos(θ) ty

0 0 1


xy

1

 .
(5.2)

By applying transformation H, a reference frame can be rotated by θ, translated
horizontally by tx and vertically by ty. As a complete mapping (x, y) → (x′, y′)

is not guaranteed, the nearest neighbor interpolation method was performed to fill
missing values at (x′, y′) coordinates.

The matrix H is estimated based on the motion vectors between a pair of refer-
ence and target frames. The motion vectors are obtained by computing the optical
flow [137], a technique used to estimate the motion of every pixel between two
images.

Knowing that the scene of the VDAO database contains pipes and objects in
different depths and sizes, as the camera moves, pixels appear to be moving with
different velocities, which results in estimated motion vectors with different lengths.
Even so, the camera movements tend to produce a smooth optical flow. However,
in some cases, due to the presence of anomalous objects and misaligned regions, the
motion vectors of the same pair of frames can become quite erratic at the region of
the anomaly, as illustrated in Figure 5.7.

(a) (b) (c)

Figure 5.7: Motion vectors (c) obtained with optical flow between reference (a) and
target (b) frames, which contains an anomalous object in the upper-right corner.
The arrows in (c) represent the motion vectors (for better visualization, only the
vectors corresponding to some of the pixels are shown). The color indicates the
normalized norm of the vectors of each pixel.

The matrix H is then computed based on the motion vectors obtained with
optical flow. Vectors located in regions where an object might be positioned, where
the vector field is erratic, as well as in locations representing bad alignments, should
be discarded. Such vectors are considered outliers and may result in a bad estimation
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of H. The random sample consensus (RANSAC) [138] algorithm is used to select
the motion vectors which best fit the model. RANSAC is an iterative robust method
used to estimate parameters of a linear model by sampling points and finding the
optimal fitting result.

To find the reference frame that best aligns with a given target frame Ti, the
transformed reference frame R′ that produces the best geometrical alignment with
Ti may not be the one computed with reference frame Rj that resulted from the tem-
porally aligned pair Rj and Ti. There are cases where the previous reference frame
Rj−1 or the next reference frame Rj+1 can produce a better geometrical alignment
with the target frame Ti. For that, a search method is applied in neighboring frames
of the reference frame Rj. We consider a window containing nine neighboring frames
of Rj (from Rj−4 to Rj+4), and applied RANSAC to compute nine transformations
between Ti and each reference frame within the window. Each reference frame is
then transformed with its respective Hj. The scheme in Figure 5.8 illustrates this
process using 7 neighboring reference frames.

Figure 5.8: Process to compute the transformation matrices H1, H2, ..., H7 for a
given pair of temporally aligned frames Rj and Ti considering 7 neighboring frames
of Rj.

Transforming the coordinates of a reference frame Rj with matrix Hj may map
pixels outside the frame to the transformed one, thus producing black borders on
the resulting image as shown in Figure 5.9. To eliminate the black borders, 5%

of each side of both target and transformed reference frames are cropped. So, the
original resolution 360× 640 is reduced to 324× 576.

Figure 5.9: Observable black borders in a reference frame after rotation of 10 degrees.
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After eliminating the border of each transformed reference frame R′j+δ and its
associated target frame Ti, the RMSE between R′j+δ and Ti is computed. Among
the 10 geometric transformed reference frames, the one which obtains the lowest
RMSE is chosen form the geometrically aligned frame with the target frame Ti. The
reference frames were transformed instead of the target ones, due to the presence
of the annotated bounding boxes in the target frames. If the target frames were
transformed with the rotation and translating matrix H, the annotated bounding
boxes coordinates would also have to be transformed, which would demand an extra
work.

Implementation details: Although the search for the best-transformed reference
frame can produce better-aligned pairs, the process is slow. To reduce the processing
time, frames are resized to 1

4
of their original resolution before being processed with

the optical flow and RANSAC. Once the best reference frame is chosen, a new
transformation H is found with the frames in their original resolution. This way,
the processing time of an eight-minute video drops from 10 to 6 hours using a
computer with a processor i7 CPU@4 GHz.

To eliminate illumination differences between the target and reference frames, an
extra experiment was performed by pre-processing the reference and target frames
with contrast limited adaptive histogram equalization (CLAHE) [139]. Neverthe-
less, the attempt to produce better results did not work as expected. Figure 5.10
compares the absolute difference of a pair of temporally aligned frames with and
without CLAHE. When both frames are pre-processed with CLAHE, the region
containing the anomalous object in the absolute difference, Figure 5.10(g), presents
higher values when compared with the same region in Figure 5.10(c) - when CLAHE
is not used. On the other hand, when CLAHE is applied, the absolute difference
of regions where no object is present also holds higher values, similarly to badly
aligned regions.

The plot in Figure 5.11 shows the RMSE values of frames obtained with the
geometrical alignments with CLAHE and without CLAHE. Note that pre-processing
the frames with CLAHE not only produced visually bad results (see Figure 5.10) but
also led to geometrically aligned frames with higher RMSE values. So, processing
the frames with CLAHE was found out not to be a useful procedure. The plot of
Figure 5.12 shows that most of the frames aligned with the proposed geometrical
alignment reduce the RMSE between the target and reference frames.

Due to the many computations of the transformation matrices H, the geometrical
alignment is very time-consuming and cannot be applied in real time. Therefore,
the geometrical alignment was used to produce a version of the VDAO database
containing aligned videos, whose pair of frames were used to train, validate and
test the proposed model. Note that in practical applications inertial and magnetic
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Original frames

(a) Reference (b) Target (c) Absolute difference

Frames transformed with CLAHE

(e) Reference (f) Target (g) Absolute difference

Figure 5.10: Absolute differences of a pair of temporally aligned reference and tar-
get frames. The absolute difference between frames without being processed with
CLAHE ((a) and (b)) is represented in (c) with RMSE=0.0603. The absolute dif-
ference of frames processed with CLAHE ((e) and (f)) is represented in (g) with
RMSE=0.0984.

Figure 5.11: Quantitative results obtained by geometrical alignment with and with-
out CLAHE. The pink regions indicate anomalies in the target frames.

sensors can be used to speed up the alignment operation. The work in [140] uses
auxiliary sensors such as accelerometer and gyroscope to improve the quality of the
alignment of the VDAO videos. Light detection and ranging (Lidar) sensors are also
applied to align videos, as shown in [141, 142].
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Figure 5.12: Comparative quantitative results obtained by geometrical and temporal
alignments. The pink regions indicate anomalies in the target frames.

5.2 Matthews Correlation Coefficient (MCC)

The products of the dissimilarity (DM), temporal consistency (TCM) and differen-
tial morphology (MM) modules are binary-like images (grayscale images containing
mostly pixels near the two extremes of the dynamic range), whose pixels with large
values (white) represent regions of the target frame that are substantially different
from the reference frame. The connected white pixels of these output images are
expected to represent the silhouettes of anomalous objects. As the current version
of the VDAO database contains only rectangular ground-truth annotations to rep-
resent the position of the anomalous objects, to evaluate the images output by the
aforementioned modules, we use these available rectangular annotations to create
ground-truth binary images to be compared to the output images as shown in Fig-
ure 5.13. Due to the irregular shapes of the anomalous objects, the output images
(as the one in Figure 5.13(c)) are commonly formed by sinuous shapes representing
the silhouettes of the objects. Even though the ground-truth binary images formed
by the bounding boxes (Figure 5.13(b)) are not perfect representations of the ex-
pected output images, in order to avoid a manual re-labeling of the VDAO dataset
to obtain ground-truth silhouettes of the objects, we decided to use the rectangular
ground-truth annotations, which produced satisfactory results. In databases where
anomalous objects are provided at the pixel level (silhouette annotations), the tech-
niques presented in this work can also be used and, as the annotations are more
trustworthy, the results might be improved relative to the ones obtained with the
rectangular bounding boxes annotations.

In a pixel-level comparison of two binary images, the first and straightforward
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(a) target frame (b) ground-truth image (c) output image

Figure 5.13: Examples of a ground-truth image and an output image used to com-
pute the MCC. Given a target frame (a), whose ground-truth bounding-boxes are
provided (in red), a ground-truth binary image (b) is created to be compared to an
image output by the DM, TCM, and MM, as in (c).

metric used to measure the difference between the two images is the mean-squared
error (MSE). However, as in this work the number of white pixels (anomalous) and
black pixels (not anomalous) in the ground-truth images are unbalanced, the MSE
when used as a loss function leads to unsatisfactory results, impairing the learning
process of our model. More specifically, if our model produces a binary image by
randomly guessing the pixel values (black or white) following the same probabil-
ity distribution of the ground-truth images, MSE would provide relatively low loss
values [143–146], as shown in Figure 5.14. Thus, MSE is not able to distinguish
such a random model from a reasonable performing one. Confirming what has been
demonstrated in [146], in our experiments, we observed that using the Matthews
correlation coefficient (MCC) as a loss function to express the differences between
the ground-truth and the output images, better results than the ones obtained with
other metrics such as the MSE have been achieved. Therefore, in order to train and
optimize our pipeline we adopted the MCC.

(a) ACC=0.98, RMSE=0.15 (b) ACC=0.95, RMSE=0.21 (c) ACC=0.93, RMSE=0.26

and MCC=0.70 and MCC=0.49 and MCC=0

Figure 5.14: Comparative metrics: accuracy (ACC), RMSE and MCC. All three
cases (a), (b) and (c) show different detections considering the same ground truth,
represented by the red rectangle. In (b), random false positives were added, and
(c) only random pixels are considered. Note that the accuracy does not vary much
in all 3 cases. The RMSE cannot represent precisely the quality of the detection.
The MCC is reduced when false detections increase, as noted in (b). And MCC=0,
as in (c), when the positives are randomly chosen following the proportion of the
positives in the ground-truth.

MCC is an informative metric to deal with skewed distributions and is calculated
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with the following equation

MCC =
(TP× TN)− (FP× FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (5.3)

where TP, FP, TN, and FN are respectively the numbers of true positive, false
positive, true negative, and false negative pixels of the output image in comparison
with the ground-truth image. In the best-expected case, where FN=0 and FP=0,
MCC is 1, and in the worst case, where TP=0 and TN=0, MCC is −1. When
the probability of the positive detections is equal to the proportion of the positive
samples of the ground-truth, the MCC is zero [146], as shown in Figure 5.14(c).

A more intuitive way of defining the MCC is as follows. If the ground-truth image
is represented as a vector x ∈ Rd×1, where d = m × n, m and n being its height
and width, respectively, and the output image represented as a vector y ∈ Rd×1, the
MCC value can be computed using

MCC =

d∑
i=1

(xi − x̄)(yi − ȳ)√
d∑
i=1

(xi − x̄)2

√
d∑
i=1

(yi − ȳ)2

, (5.4)

where x̄ = 1
d

d∑
i=1

xi and ȳ = 1
d

d∑
i=1

yi are the mean values of the ground-truth and

output images, respectively.
Works [143–145] have indicated that MCC results are more truthful if positive

and negative classes are imbalanced and have the same importance in the expected
classification results. Also, it is important to note that the computation of the MCC
may be undetermined in certain cases, which would prevent its application as a loss
function. Nevertheless, small modifications in the images generating vectors x and
y can be made, making the use of MCC as a loss function feasible, as shown next.

5.2.1 Modifications Necessary to Use MCC as a Loss Func-

tion

The MCC value is undefined if the denominator in Equation (5.4) is 0, which occurs
when xi = x̄ or yi = ȳ, ∀i. Such cases can happen when the binary ground-truth
image x or the output image y is constant, being either an all-white or all-black
image, which is reasonably likely to happen in practical cases. For instance, when
the output of a module is an image with no positives, yi = ȳ = 0, ∀i, as in Figure 5.15
(c), the MCC is undefined. Another case where MCC is undefined can be seen in
Figure 5.15 (d), where the ground-truth target frame does not contain an anomalous
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object, and so xi = x̄ = 0, ∀i. Therefore, we had to make small modifications on
the ground-truth and target frames, to make the use of the MCC as a loss function
possible.

metric value
TP 148
TN 11,041
FP 28
FN 445
MCC 0.45

(a)

metric value
TP 1,195
TN 9,728
FP 0
FN 740
MCC 0.76

(b)

metric value
TP 0
TN 10,936
FP 0
FN 728
MCC undefined

(c)

metric value
TP 0
TN 11,589
FP 74
FN 0
MCC undefined

(d)

Figure 5.15: Examples of images output by the modules DM, TCM, and MM and
their respective metrics. The MCC values are calculated with Equation (5.3). The
red boxes in (a), (b), and (c) represent the areas of the ground-truth annotations
where the anomalous object is located. In (d), there is an example of an output
image whose ground-truth target frame is not anomalous.

The strategy we propose to avoid undefined MCC values is to change the value
of corresponding pixels of both ground-truth image x and output image y in cases
where the conditions xi = x̄ and yi = ȳ occur. To illustrate the proposed strat-
egy, let us consider the examples shown in Figure 5.16. The original images x

and their respective output images y result in undefined MCC values according to
Equation (5.4). Without loss of generality, let us consider all images with resolution
width=W and height=H, and the total number of pixels Z = W ×H. Our strategy
can be summarized in the following cases:

• Case 1: In situations as seen in Example 1 and Example 2, where both ground-
truth x and output images y present all pixels with constant values, a random
pixel in the ground-truth image and its corresponding pixel in the output
image will have their values inverted, resulting in images as shown in (b) and
(d). Therefore, samples in Example 1, which previously led to TP=0, FP=0,
TN=Z, FN=0 and MCC=undefined, are now modified to (b), resulting TP=1,
FP=0, TN=Z − 1, FN=0 and MCC=1. Example 2, which previously had
TP=0, FP=Z, TN=0, FN=0 and MCC=undefined, is now modified to (d),
having TP=0, FP=Z − 1, TN=0, FN=1 and MCC=−1.

• Case 2: In situations as seen in Example 3, where only the ground-truth image
x is formed by pixels with constant values and the output image y contains
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Example 1

(a) Original x (left) and y (right) (b) Modified images x (left) and y (right)

Example 2

(c) Original x (left) and y (right) (d) Modified images x (left) and y (right)

Example 3

(e) Original x (left) and y (right) (f) Modified images x (left) and y (right)

Example 4

(g) Original x (left) and y (right) (h) Modified images x (left) and y (right)

Example 5

(i) Original x (left) and y (right) (j) Modified images x (left) and y (right)

Figure 5.16: Examples of ground-truth x and output images y resulting in undefined
MCC values. Five examples containing pairs of ground-truth x and output y images
are shown in (a), (c), (e), (g) and (i), and their respective modified versions to allow
the computation of MCC are shown in (b), (d), (f), (h) and (j). The outer gray
frame was added around the images just for visualization purposes, since it makes
the image bounds perceptible. The size of the modified pixels was exaggerated for
better visualization.

the total number of anomalous pixels p, being 1 < p < Z, a pixel is selected
in the output image y whose value is different than its corresponding pixel
in the ground-truth image. Then, the selected pixel in the output image and
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its corresponding pixel in the ground-truth image are switched, as seen in (f).
Thus, Example 3 which previously had TP=0, FP=1 < p, TN=Z − p, FN=0

and MCC=undefined, now becomes TP=0, FP=p− 1, TN=Z − p, FN=1 and
MCC= −(p−1)√

(p−1)(Z−1)(Z−p+1)
.

• Case 3: Slightly different from case 2, Example 4 illustrates a situation where
only the ground-truth image is formed by pixels with constant values and
the output image contains a single anomalous (white) pixel p = 1. In this
case, a pixel is selected in the ground-truth image whose value is equal to its
corresponding pixel in the output image. The selected pixel in the output
image and its corresponding pixel in the ground-truth image have their values
inverted (a black pixel becomes white and a white pixel becomes black), as seen
in (h). Thus, Example 4, which previously had TP=0, FP=p = 1, TN=Z− 1,
FN=0 and MCC=undefined, now becomes TP=1, FP=1, TN=Z − 2, FN=0

and MCC= (Z−2)√
2(Z−1)(Z−2)

.

• Case 4: In situations where the output image is formed by pixels with con-
stant values, and the ground-truth image contains a ground-truth object in a
rectangular area formed by a pixels, as in Example 5(i), a pixel in the ground-
truth image inside area a and its corresponding pixel in the output image are
inverted (a black pixel becomes white and a white pixel becomes black), as
seen in (j). Therefore, Example 5(g), which previously had TP=a, FP=Z−a,
TN=0, FN=0 and MCC=undefined, now becomes TP=a− 1, FP=Z − a− 1,
TN=1, FN=0 and MCC= a−1√

(Z−2)(a−1)(Z−a)
. In the training samples used in

this work, there was no case where a = 1.

With this strategy, the MCC can be computed and used as a metric to optimize
the learning parameters of the DM, TCM, and MM, as presented in the following
sections.

5.3 Dissimilarity Module (DM)

Given the input tensors representing features of an aligned pair of reference and
target frames, the goal of the DM is to produce a binary image whose white pixels
represent the most contrasting regions of both frames. The operations performed in
the feature tensors by DM are represented in Figure 5.17.

As explained in the previous section, the frames output by the geometric align-
ment are 324× 576 pixels. When processed by the Resnet-50, each frame results in
256 81 × 144 feature maps. In this new approach, instead of subtracting the fea-
ture tensors (as done in Chapters 3 and 4), the idea is to weight each feature map,
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so those which perceive anomalous regions are accentuated, and the contribution
of those which cannot distinguish the anomalous regions is lessened. Then, more
operations are included in order to produce a binary image, and the richness of the
features tensors can be exploited to a fuller extent than it is by a simple difference.
To that end, since there are 256 feature maps (Tt1 , ...,Tt256) for each target frame,
and 256 feature maps (Tr1 , ...,Tr256) for each reference frame, the first set of oper-
ations contemplates 512 learnable weights, being (wr1 , wr2 , ..., wr256) the weights of
the 256 reference feature maps and (wt1 , wt2 , ..., wt256) the weights of the 256 tar-
get feature maps. The weighted feature tensors are then element-wise subtracted,
forming a unique feature tensor.

In addition, each channel of the resulting tensor is added to a bias (b1, b2, ..., b256)
and is applied a non-linearity, producing one feature map Ti for each input feature
map i = 1, 2, ..., 256, as shown in Equation (5.5). Two different non-linearities were
tested, the tanh and sigmoid functions. As the convergence with tanh required much
fewer iterations and led to lower error rates, in our experiments this function was
preferred over the sigmoid.

Ti = tanh (wriTri − wtiTri + bi1) , (5.5)

where 1 denotes a matrix with the same dimensions as Ti containing only ones.
The output feature maps (T1,T2, ...,T256 are then weighted with another set

of weights (w1, w2, ..., w256), and the resulting channels are added along the channel
axis forming a single feature map with resolution 81×144. To generate a binary-like
image, the feature map is thresholded with a sigmoid function, producing an output
image with values as close as possible to 0 or 1. The set of operations are represented
in the scheme of Figure 5.17.

Figure 5.17: Scheme representing the operations performed by the DM to produce
a 90× 160 binary image. There is a total of 1,025 learnable parameters in the DM.
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A hyperparameter γ and a learnable threshold t are used by the sigmoid function
to produce the output binary image. The sigmoid function is defined as

s(x) =
1

1 + e−γ(x−t) , (5.6)

where γ controls the slant of the function and t is the threshold point which moves
the function along the x-axis. Figure 5.18 illustrates sigmoid functions centered in
t = 0.5 produced with different values of γ. Therefore, the DM output image B is
obtained as

B = sigmoid

((
C∑
i=1

wiTi

)
− t1

)
, (5.7)

with 1 as before.
The partial derivatives of the binary image B with respect to each adjustable

parameter can be obtained with

∂B

∂t
=−γB� (1−B), (5.8)

∂B

∂wi
= γTi �B� (1−B), (5.9)

∂B

∂bi
= γwiB� (1−B)� (1−Ti �Ti), (5.10)

∂B

∂wri
= γwiB� (1−B)�Tri � (1−Ti �Ti), (5.11)

∂B

∂wti
=−γwiB� (1−B)�Tti � (1−Ti �Ti), (5.12)

where � represents the Hadamard point-wise product and 1 is defined as before.
The DM contains, together with the 256 × 3 weights, the 256 biases and the

threshold t, only 1,025 learnable parameters, which makes the proposed structure
well trainable using the VDAO database.

To produce a binary image using the sigmoid function, its steepness is controlled
by a hyperparameter γ, which has to be adjusted according to the range of the
values of the expected output image. The higher the γ value, the closer to a step
function the sigmoid function becomes, producing images containing values closer to
0 or 1 and, therefore, being suited to be used in the same way as ones produced by
a hard threshold. This can be observed in Figure 5.18, where to produce an output
image with values being either 0 or 1, a higher γ value should be preferably chosen.
Nevertheless, the very large values of γ that are necessary to generate outputs equal
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Figure 5.18: Sigmoid functions represented by Equation (5.6) with t = 0.5 and
different values of γ.

to 0 or 1, tend to produce very large gradient values in the backpropagation process,
and thus hinder the learning process of all parameters of the DM. This point will
be further explored by a simple analysis as done in the sequel.

Consider the scheme exemplified in Figure 5.19. The input variable a passes by
two functions g(a) and s(x) before being transformed into the output y. Function
s(x) represents the sigmoid from Equation (5.6). The output y is then compared
to the expected output ŷ through the loss function loss. The p and t are learnable
parameters of functions g(a) and s(x), respectively. According to the chain rule, the
gradient of the loss with respect to the parameter p is given by

∂l

∂p
=
∂l

∂y
× ∂y

∂x
× ∂x

∂p
. (5.13)

In accordance with the gradient descent algorithm, the update of parameter p in the
iteration i is given by

pi = pi−1 −
∂l

∂p
η, (5.14)

where η is a chosen learning rate.
The derivative of the sigmoid function s(x) = y from Equation (5.6) with respect

to the input x is given by:

∂y

∂x
= γy

(
1− y

)
. (5.15)
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Gathering all equations into Equation (5.14), we have:

pi = pi−1 − γη
∂l

∂y

∂x

∂p
y
(
1− y

)
. (5.16)

If a high enough γ is chosen, so that the sigmoid function produces an output
y = 0 or y = 1, one can see from Equation (5.16) that p = pi=1 and parameter p is
never updated. The same problem occurs in the updating process of threshold t. In
this work the hyperparameter γ = 10 value was empirically chosen to produce an
output image as close as possible to a binary image, such that the threshold t can
be learned.

Figure 5.19: Scheme representing operations performed in sequence by a function
g(x) and a sigmoid function s(x) to transform the input a into the output y, which
is compared to an expected value ŷ. The update of the learnable variable p is
determined by Equation (5.14) using the computed gradients represented in red.

The examples in Figures 5.21, 5.20 and 5.22 show outputs produced by a trained
DM under different circumstances. In all cases, the white pixels in the output
images represent dissimilar regions between the reference and target frames. Such
regions represent an anomalous object, a misaligned region, or reflections on metallic
surfaces.

The DM applied in the deep features proved to be very robust to illumination
differences on non-reflecting surfaces, but very sensitive to shadows and misaligned
regions between target and reference frames. In some frames, the anomalous objects
have not entered the scene yet or have already left the scene, but their shadows are
detected by the DM. As the DM does not take into account the semantic content of
the scene, it is not able to distinguish if a region with strong dissimilarities refers to
the presence of objects or to their shadows. Figure 5.20 shows an example where the
shadow of an object that is not in the scene is noted by the dissimilarity module.

Even though the geometrical alignment of reference and target videos improves
the registration of the frames, the movement of the camera hinders perfectly aligned
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frames. Such a problem affects the assertiveness of the image produced by the DM.
As small anomalous objects can also be noted by the DM, artifacts caused by a
poor alignment and small objects cannot be distinguished by the DM, as seen in
Figure 5.22. Many false positive pixels in the output of the DM are associated with
spatially misaligned regions of the target and reference frames. Such sensitivity of
the DM requires further post-processing modules, which are described next.

(a) reference (b) target (c) output DM

Figure 5.20: Example of a pair of aligned frames where no anomalous object is
present in the target frame. The red arrow was added on the target frame pointing
to a shadow area produced by an anomalous object which is not present in the scene.

Example 1

(a) reference (b) target (c) output DM

Example 2

(a) reference (b) target (c) output DM

Figure 5.21: Examples of pairs of aligned reference and target frames under different
illuminations. The arrows added on target frames (b) point to regions where the
object is present and the differences in illumination have the most contrast. Their
respective outputs produced by the DM are shown in (c).
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Example 1

(a) reference (b) target (c) output DM

Example 2

(a) reference (b) target (c) output DM

Example 3

(a) reference (b) target (c) output DM

Figure 5.22: Examples of outputs produced by the DM given pairs of aligned frames
under the same illumination. Red arrows are added on target frames pointing to the
anomalous objects. The output produced by the DM shows white pixels representing
objects and/or noises caused by a not-perfect alignment. Example 3 shows a very
small object on the target frame that can be easily misidentified as noise on the
output image of the DM.

5.4 Temporal Consistency Module (TCM)

Although the DM is robust to produce binary images revealing most of the struc-
tural differences between the target and reference frames, it is unable to ignore the
differences caused by light reflections, misalignment, and shadows varying in consec-
utive frames. The TCM aims to reduce false positive pixels in consecutive frames.
Visually, such false positive regions are noted as ‘blinking points’ as demonstrated
in Figure 5.23.

To remove false positive pixels that are not present in consecutive output im-
ages, a temporal voting window Wt,s with size s and centered in t is adopted. To
keep the positive pixels (represented in white) of frame t, corresponding pixels in
its neighboring frames are evaluated. The adopted criterion only keeps a positive
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(a) Output frame t (b) Output frame t+ 1 (c) Output frame t+ 2

(d) Output frame t+ 3 (e) Output frame t+ 4 (f) Output frame t+ 5

Figure 5.23: Examples of six consecutive frames produced by DM. Note the existence
of false positive pixels producing the blinking effect on the left side of images (c)
and (d).

(white) pixel at position (x, y) in frame t, if most pixels in the position (x, y) of
frames within window s are also positive (white).

The TCM is optimized by comparing its output image with the ground truth
using the MCC metric. Therefore, to choose the best window size, different window
sizes are evaluated (1, 3, 5, 7, 9, 11, 13 and 15), and the one that achieves the best
MCC value is picked.

5.5 Differentiable Morphology Module (MM)

Mathematical morphology operations can transform the shape of objects while pre-
serving their structures [147]. Their applications are broad and include texture and
image segmentation [148], shape identification for background removal, [147], noise
suppression [149], among many others.

In morphological operations, a set represents a group of pixels within a binary
or gray level image. A morphological operation consists of probing pixels of image f
with the set b, called structuring element. The most basic morphological operations
are erosion and dilation. Erosion transforms each pixel f(x, y) by replacing it with
its minimum over the structuring element; conversely, dilation transforms each pixel
f(x, y) by replacing it with its maximum over the structuring element. In their most
general form, if f is a gray-level image and b is a non-flat structuring element, erosion
and dilation are represented by Equations (5.17) and (5.18) [150], respectively,

[f 	 b](x, y) = min
(s,t)∈b

{f(x+ s, y + t)− b(s, t)} (5.17)
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[f ⊕ b](x, y) = max
(s,t)∈b

{f(x+ s, y + t) + b(s, t)} (5.18)

Since the min and max are non-differentiable operations, morphological oper-
ations cannot be directly integrated in a backpropagation-based learning frame-
work, such as a neural network. Many works have proposed alternatives to ap-
proximate such functions by differential operations, so they can be used in neural
networks [151–153].

In the context of this work, as the input and output samples of the MM are
expected to be binary-like images1 it is useful to describe the erosion and dilation
operations within the context of set theory. We define a binary image as a subset
of Z2 containing its white pixels only. Each element i of the set is a white pixel
represented by a vector with two coordinates xi = (x, y). Given two sets A,B ∈
Z2, we also define the following operations [150], which are further illustrated in
Figure 5.24.

• Complement: AC = {x | x 6∈ A}

• Intersection A ∩B = {x | x ∈ A and x ∈ B}

• Translation: Az = {c | c = a + z, a ∈ A}

• Difference: A−B = {x | x ∈ A and x 6∈ B} = A ∩BC

• Reflection: Â = {x | x = −b,b ∈ A}

set A (b) set B

(c) AC (d) A ∩B (e) Az (f) A−B (g) Â

Figure 5.24: Set operations applied to binary images.

1In this work, a binary-like image is an image whose pixels are either very similar to the
maximum value or very similar to the minimum value of the image. An example of a binary-like
image is one output by a steep sigmoid function given a regular image in the input.
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Based on the set operations above, with set A ∈ Z2 representing the white pixels
of the image, and B ∈ Z2 a structuring element, the binary morphological operation
erosion is defined as

A	B = {z | Bz ⊆ A}, (5.19)

that is, erosion of A by B is the set of all z such that B translated by z is contained
in A.

The binary morphological operation dilation is defined as

A⊕B = {z | B̂z ∩ A 6= ∅}, (5.20)

that is, dilation of A by B is the set of all structuring element origin locations where
the reflected and translated B overlaps A by at least one element.

It is important to mention that erosion and dilation are dual operations, which
means one can be defined in terms of the other. The dilation operation A⊕ B, for
instance, can be also expressed in terms of erosion. By eroding the complement of
image A with B̂, and complementing the result, one can obtain the dilation A⊕B.
Therefore,

A⊕B = (AC 	 B̂)C . (5.21)

Erosion and dilation can be combined resulting in other operations. Opening, for
instance, is the dilation of the erosion of a set using the same structuring element.
Closing, on the other hand, is the erosion of the dilation of a set with the same
structuring element. Thus, opening is defined as

A ◦B = (A	B)⊕B, (5.22)

and closing as
A •B = (A⊕B)	B. (5.23)

One can combine Equation (5.21) with Equation (5.22) and Equation (5.21) with
Equation (5.23) to represent opening and closing operations by means of erosion only.
Thus, opening and closing operations become, respectively

A ◦B =
(
(A	B)C 	 B̂

)C
) (5.24)

and
A •B = (AC 	 B̂)C 	B. (5.25)

Considering the most basic morphological operation, the binary erosion of image
A by the structuring element B is interpreted as the position of all points reached by
the center of B when B is completely inserted into A, as illustrated in Figure 5.25.

Figure 5.26 shows the results of four morphological operations using a circular
structuring element. Note that the shape of the object in the eroded image shown in
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(a) (b)

Figure 5.25: Erosion of the foreground (white square) with a structuring element
(blue circle) producing the eroded image represented by the yellow shape. (a) situ-
ations where the structuring element is not completely inserted into the foreground,
so its center will not produce the eroded image. (b) situations where the structuring
element is completely inserted into the foreground, so its center will produce the
eroded image.

Figure 5.26(c) is a shrunk version of its original shape. All groups of white pixels in
the original image whose areas cannot be contained within the structuring element
are removed by the erosion. As seen in Figure 5.26(d), the dilation expands the shape
of the objects. The opening in Figure 5.26(e) is the dilation of the shrunk shape.
As the erosion removed completely the two smallest structures from the original
image, the subsequent dilation increases the remaining structure. The opening can
be interpreted as an attempt to remove small objects while preserving their original
size and shape. The results of the closing operation, as illustrated in Figure 5.26(f),
represent an erosion of the dilated structure shown in (d). The closing operation,
as its name suggests, is used to fill holes in the image, while trying to preserve the
size and shape of the structures in the image.

In the context of this work, our goal is to design the MM so that it can remove
residual false positives produced by the DM, such as the ones shown in Figure 5.22.
The opening and closing morphological operations applied consecutively in the bi-
nary image produced by the DM meet our needs. The opening can be applied to
remove false positive pixels without affecting drastically the shape of the original
object, and the closing operation can be used to fill possible holes in the produced
blobs. As the sizes of the blobs vary, the radius of the structuring element must be
learned from training and validation sets. One option is to adjust the radius of the
structuring element in the MM as a hyperparameter during validation. However,
more powerful architectures might be obtained if such radius could be a learnable
parameter during the training phase, using, for example, the backpropagation al-
gorithm. Unfortunately, as pointed out above, neither the erosion nor the dilation
operators are differentiable with respect to their structuring element radii, which
makes them unsuitable for being learned in a neural network architecture.

One of the contributions of our work is the approximation of morphological
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(a) image A (b) structuring element B

(c) erosion A	B (d) dilation A⊕B (e) opening A ◦B (f) closing A •B

Figure 5.26: Examples of results obtained with four morphological operations ap-
plied in A (a) using a circular 21× 21 structuring element B (b).

operations using operators that are differentiable with respect to the structuring
element size. This way, the sizes of the structuring elements could be learned inside
a neural network, for example. Our strategy to obtain such approximations of
morphological operations consists in expressing them as a function with the following
characteristics:

(i) It should be parameterizable by the radius structuring element.

(ii) It should be differentiable with respect to this radius.

(iii) The pipeline used to approximate the function must be capable of back-
propagating gradients in a neural network pipeline.

In the sequel we detail a new approach that allows one to obtain functions with
characteristics (i) for approximating erosion and dilation operations.

Morphological Operations as Functions Parameterized by Their Radii

We start by approximating the erosion operation by using a convolution followed by
thresholding. The dilation is obtained from the erosion using the property expressed
in Equation (5.21). The process to approximate the erosion by a convolution fol-
lowed by thresholding can be better understood by analyzing how a one-dimensional
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erosion can be obtained. In the binary one-dimensional mathematical morphology,
the structuring element h(x) is a pulse of width ∆, defined by the equation below:

h(x) =

1, if −∆
2
≤ x ≤ ∆

2

0, otherwise.
(5.26)

Likewise, an object f(x) of width L that extends from xmin to xmax = xmin + L can
be represented by the pulse given by

f(x) =

1, if xmin ≤ x ≤ xmax

0, otherwise.
(5.27)

In the case of the erosion operation, one has to identify the regions of the x
axes where the structuring element h(x) is totally contained inside the set where
f(x) = 1. The discrete convolution given by the equation

g(x) = f(x) ∗ h(x) =
∞∑

x′=−∞

f(x′)h(x− x′). (5.28)

Figure 5.27 illustrates the convolution process between a structuring element
h(x) and f(x). The convolution result represents the intersection area between
both signals, and its highest possible value occurs when the structuring element is
completely inserted into the foreground.

The expression of the convolution is

g(x) =



0, if x ≤ xmin − ∆
2

x−
(
xmin − ∆

2

)
, if xmin − ∆

2
< x ≤ xmin + ∆

2

∆, if xmin + ∆
2
< x ≤ xmax − ∆

2

−x+ xmax + ∆
2
, if xmax − ∆

2
< x ≤ xmax + ∆

2

0, otherwise,

(5.29)

where ∆ represents the area of the structuring element h(x). From Figure 5.27, one
can see that the structuring element is totally inserted into the background when
the convolution result is equal to the area of the structuring element, which is the
case when g(x) = ∆, as seen in Equation 5.29. Such verification can be done with
a hard thresholding function v(x), so that

v(x) =

0, if g(x) < ∆− ε

1, otherwise.
(5.30)
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(a)

(b)

(c)

(d)

(e)

Figure 5.27: Example of convolution g(x) = f(x)∗h(x). The convolution result g(x)
(green) is computed with Equation 5.29 considering xmin = −3, xmax = 3 and ∆ = 2.
By moving the structuring element h(x) (red), whose area is ∆, the convolution
result g(x) represents the intersection area between h(x) and f(x). When h(x) is
completely inserted into f(x), as in (b), (c) and (d), g(x) = ∆ = 2, which is the
area of h(x). The orange area represents the regions where g(x) = ∆ = 2.
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This way, the desired erosion operation of a binary foreground f(x) with a struc-
turing element h(x) is approximated by the convolution g(x) = f(x) ∗ h(x) followed
by a hard thresholding function v(x), as in Equation (5.30). Larger values of ε pro-
duce larger versions of the eroded f(x), as depicted in Figure 5.28. The parameter ε
can be seen as a tolerance value that is used to control when the structuring element
starts being considered as totally inserted into f(x).

(a) v(x) = 0 if g(x) < 2, otherwise v(x) = 1

(b) v(x) = 0 if g(x) < 1.7, otherwise v(x) = 1

(c) v(x) = 0 if g(x) < 1.4, otherwise v(x) = 1

(d) v(x) = 0 if g(x) < 1.05, otherwise v(x) = 1

Figure 5.28: Erosion results obtained with convolution followed by thresholding
with different ε values. The results of the thresholding operation, computed with
Equation (5.30) and represented by the orange areas, correspond to the eroded f(x).

Following the duality of erosion and dilation, we can express the dilation of the
foreground f(x) with the structuring element h(x) by computing the erosion of the
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complemented f(x) with h(x), and compute the complement of the obtained result,
similarly as shown in Equation (5.21). Therefore, the dilation is determined by
applying the convolution g(x) =

(
1 − f(x)

)
∗ h(x), followed by the inversion of

the result produced by the thresholding function v(x). Figure 5.29 illustrates the
dilation operation by means of a convolution followed by thresholding considering
ε = 0. Note that the gray area in Figure 5.29(e) represents the dilation of f(x)

computed with the inversion of Equation (5.30), which is v(x) = 1 if g(x) < ∆ and
v(x) = 0, otherwise.

Figure 5.30 shows dilation results obtained with different values of ε, used to
reduce the area of the dilated foreground. Note that differently from erosion, a
higher ε value produces a smaller dilated area of the foreground.

All things considered, as we are dealing with images (2D discrete signals), in-
cluding one extra dimension into the discrete 1D convolution represented in Equa-
tion (5.28), the 2D discrete convolution can be expressed as

g(x, y) = f(x, y) ∗ h(x, y) =
∞∑

x′=−∞

∞∑
y′=−∞

f(x′, y′)h(x− x′, y − y′), (5.31)

and the thresholding in Equation (5.30) now becomes

v(x, y) =

0, if g(x, y) < V− ε

1, otherwise.
(5.32)

Note that in the 2D case, Equation 5.32 replaces the area ∆ of the structuring
element by the volume V of the 2D discrete structuring element.

Similarly to the 1D case, the structuring element h(x, y) can be designed to have
any desired shape.

A straightforward way to create a 2D structuring element from a generic 1D
function h(x) is to shift h(x) to x = R and rotate it around the origin. One
can achieve this by using the unit step function u(x), yielding the two-dimensional
structuring element hR(x, y) below:

hR(x, y) = 1− u
(√

x2 + y2 −R
)
, (5.33)

as illustrated in Figure 5.31. Equations (5.31), (5.32) and (5.33) define a pipeline
for the approximation of a morphological erosion operation by the convolution of
a function hR(x, y) that is parameterized by the radius R. It thus satisfies char-
acteristic (i) above. However, since Equation (5.33) relies on a unit step function
u(x) that is not differentiable, the pipeline does not satisfy characteristic (ii). In
addition, since Equation (5.32) implements a hard threshold that is not able to back-
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(a)

(b)

(c)

(d)

(e) v(x) = 1 if g(x) < ∆, otherwise v(x) = 0

Figure 5.29: Example of convolution g(x) = (1 − f(x)) ∗ g(x) with xmin = −3,
xmax = 3 and ∆ = 2. In this example, ε = 0. The convolution is now applied in
the inverted foreground 1−f(x) producing g(x) (green). By moving the structuring
element h(x) (red), the convolution result represents the intersection area between
h(x) and 1− f(x). In the final result, shown in (e), the orange areas represent the
regions where g(x) = ∆ = 2. The remaining area, colored in gray, represents with 1
the region where v(x) < ∆, and corresponds to the dilated foreground f(x).
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(a)

(b)

(c)

(d)

Figure 5.30: Dilation results obtained with convolution followed by thresholding
with different ε values. By computing the convolution g(x) =

(
1 − f(x)

)
∗ h(x)

followed by a thresholding function v(x, y) with Equation (5.30) using different ε
values, the dilation of f(x) is produced, and are represented by the gray regions.

propagate gradients when used in a neural network, the pipeline also does not satisfy
characteristic (iii). In the sequel, we introduce a way to approximate morphological
operations that also satisfies characteristics (ii) and (iii).
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(a) (b)

Figure 5.31: Rotation of the step function shifted to x = R (a) around the point
(0, 0) (red dot) using Equation (5.33) produces (b).

Using Sigmoid Function to Obtain Morphological Operations that Are
Differentiable with Respect to Their Radii and Can Back-Propagate Gra-
dients

As pointed out above, the proposed solution generates an approximation of a mor-
phological erosion that is neither differentiable with respect to its radius nor can
back-propagate gradients in a neural network. This is so due to the presence of the
step function in Equation (5.33) and the hard threshold in Equation (5.32), that are
not differentiable. In order to generate a learnable morphological erosion structure,
both the structuring element hR(x, y) and the thresholding function v(x, y) should
be differentiable.

In this work we employ sigmoid functions, that are differentiable everywhere,
to replace the unit step function u(x) in the structuring element hR(x, y) (Equa-
tion (5.33)) and the thresholding function v(x, y) (Equation (5.32)).

The sigmoid function, previously illustrated in Figure 5.18 and presented in
Equation (5.6), rewritten as Equation (5.34), is fully differentiable and its slant
(derivative at x = 0) is controlled by a hyperparameter γ:

s(x) =
1

1 + e−γx
. (5.34)

The structuring element hR(x, y) in Equation (5.33) can be differentiable with
respect to R by replacing the unit step u(x) by the sigmoid s(x), yielding

hR(x, y) = 1− s
(√

x2 + y2 −R
)
. (5.35)

Figure 5.32 illustrates structuring elements produced with different values of γ,
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which influences the slant of the sigmoid, and thus the smoothness of the circum-
ference. The higher the γ, the closer the structuring element becomes to a solid
cylinder.

To approximate the erosion of a binary image f(x, y) by applying a convolu-
tion followed by a thresholding, Equation (5.31) is used to compute the convolution
g(x, y) considering h(x, y) = hR(x, y), the circular structuring element that is dif-
ferentiable with respect to R. In order for the gradients to back-propagate if this
approximation of the erosion operation is used in a neural network, the threshold-
ing function v(x, y) from Equation (5.32) must also be differentiable. To this end,
we also used the sigmoid function s(x) from Equation (5.34) as the thresholding
function, yielding

v(x, y) = s
(
g(x, y)− (V − ε)

)
, (5.36)

where s(x) is the sigmoid function defined in Equation (5.34), V is the volume of
the structuring element and ε is used to control how early the structuring element
is totally inserted into the foreground, as in the 1D case.

The goal of the Morphology Module (MM) is to learn the radii of circular struc-
turing elements to perform opening and closing operations in sequence to eliminate
false positive pixels while keeping the shape of the anomalous object (represented
by white blobs as in Figure 5.37). Although circular structuring elements produced
in a 41 × 41 grid using very high values of γ do not change its appearance and
shape, and do not influence the convolution results, the value of γ affects directly
the computation of gradients concerning the radius, as seen in Equation (5.37).

∂h(x, y)

∂R
= γh(x, y)(1− h(x, y)). (5.37)

Note that the larger the value of γ, the better the sigmoid function s(x) approx-
imates the unit step function u(x). However, a very large γ may generate numerical
problems in the propagation of the gradients. A good compromise was found em-
pirically to be γ = 5, as it avoids the problem of vanishing the local gradient and
works well for kernels with resolution 41 × 41, which can fit circular kernels with
radius 1 < R < 20, as shown in the examples in Figure 5.33.

The 2D convolution represented in Figure 5.34 is implemented using the dif-
ferentiable approximation analyzed in this section, that uses the convolution with
a sigmoidal structuring element with a binary object. It is noted that when the
structuring element is completely inserted into the object, the convolution result
represents the intersection volume between the structuring element and the object,
being within the interval [0, V ], where V is the volume of the structuring element.
But in practice, as the structuring element is not a complete binary structure due
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γ = 0.005 γ = 0.01 γ = 0.015 γ = 0.020 γ = 0.025

γ = 0.030 γ = 0.035 γ = 0.040 γ = 0.045 γ = 0.05

γ = 0.055 γ = 0.060 γ = 0.065 γ = 0.070 γ = 0.075

γ = 0.080 γ = 0.085 γ = 0.090 γ = 0.095 γ = 0.1

Figure 5.32: 41×41 circular kernels generated with Equations (5.6) and (5.33) with
different values of γ and fixed R = 10.

to the selected value of γ = 5, the output of the convolution is within an interval
[0, V − ε], where ε is an empirical value used to disregard 8% of the structuring ele-
ment volume (see Equation (5.36). The value ε = 0.08V works well for all sigmoidal
structuring elements generated with γ = 5. The value of ε = 0.08V means that the
erosion operation will output a “foreground” (high) value whenever more than 92%

of the structuring element’s volume is totally inserted into the foreground. In our
experiments this threshold is fixed and applied with a sigmoid function according
to Equation (5.32) with γ = 10 and volume = 0.92V . Using this approach, it is
possible to obtain at the output a binary-like image whose high level pixels represent
regions where 92% of the structuring element is inserted into the object. This is
equivalent to a binary erosion performed with a structuring element of 8% less area
than the original structuring element.

Due to the dual relation between erosion and dilation in Equation (5.21) (whose
1-D approximation is illustrated in Figure 5.30), the morphological operations dila-
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R = 1 R = 2 R = 3 R = 4 R = 5

R = 6 R = 7 R = 8 R = 9 R = 10

R = 11 R = 12 R = 13 R = 14 R = 15

R = 16 R = 17 R = 18 R = 19 R = 20

Figure 5.33: All possible 41 × 41 circular structuring elements to be learned by
the MM generated with Equations (5.6) and (5.33) considering γ = 5 and different
values of R.

(a) (b)

Figure 5.34: Illustration of convolutions applied to a binary image f containing a
square object with a circular binary kernel h, whose center g(xc, yc) is represented by
the red pixel. The convolution is computed with Equation (5.31), and the resulting
value in (xc, yc) represents the intersection area between the kernel h and the object,
highlighted in blue. It is noted in (b) that when the kernel is completely inserted
in the object, the convolution result in (xc, yc) represents the volume of the circular
kernel.

tion, opening and closing can be executed with complement, convolution and thresh-
olding operations. Figure 5.35 illustrates the combination of such operations when
applied to a given input image. One can readily see that it produces similar results
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with the ones obtained with the binary morphological operations from Figure 5.26.

(a) approximated opening operation

(b) approximated closing operation

Figure 5.35: Approximated opening (a) and closing (b) operations performed by
combining convolutions and thresholding operations. The convolutions were per-
formed with a sigmoidal structuring element generated with γ = 5 and R = 8 (see
Figure 5.33). The threshold operations were executed with sigmoid functions pro-
duced with Equation (5.6), considering t = 0.95V , being V the structuring element
volume, γ = 10 for the erosion thresholds, and γ = 5 for the dilation thresholds.

In brief, since the erosion operation can be approximated by a convolution fol-
lowed by a thresholding operation, and the opening and closing operations can be
produced in terms of the erosion, using Equations 5.24 and 5.25, respectively, then
opening and closing can also be approximated by convolutions and thresholding
operations.

Another critical problem in designing differentiable opening and closing opera-
tions is that when binary morphological operations are used, there are cases in which
the output of an opening or closing operation is independent of the structuring ele-
ment radius. Supposing one could implement a differentiable erosion operation that
would be exactly equivalent to the binary case, if such a situation happens during
the training with a neural network, the derivatives with respect to the structuring
elements would be zero, and the radius value would not be learned. Figure 5.36 il-
lustrates binary morphological operations where the same foreground is being closed
(dilation followed by erosion) with structuring elements of different radii. Note that
the results produced by the dilation clearly vary according to the structuring el-
ement radius. Nevertheless, when the erosion is applied in sequence, the dilated
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foreground returns to its original format. The same behavior could be observed in
the opening operation. This clearly illustrates that, when using binary morphologi-
cal operations, there are cases where the derivative with respect to the radius of the
closing operation is zero. It is important to note that the proposed differentiable
approximations of morphological operations naturally address this problem by using
sigmoid functions for creating the structuring elements. Due to its smooth dome-
like shape, the sigmoidal structuring element is not only differentiable regarding
the equation that generated it, but also prevents opening and closing operations to
produce the same results with different radii.

Example 1

Example 2

Figure 5.36: Dilation followed by erosion of a foreground with structuring elements
of different radii. In Example 1, the structuring element has a larger radius than
the structuring element in Example 2, and the foregrounds are identical in both
examples. The dashed shape represent the dilated area with its respective structur-
ing element. Note that eroding the dilated foreground produces the same original
foreground image.

Examples of morphological operations produced by the trained differentiable
morphology module (MM) can be seen in Figure 5.37. Note the small blobs in
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the input images are removed with the differentiable opening operation while their
shapes are sustained. The images in Figure 5.37 (b) are transformed with the
differentiable closing operation and the wholes are filled. Note that as the ground-
truth blobs used to train the MM are rectangular bounding boxes, the closed images
tend to deform the blob, as it is not optimized based on the object original shape.

Example 1

(a) input image (b) opened with MM (c) closed with MM

Example 2

(a) input image (b) opened with MM (c) closed with MM

Example 3

(a) input image (b) opened with MM (c) closed with MM

Example 4

(a) input image (b) opened with MM (c) closed with MM

Figure 5.37: Examples of frames transformed with the differential morphology op-
erations. Images (a) are input images. They are then transformed with the differen-
tiable opening operation, producing images (b), which are transformed with closing
differentiable operation, producing images (c). Note that most of the noise in (a)
are removed with the opening operation. The holes in (b) are filled after the closing
operation.

In the next section, the module responsible to classify the closed images as
anomalous or non-anomalous is presented.
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5.6 Classification Module (CM)

The goal of the proposed pipeline is to classify the aligned pair of reference and
target frame. All previous modules (DM, TCM and MM) produce images with
blobs representing the location of the anomalous objects. Along the pipeline, each
module has a predefined task so that false positive regions are eliminated and false
negative regions are incorporated into the blob.

The classification module (CM) considers the amount of pixels whose values
are not 0 by summing all pixel values within the input image, dividing it by the
amount of pixels in the image (width×height). In other words, the CM evaluates
the fraction of the image represented by blobs. Thus, an image without any blob
will produce 0 and an image dominated by blobs (white pixels), it will produce 1.
This fraction of the image represented by blobs is then thresholded with a sigmoid
function generated with Equation (5.6), enabling the threshold value to be learned by
means of the backpropagation of the computed gradients. The value γ = 5,000 was
empirically chosen, producing a sigmoid very close to a step function, but still able
to allow the backpropagation of the gradient. The role of the CM is similar to the
thresholding function represented by Equation 5.32, but now instead of evaluating
the g(x, y), it considers the fraction of the image represented by blobs and the value
of ε is set to 0.

In a perfect scenario, where the input image of the CM does not contain false
positive pixels, it is expected to learn a threshold very close to 0, as it will be able
to distinguish images with very small anomalous objects. In the VDAO database,
with the movement of the robot, when the object is entering or leaving the scene,
it usually produces very small blobs, that is the reason why the learned threshold
represents a small value.

5.7 Training, Validating and Testing

The procedure to train, validate and test the network proposed in this work is
described in this section.

Differently from the approaches covered in previous chapters, the training process
of the network proposed in this chapter (see the pipeline in Figure 5.1) is done as
the usual process of training a regular CNN. Training samples are passed by the
network into batches, and after a complete training epoch, a validation set is used
to measure the generalization capability of the network. The epoch in which the
model produces the lowest loss value in the validation set is considered to have the
best set of learned parameters, and thus, they are used to measure the network
performance on the testing set.
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As discussed in Section 3.5, to avoid contamination between training, validating
and testing sets, we split the samples into folds. The division of the target objects
in folds is shown in Table 5.1 and the number of samples used in each fold are in
Table 5.2. Each fold was trained separately, and thus, for each fold a network with
different parameter values is produced.

Table 5.1: Separation of objects into folds used to train, validate and test the network
presented in the current chapter.

fold black
backpack

black
coat

brown
box

camera
box

dark-blue
box

pink
bottle shoe towel white

jar
1 validation testing training training training validation training training validation
2 testing training validation training training training validation training validation
3 training training testing validation validation training training validation training
4 training training validation testing validation training validation training training
5 validation validation training validation testing training training training training
6 training training training training validation testing validation training validation
7 training validation validation validation training training testing training training
8 validation training training validation training validation training testing training
9 training validation training trsaining training validation training validation testing

Table 5.2: Number of training, validation and testing samples per fold.

fold training samples validation samples testing samples
1 11,818 4 623 1,206
2 12,498 3,618 2,010
3 12,636 3,618 1,206
4 13,616 3,618 1,206
5 10,862 4,422 1,206
6 14,862 3,618 1,407
7 12,118 3,618 1,206
8 11,680 4,623 1,206
9 12,384 3,819 1,206

During training, batches are expected to be balanced, having the same amount
of anomalous and not anomalous pair of frames. Nevertheless, the selection of the
best voting window performed by the TCM requires the analysis of consecutive pairs
of frames, which does not guarantee balanced batches. To overcome such problem,
the network was trained in parts, so each module is trained separately one epoch at
a time.

Even though the γ value of the sigmoid function responsible for classification
in the DM is adjusted to permit the existence of local gradients, training all mod-
ules at once produced a lot of instability. The gradient computed by means of the
classification loss is vanished when back-propagated until reaching the MM. Train-
ing networks in parts or setting a training schedule for each module are solutions
proposed by different works to avoid the vanishing gradient problem [154–156].

First, the DM is trained for one epoch with batches containing balanced pair of
frames. The batch loss is measured with the MSE of the MCC, computed between
the output image and a ground-truth binary image created with the bounding box
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ground-truth coordinates, as illustrated in Figure 5.13. Next, the TCM will choose
the best voting window that obtains the best MCC in consecutive frames for one
epoch. For that, the DM parameters are frozen, and batches with 15 consecutive
frames are passed by the network and evaluated by the TCM. Then, the MM is
trained considering batches of consecutive frames for one epoch. When consecu-
tive frames pass by the TCM, due to its voting processing, a single binary image
is produced. Thus, 15 batches, each formed by consecutive frames, are input into
the network, and the TCM’s outputs are accumulated until a full batch is com-
pleted. This batch is then used to train the MM. The MCC of the output image is
computed, and its distance to its optimum value MCC=1 is measured with MSE.
Finally, the CM is trained for one epoch, similarly as done with the MM: a set of 15
batches, formed by consecutive frames, are sequentially input into the network and
accumulated after the TCM, which will produce one full batch of 15 samples. This
batch continues its path until the CM classifies the samples. We have tried to use
the binary cross entropy loss to measure the loss of the final classification, but it
was very unstable. As the MSE proved to be more robust, the classification error is
computed with MSE. A complete training epoch is accounted when all modules are
trained considering all samples. For each fold, 100 training epochs were performed.

We used the Adam optimizer [157] for training with hyperparameters β1 = 0.9,
β2 = 0.999, ε = 1×10−8, and initial values and learning rates were adjusted according
to each parameter as shown in Table 5.3.

Table 5.3: Parameters and learning rates used to train the proposed network.

modules parameters initial values learning rates

DM

reference weights (wr1 , wr2 , . . . , wr256) [1, 1, . . . , 1] 1× 10−2

target weights (wt1 , wt2 , . . . , wt256) [1, 1,. . . ,1] 1× 10−2

bias (b1, b2, . . . ,b256) [1, 1,. . . ,1] ×10−2 2× 10−4

combination weights (w1, w2, . . . , w256) [1, 1,. . . ,1] 2× 10−2

sigmoid threshold (t) −2.15 3× 10−2

MM radius opening 1 1× 10−4

radius closing 1 13× 10−3

CM sigmoid threshold 2× 10−2 1× 10−4

During the training, each module was able to adjust their learning parameters
in order to optimize the MSE considering their respective outputs. As explained
in Section 5.3, the DM contains 1,025 learning parameters. Figure 5.38 shows the
final parameters learned by the DM in epoch 56, which was used in the validation
and testing sets. The weights used to multiply the target feature maps in Fig-
ure 5.38(a) which have reached the highest values may be associated with the most
discriminative feature maps. But it needs further investigation to be confirmed.

The learnable parameters of the MM are the opening and closing radii of the
sigmoidal structuring elements. Figure 5.39 shows the evolution of such parameters
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along the training epochs in fold 5. Due to the small false positive blobs, the
opening radius stays almost constant in 1, being able to remove blobs with an
area close to 3 = π × R2. As the blobs in general have irregular shapes and the
morphology is optimized considering rectangular bounding boxes, the radius of the
closing structuring element tends to reach higher values to grow the blobs, so it
reaches areas close to the ground-truth bounding box areas.

As the CM learns the threshold value responsible to classify the pair of frames
as anomalous and not anomalous by verifying the percentage of the input image
containing white pixels, it is expected to learn a threshold with low value so it can
consider small objects as anomalous. It will indeed fail if the input image contains
object blobs larger than blobs formed by residual noise not removed by previous
modules. Figure 5.40 shows the classification threshold learned in fold 5 along the
training. It stabilizes around 0.068%, which classifies as anomalous, input images
containing more than 8 white pixels.

The comparative training losses obtained for each fold in each module are shown
in Figure 5.41. It is noted that losses of all modules decrease along the training in
all folds, being evident the learning ability of the proposed network. Due to the
dependency of outputs of previous modules, the CM takes more epochs to stabilize
than the other modules.

In the next section, the results obtained by each module are presented.
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(a) learned weights used to multiply the reference and target feature maps

(b) learned bias ([b1, b2, ..., b256])

(c) learned weights ([w1, w2, ..., w256])

Figure 5.38: Parameters learned by DM during training of fold 5 in the 56th epoch,
the one that obtained the best results in the validation set. These parameters are
distributed in the DM as illustrated in Figure 5.17. The final parameter t achieved
the value −2.86 in epoch 56.
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Figure 5.39: Parameters learned by MM during the training of fold 5.

Figure 5.40: Threshold values learned by CM during training of fold 5.
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Figure 5.41: Losses obtained in all modules during training for each fold.
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5.8 Results

In this section the results are presented and compared with previous works. The
performance of the nine trained networks, one for each fold, was evaluated in their
respective testing sets formed by videos of the VDAO-200 database.

Originally, the proposed network was built connecting the modules in sequence
in the following order: DM, TCM, MM and CM. As the TCM aims to eliminate
positive pixels which do not persist within a time window, we also considered having
the TCM after the differentiable morphology module. Thus, another version of the
network was trained considering the modules in the following order: DM, MM, TCM
and CM. Results of these two versions of the network are also compared, namely
TCM MM, the version where the TCM is applied before the MM, and MM TCM,
the version of the network where the temporal consistency is applied after the MM.

Previous works evaluated their performances on the VDAO-200 database report-
ing their results with DISoverall (as presented in section 3.6) and the DIS averaged
among all testing videos, considering two approaches: frame-level and object-level.
For a better presentation of the results, both approaches are described in different
subsections.

Frame-level Results

The frame-level approach evaluates the performance of a model to classify the target
frame as anomalous or not anomalous. This is the same criterion that has been
reported in previous chapters.

Table 5.4 presents the frame-level results with both versions of our network in
comparison with other works. The DIS values in bold represent the results of our
methods with equal or better performance than other approaches. By comparing
our two approaches individually with the frame-level metric, the MM TCM version
obtained a better average DIS than the TCM MM, being DIS=0.31 our best result.
Both of our approaches performed better than the previous works.

By computing the DISoverall considering all 59 videos from Table 5.4 with Equa-
tion (3.6), TCM MM obtained TPR=0.85, FPR=0.21 and DIS=0.26, while MM
TCM obtained TPR=0.86, FPR=0.21 and DIS=0.25. Therefore, our best DISoverall

results were also reached with MM TCM.
Table 5.5 compares the results of our best model (MM TCM) to previous works

considering the frame-level approach. Our MM TCM model surpasses previous
works with respect to average DIS and DISoverall metrics.
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Table 5.4: Comparative frame-level results of the proposed methods (TCM MM and
MM TCM) with other works, considering all 59 videos of the VDAO-200 database.
Values in bold highlight the DIS values obtained by our works that are equal or
better in comparison to other works.

DAOMC [28] ADAMULT [80] MCBS [30] mcDTSR [52] TCM MM MM TCM

video TPR FPR DIS TPR FPR DIS TPR FPR DIS TPR FPR DIS TPR FPR DIS TPR FPR DIS
1 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
2 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.73 0.00 0.27 0.88 0.00 0.12 0.82 0.00 0.18
3 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
4 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
5 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
6 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
7 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
8 0.76 0.71 0.75 0.57 0.00 0.43 1.00 0.99 0.99 1.00 0.38 0.38 0.73 0.00 0.27 0.44 0.00 0.56
9 0.67 0.00 0.33 0.60 0.00 0.40 1.00 1.00 1.00 0.97 0.00 0.03 0.99 0.00 0.01 0.98 0.00 0.02
10 0.89 0.00 0.11 0.69 0.00 0.31 1.00 1.00 1.00 0.96 0.00 0.04 0.89 0.00 0.11 0.89 0.00 0.11
11 0.82 0.32 0.37 1.00 1.00 1.00 1.00 0.99 0.99 0.91 0.48 0.49 0.91 0.00 0.09 0.90 0.00 0.10
12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.00 0.10 1.00 1.00 1.00 1.00 1.00 1.00
13 0.84 0.00 0.16 0.65 0.00 0.35 0.88 0.81 0.82 1.00 0.00 0.00 1.00 0.00 0.00 0.99 0.00 0.01
14 0.93 0.00 0.07 1.00 0.52 0.52 1.00 0.93 0.93 0.88 0.00 0.12 0.75 0.00 0.25 0.84 0.00 0.16
15 1.00 1.00 1.00 0.63 0.00 0.37 1.00 1.00 1.00 1.00 0.12 0.12 0.87 0.00 0.13 0.90 0.00 0.10
16 0.00 0.00 1.00 0.00 0.00 1.00 1.00 0.98 0.98 0.89 0.31 0.33 0.00 0.00 1.00 0.00 0.00 1.00
17 0.81 0.70 0.72 0.79 1.00 1.02 0.99 1.00 1.00 0.96 0.00 0.04 0.96 0.21 0.22 0.93 0.00 0.07
18 0.43 0.00 0.57 0.26 0.13 0.76 1.00 1.00 1.00 0.55 0.00 0.45 0.00 0.00 1.00 0.00 0.00 1.00
19 0.89 0.00 0.11 0.74 0.00 0.26 1.00 0.94 0.94 0.95 0.00 0.05 0.86 0.00 0.14 0.85 0.00 0.15
20 1.00 1.00 1.00 0.00 0.00 1.00 0.99 1.00 1.00 1.00 0.91 0.91 0.91 0.00 0.09 0.92 0.00 0.08
21 1.00 0.30 0.30 1.00 1.00 1.00 1.00 0.69 0.69 1.00 0.09 0.09 0.30 0.00 0.70 0.91 0.00 0.09
22 0.94 0.21 0.22 1.00 1.00 1.00 1.00 0.97 0.97 1.00 0.21 0.21 0.87 0.00 0.13 0.90 0.00 0.10
23 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.72 0.17 0.32 1.00 1.00 1.00 1.00 1.00 1.00
24 0.97 0.18 0.18 0.00 0.00 1.00 0.99 1.00 1.00 0.12 0.00 0.88 0.00 0.00 1.00 0.00 0.00 1.00
25 0.58 0.00 0.42 1.00 0.00 0.00 1.00 0.00 0.00 0.54 0.00 0.46 0.00 0.00 1.00 0.16 0.00 0.84
26 0.93 0.00 0.07 0.68 0.00 0.32 1.00 0.98 0.98 1.00 0.23 0.23 1.00 0.10 0.10 1.00 0.16 0.16
27 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00
28 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.26 0.00 0.74 1.00 0.00 0.00 1.00 0.00 0.00
29 0.76 0.00 0.24 0.69 0.00 0.31 1.00 1.00 1.00 0.00 0.00 1.00 0.69 0.00 0.31 0.70 0.00 0.30
30 0.80 0.00 0.20 0.56 0.00 0.44 1.00 0.98 0.98 1.00 0.16 0.16 0.95 0.00 0.05 0.93 0.00 0.07
31 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
32 0.83 0.00 0.17 0.32 0.00 0.68 1.00 1.00 1.00 0.99 0.06 0.06 0.98 0.00 0.02 0.94 0.00 0.06
33 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
34 0.70 0.00 0.30 0.56 0.00 0.44 1.00 0.98 0.98 0.97 0.09 0.10 0.81 0.00 0.19 0.76 0.00 0.24
35 1.00 0.20 0.20 0.63 0.00 0.37 1.00 0.93 0.93 0.96 0.00 0.04 0.93 0.00 0.07 0.93 0.00 0.07
36 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.27 0.27 1.00 1.00 1.00 1.00 1.00 1.00
37 0.93 0.00 0.07 0.93 0.00 0.07 1.00 1.00 1.00 0.97 0.00 0.03 0.88 0.00 0.12 0.84 0.00 0.16
38 0.76 0.13 0.28 0.47 0.00 0.53 1.00 0.97 0.97 0.76 0.03 0.25 0.96 0.00 0.04 0.95 0.00 0.05
39 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
40 1.00 1.00 1.00 1.00 0.59 0.59 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.00 0.06 0.94 0.00 0.06
41 1.00 0.95 0.95 1.00 1.00 1.00 1.00 0.97 0.97 1.00 0.09 0.09 1.00 0.40 0.40 1.00 0.28 0.28
42 1.00 1.00 1.00 0.50 0.00 0.50 1.00 0.97 0.97 0.99 0.00 0.01 0.94 0.00 0.06 0.92 0.00 0.08
43 0.14 0.00 0.86 0.00 0.00 1.00 1.00 1.00 1.00 0.93 0.26 0.27 0.00 0.00 1.00 0.00 0.00 1.00
44 0.78 0.38 0.44 0.63 0.00 0.37 1.00 1.00 1.00 0.95 0.00 0.05 0.86 0.00 0.14 0.85 0.00 0.15
45 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.37 1.00 1.18 1.00 1.00 1.00 1.00 1.00 1.00
46 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.00 0.10 0.90 0.00 0.10 0.90 0.00 0.10
47 0.93 0.00 0.07 0.91 0.00 0.09 1.00 1.00 1.00 0.97 0.00 0.03 0.80 0.00 0.20 0.82 0.00 0.18
48 0.72 0.00 0.28 0.42 0.00 0.58 1.00 1.00 1.00 0.98 0.00 0.02 0.94 0.00 0.06 0.94 0.00 0.06
49 1.00 0.20 0.20 0.93 0.00 0.07 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.00 0.05 0.97 0.00 0.03
50 0.97 0.00 0.03 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.00 0.03 0.95 0.00 0.05 0.96 0.00 0.04
51 0.96 0.86 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
52 0.84 0.82 0.83 1.00 1.00 1.00 1.00 1.00 1.00 0.74 0.00 0.26 1.00 1.00 1.00 1.00 1.00 1.00
53 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.41 0.41 1.00 0.22 0.22
54 0.85 0.00 0.15 0.50 0.00 0.50 1.00 1.00 1.00 1.00 0.00 0.00 0.93 0.00 0.07 0.93 0.00 0.07
55 0.79 0.67 0.70 0.50 0.00 0.50 1.00 1.00 1.00 0.71 0.00 0.29 0.62 0.00 0.38 0.84 0.00 0.16
56 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.64 0.64 1.00 0.91 0.91
57 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.17 0.18 0.98 0.24 0.24
58 0.62 0.00 0.38 0.19 0.00 0.81 1.00 1.00 1.00 0.88 0.00 0.12 0.90 0.00 0.10 0.90 0.00 0.10
59 1.00 0.49 0.49 0.54 0.00 0.46 1.00 1.00 1.00 0.62 0.01 0.38 0.91 0.00 0.09 0.91 0.00 0.09

Average 0.88 0.39 0.49 0.76 0.36 0.59 1.00 0.83 0.83 0.88 0.25 0.36 0.84 0.19 0.34 0.85 0.18 0.33

Object-level Results

The object-level approach (also referred to as pixel-level in some works) evaluates
the classification of frames based on the intersection of the output image and the
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Table 5.5: Average DIS and DISoverall frame-level results in the VDAO-200 of our
best proposed method compared to other works. The best results of each metric are
in bold.

average overall
TPR FPR average DIS TPR FPR DISoverall

DAOMC [28] 0.88 0.39 0.49 0.89 0.42 0.43
ADMULT [80] 0.76 0.36 0.59 0.78 0.39 0.44
MCBS [30] 1.00 0.83 0.83 1.00 0.98 0.98

mcDTSR [52] 0.88 0.25 0.36 0.88 0.28 0.30
MM TCM 0.85 0.18 0.33 0.86 0.21 0.25

ground-truth bounding box. In this approach, a true positive is accounted when
the blob in the output image has a non-empty intersection with the ground-truth
bounding box, and a false positive occurs when the blob and the ground-truth
bounding box are disjoint.

The final output of our network provided by the CM is a classification of the
target frame as anomalous or not anomalous. So, to evaluate our results with object-
level approach, we disregard the classification provided by the CM, and perform the
object-level evaluation based on the input image used by the CM.

Table 5.6 shows the DIS results of all testing videos of VDAO-200 considering
the object-level approach. Our models obtained better average DIS in comparison
to previous works. The average DIS=0.35 achieved by MM TCM is the best object-
level result among all works.

Comparing both versions of our network using the DISoverall in the object-level
approach, the TCM MM obtained an DISoverall=0.27, while the MM TCM obtained
a slightly better DISoverall=0.26. Table 5.7 presents the average DIS and DISoverall

computed with Equation (3.6) comparing our best network to previous works.
Figure 5.42 shows examples comparing frames output by our proposed MM TCM

network in comparison with other works. Note that in Examples 1, 2 and 3 the shape
of the blob produced by our method is closer to the object presented in the target
frame. Example 3 of the second best method (MCBS) contains false positive on
the left side of the frame, that was eliminated by our MM. In example 4 there is
no anomaly present in the target frame, as correctly noticed by our approach. The
darker part in the target frame, which was detected as a larger anomalous region by
the MCBS, is in fact a shadow made by an object that is not in the scene. This is an
example showing the robustness of our approach in some situations where shadows
and differences of illumination are present.

All results including videos and frames output by our proposed network using
the geometric alignment can be viewed at https://bit.ly/3husYqb.
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Table 5.6: Comparative object-level results of the proposed methods (TCM MM and
MM TCM) with other works, considering all 59 videos of the VDAO-200 database.
Values in bold highlight the DIS values obtained by our works that are equal or
better in comparison to other works.

DAOMC ADAMULT MCBS mcDTSR TCM MM MM TCM

video TPR FPR DIS TPR FPR DIS TPR FPR DIS TPR FPR DIS TPR FPR DIS TPR FPR DIS
1 1.00 1.00 1.00 1.00 0.00 0.00 1.00 0.10 0.10 1.00 1.00 1.00 1.00 0.36 0.36 1.00 0.00 0.00
2 1.00 0.00 0.00 0.71 0.97 1.01 1.00 0.90 0.90 0.73 0.00 0.27 0.89 0.00 0.11 0.85 0.00 0.15
3 1.00 0.04 0.04 1.00 0.00 0.00 1.00 0.28 0.28 1.00 0.73 0.73 1.00 0.00 0.00 1.00 0.00 0.00
4 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
5 1.00 0.09 0.09 1.00 0.00 0.00 1.00 0.07 0.07 1.00 0.59 0.59 1.00 0.00 0.00 1.00 0.00 0.00
6 1.00 0.10 0.10 1.00 0.63 0.63 1.00 1.00 1.00 1.00 0.79 0.79 1.00 0.00 0.00 1.00 0.00 0.00
7 1.00 1.00 1.00 1.00 0.00 0.00 1.00 0.96 0.96 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
8 0.76 0.30 0.39 0.51 0.03 0.49 1.00 0.87 0.87 1.00 0.16 0.16 0.73 0.00 0.27 0.44 0.00 0.56
9 0.67 0.18 0.37 0.52 0.06 0.48 0.95 1.00 1.00 0.97 0.00 0.03 0.99 0.10 0.10 0.98 0.12 0.13
10 0.89 0.10 0.15 0.69 0.00 0.31 1.00 0.97 0.97 0.96 0.72 0.72 0.89 0.00 0.11 0.89 0.00 0.11
11 0.82 0.32 0.37 0.82 1.00 1.02 0.97 0.98 0.98 0.91 0.22 0.24 0.92 0.00 0.08 0.90 0.00 0.10
12 0.87 1.00 1.01 1.00 0.22 0.22 0.94 0.48 0.48 0.90 0.00 0.10 0.90 1.00 1.01 0.91 1.00 1.00
13 0.84 0.00 0.16 0.65 0.19 0.40 0.86 0.71 0.72 1.00 0.00 0.00 1.00 0.00 0.00 0.99 0.00 0.01
14 0.92 0.00 0.08 1.00 0.14 0.14 1.00 0.74 0.74 0.88 0.00 0.12 0.75 0.00 0.25 0.85 0.00 0.15
15 0.89 1.00 1.01 0.58 0.04 0.43 1.00 1.00 1.00 1.00 0.02 0.02 0.86 0.03 0.14 0.92 0.25 0.27
16 0.00 0.00 1.00 0.00 0.00 1.00 0.77 1.00 1.02 0.89 0.08 0.13 0.00 0.00 1.00 0.00 0.00 1.00
17 0.80 0.11 0.23 0.62 0.29 0.48 0.96 0.45 0.45 0.96 0.00 0.04 0.93 0.27 0.28 0.93 0.00 0.07
18 0.43 0.00 0.57 0.00 0.22 1.02 0.75 0.99 1.02 0.55 0.00 0.45 0.00 0.00 1.00 0.00 0.00 1.00
19 0.89 0.00 0.11 0.54 0.15 0.49 1.00 0.67 0.67 0.95 0.00 0.05 0.87 0.00 0.13 0.87 0.00 0.13
20 0.66 1.00 1.06 0.00 0.00 1.00 0.26 1.00 1.24 0.78 0.98 1.00 0.91 0.00 0.09 0.93 0.00 0.07
21 0.95 0.60 0.60 0.97 0.71 0.71 0.97 0.62 0.62 1.00 0.03 0.03 0.30 0.00 0.70 0.92 0.00 0.08
22 0.92 0.05 0.10 0.68 0.74 0.81 1.00 0.90 0.90 1.00 0.03 0.03 0.87 0.00 0.13 0.90 0.00 0.10
23 0.99 1.00 1.00 1.00 1.00 1.00 0.93 1.00 1.00 0.72 0.04 0.28 0.95 1.00 1.00 0.95 1.00 1.00
24 0.00 0.73 1.24 0.00 0.00 1.00 0.00 1.00 1.41 0.12 0.00 0.88 0.00 0.01 1.00 0.00 0.00 1.00
25 0.58 0.00 0.42 0.56 0.54 0.70 1.00 0.90 0.90 0.53 0.00 0.47 0.00 0.00 1.00 0.21 0.00 0.79
26 0.90 0.05 0.11 0.66 0.01 0.34 1.00 0.56 0.56 1.00 0.53 0.53 0.99 0.04 0.05 0.98 0.41 0.41
27 1.00 1.00 1.00 1.00 0.18 0.18 1.00 0.75 0.75 1.00 0.09 0.09 1.00 0.00 0.00 1.00 0.01 0.01
28 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.90 0.90 0.26 0.00 0.74 1.00 0.01 0.01 1.00 0.01 0.01
29 0.76 0.01 0.24 0.68 0.00 0.32 0.91 0.98 0.98 0.00 0.00 1.00 0.69 0.08 0.32 0.70 0.03 0.31
30 0.80 0.49 0.53 0.56 0.00 0.44 1.00 0.97 0.97 1.00 0.55 0.55 0.95 0.00 0.05 0.96 0.00 0.04
31 0.87 0.81 0.82 0.61 0.54 0.67 1.00 0.61 0.61 0.95 1.00 1.00 1.00 0.92 0.92 1.00 1.00 1.00
32 0.83 0.00 0.17 0.32 0.00 0.68 1.00 0.78 0.78 0.99 0.02 0.02 0.98 0.00 0.02 1.00 0.00 0.00
33 1.00 1.00 1.00 1.00 1.00 1.00 0.83 1.00 1.01 0.92 1.00 1.00 0.97 1.00 1.00 0.99 1.00 1.00
34 0.70 0.00 0.30 0.56 0.00 0.44 1.00 0.69 0.69 0.97 0.03 0.04 0.81 0.00 0.19 0.79 0.00 0.21
35 0.87 0.82 0.83 0.62 0.00 0.38 0.97 0.61 0.61 0.96 0.00 0.04 0.93 0.00 0.07 0.93 0.00 0.07
36 1.00 1.00 1.00 1.00 1.00 1.00 0.02 1.00 1.40 0.95 0.07 0.09 1.00 1.00 1.00 1.00 1.00 1.00
37 0.93 0.00 0.07 0.93 0.00 0.07 0.99 0.96 0.96 0.97 0.00 0.03 0.88 0.00 0.12 0.84 0.00 0.16
38 0.76 0.05 0.25 0.47 0.00 0.53 1.00 0.99 0.99 0.76 0.01 0.24 0.96 0.00 0.04 0.95 0.00 0.05
39 0.84 0.93 0.94 1.00 0.25 0.25 0.91 1.00 1.00 0.92 1.00 1.00 0.94 1.00 1.00 0.94 1.00 1.00
40 1.00 0.56 0.56 1.00 0.13 0.13 1.00 0.95 0.95 1.00 1.00 1.00 0.94 0.00 0.06 0.94 0.00 0.06
41 0.88 0.87 0.87 0.87 1.00 1.01 0.63 0.99 1.06 1.00 0.03 0.03 1.00 0.81 0.81 1.00 0.81 0.81
42 0.88 0.90 0.91 0.50 0.00 0.50 0.96 0.96 0.96 0.99 0.00 0.01 0.94 0.00 0.06 0.92 0.00 0.08
43 0.14 0.00 0.86 0.00 0.00 1.00 0.72 1.00 1.04 0.93 0.11 0.14 0.00 0.00 1.00 0.00 0.00 1.00
44 0.73 0.13 0.30 0.63 0.00 0.37 0.96 1.00 1.00 0.95 0.04 0.06 0.86 0.00 0.14 0.85 0.00 0.15
45 0.82 1.00 1.02 1.00 1.00 1.00 0.00 1.00 1.41 0.35 0.41 0.77 0.80 1.00 1.02 0.93 1.00 1.00
46 0.94 0.79 0.79 0.98 0.14 0.15 0.93 0.97 0.97 0.90 0.00 0.10 0.90 0.00 0.10 0.90 0.01 0.10
47 0.93 0.00 0.07 0.91 0.26 0.28 1.00 1.00 1.00 0.97 0.26 0.26 0.80 0.00 0.20 0.83 0.00 0.17
48 0.72 0.15 0.32 0.42 0.00 0.58 0.96 0.97 0.97 0.98 0.00 0.02 0.94 0.00 0.06 0.95 0.00 0.05
49 1.00 0.05 0.05 0.93 0.00 0.07 1.00 0.99 0.99 1.00 0.76 0.76 0.95 0.00 0.05 0.99 0.00 0.01
50 0.86 0.14 0.20 0.18 0.89 1.21 1.00 0.77 0.77 0.97 0.02 0.04 0.95 0.00 0.05 0.96 0.00 0.04
51 0.85 0.66 0.68 1.00 1.00 1.00 0.97 0.92 0.92 0.81 1.00 1.02 0.98 1.00 1.00 0.91 1.00 1.00
52 0.64 0.79 0.87 0.85 1.00 1.01 0.39 1.00 1.17 0.74 0.55 0.61 0.92 1.00 1.00 0.93 1.00 1.00
53 0.69 1.00 1.05 0.88 1.00 1.01 0.79 1.00 1.02 0.85 1.00 1.01 0.80 0.40 0.45 0.90 0.56 0.57
54 0.84 0.00 0.16 0.50 0.00 0.50 1.00 0.51 0.51 1.00 0.01 0.01 0.93 0.00 0.07 0.93 0.00 0.07
55 0.60 0.32 0.51 0.50 0.00 0.50 0.87 1.00 1.01 0.71 0.00 0.29 0.61 0.00 0.39 0.84 0.00 0.16
56 1.00 1.00 1.00 1.00 0.38 0.38 1.00 1.00 1.00 0.81 1.00 1.02 0.61 0.76 0.85 0.68 0.96 1.01
57 1.00 0.67 0.67 1.00 0.21 0.21 0.96 0.92 0.92 0.95 1.00 1.00 0.96 0.26 0.27 0.98 0.37 0.37
58 0.62 0.00 0.38 0.19 0.00 0.81 0.97 0.80 0.80 0.88 0.00 0.12 0.90 0.00 0.10 0.91 0.00 0.09
59 0.74 0.79 0.83 0.54 0.00 0.46 1.00 1.00 1.00 0.62 0.00 0.38 0.91 0.00 0.09 0.91 0.00 0.09

Average 0.81 0.42 0.53 0.70 0.29 0.54 0.88 0.83 0.86 0.86 0.29 0.39 0.82 0.20 0.36 0.84 0.21 0.35
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Table 5.7: DISoverall object-level results in the VDAO-200 of our best proposed
method compared with other works. The best results of each metric are in bold.

average overall
TPR FPR average DIS TPR FPR overall

DAOMC [28] 0.81 0.42 0.53 0.82 0.42 0.45
ADMULT [80] 0.70 0.29 0.54 0.72 0.29 0.40
MCBS [30] 0.88 0.83 0.86 0.89 0.83 0.84

mcDTSR [52] 0.86 0.29 0.39 0.86 0.29 0.32
MM TCM 0.84 0.21 0.35 0.85 0.21 0.26

Example 1: video 11 (frame 169)

reference target DAOMC MM TCM (ours)

Example 2: video 49 (frame 119)

reference target ADAMULT MM TCM (ours)

Example 3: video 15 (frame 188)

reference target MCBS MM TCM (ours)

Example 4: video 53 (frame 124)

reference target MCBS MM TCM (ours)

Figure 5.42: Comparative images output by layer TCM of our proposed method
(MM TCM) and images produced by the second best approach.
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5.9 Conclusions

In this chapter the anomaly detection problem was approached from another per-
spective. We start by proposing a geometrical alignment technique to improve the
quality of the previous temporal alignment. The geometrical alignment estimates a
transformation composed of rotation and translation based on the motion vectors
between the reference and target frames. Also, differently from previous chapters,
a network was proposed to distinguish the differences between pre-aligned pair of
frames, providing the classification of the target frame as anomalous or not anoma-
lous.

Our proposed network contains 1,028 trainable parameters distributed into four
modules: dissimilarity module (DM), differentiable morphology module (MM), tem-
poral consistency module (TCM), and classification module (CM). Each module was
designed to perform specific operations, which when applied in sequence, aim to con-
tribute to the correct classification.

The main contribution of this chapter is a novel differentiable morphology tech-
nique, which enables the automatic adjustment of the radius of a circular structuring
element through the learning process. The differentiable morphology contains a sin-
gle learnable parameter not causing an overhead in terms of computational cost.

Important conclusions can be pointed out as:

• Separating the training, validation and testing samples into nine folds prevents
data contamination, but it makes the training process more time consuming.

• Although the proposed geometrical alignment is more computationally costly
as it involves the computation of multiple transformations between the target
frame and reference frames, the geometrical alignment eliminated the false
positive pixels output by the DM.

• The attempt to use CLAHE in the reference and target frames to eliminate il-
lumination differences did not improve the robustness of the geometrical align-
ment.

• Measuring the binary outputs produced by the DM, MM and TCM was only
possible with the Matthews Correlation Coefficient (MCC). Due to the un-
balanced amount of the two-class pixels (black and white) in the produced
images, the MCC proved to be a good approach to measure their differences.

• The silhouette shapes of the anomalous objects were compared to rectangular
ground-truth bounding boxes (as shown in Figure 5.13), causing a small de-
formation of the object shape output by the MM due to the closing operation.
Silhouette ground-truth annotations [86] could improve the achieved results.
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• As the DM performs only pixel-wise operations along the channel axis, it alone
cannot differ spatially misaligned features of the target and reference feature
tensors from features of the anomalous objects in the target frame such as
borders and corners. Nevertheless, the geometrical alignment and subsequent
modules help to eliminate artifacts produced by such misaligned regions.

• The DM proved to be robust to the illumination problem in most of the frames
and specially in videos where the illumination varies a lot.

• Sigmoid functions using Equation (5.6) were successfully used to produce bi-
nary outputs. They were used in the last step of the dissimilarity module to
produce binary images, and in the classification module to produce a binary
classification. For both cases, the slant was adjusted using the γ value to
provide the closest binary outputs, without compromising the gradients.

• The proposed differentiable morphology applying the opening and closing op-
erations proved to be effective in approximating the traditional morphology
operations, with the advantage of learning the radius of the structuring ele-
ment.

• Placing the temporal consistency module after the differentiable morphology
module led to better results than the ones obtained with it placed before the
morphology module.

• The results obtained by our models MM TCM surpassed the previous works
considering the average DIS and the DISoverall metrics using the frame-level
and object-level evaluation modes.

By the aforementioned points and the presented results, we conclude that the
proposed network surpassed the state-of-the-art models in the anomaly detection
task using the VDAO database.

The content found in the next chapter has no direct connection with the ap-
proaches seen in the current chapter to detect the anomalies represented by objects
in the target videos. As next chapter covers metrics used to evaluate object detec-
tion tasks, which is a different approach than the ones used so far, the reader may
read it independently.
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Chapter 6

A Comparative Analysis of Object
Detection Metrics with an
Open-Source Tool

In the first attempts to detect the anomalies represented by objects in the VDAO
database, techniques of object detection were explored but without any success.
During our initial investigations, we noted a lack of consensus in different works and
implementations concerning the evaluation metrics of the object detection problem,
which motivated us to investigate this problem.

The evaluation of object detection is a topic that attracts much attention of the
research community and industry. The need to gather and formalize the different
metrics in a single work inspired us to develop an open-source tool to evaluate the
object detection with different metrics, compatible with different file formats.

Seen that, this chapter aims to present our contributions done in the metrics
applied to object detection tasks. By that, we start presenting the object detection
problem, followed by an overview of selected works of the area. Then, the bounding
box formats used by different datasets and output by object detectors are described.
The following section explains the performance metrics used to evaluate object de-
tectors and a numerical example illustrates the application of the metrics. A section
is dedicated to depict the differences given by the most used object detection metrics.
The developed tool is explained in the sequence and a practical example is offered
showing results obtained in a large dataset. Finally, our conclusions are made in the
last section of this chapter.
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6.1 Introduction

The human visual system can effectively distinguish objects in different environ-
ments and contexts, even under a variety of constraints such as low illumina-
tion [158], color differences [159], and occlusions [11, 160]. In addition, objects are
key to the understanding of a scene’s context, which lends paramount importance
to the estimation of their precise location and classification. This has led computer
vision researchers to explore automatic object detection for decades [161], reaching
impressive results particularly in the last few years [25, 26, 162, 163].

Object detection algorithms attempt to locate general occurrences of one or
more predefined classes of objects. In a system designed to detect pedestrians, for
instance, an algorithm tries to locate all pedestrians that appear within an image
or a video [160, 164, 165]. In the identification task, however, an algorithm tries to
recognize a specific instance of a given class of objects. In the pedestrian example, an
identification algorithm wants to determine the identity of each pedestrian previously
detected.

Initially, real-time object detection applications were limited to only one object
type [166] at a time, mostly due to hardware limitations. Later on, advancements in
object detection techniques led to their increasing adoption in areas that included
the manufacturing industry with optical inspections [22], video surveillance [167],
forensics [23, 168], medical image analysis [18, 19, 169], autonomous vehicles [15], and
traffic monitoring [17]. In the last decade, the use of deep neural networks (DNNs)
has completely changed the landscape of the computer vision field [170]. DNNs
have allowed for drastic improvements in image classification, image segmentation,
anomaly detection, optical character recognition (OCR), action recognition, image
generation, and object detection [161].

The field of object detection has yielded significant improvements in both effi-
ciency and accuracy. To validate such improvements, new techniques must be as-
sessed against current state-of-the-art approaches, preferably over widely available
datasets. However, benchmark datasets and evaluation metrics differ from work to
work, often making their comparative assessment confusing and misleading. We
identified two main reasons for such confusion in comparative assessments:

• There are often differences in bounding box representation formats among
different detectors. Boxes could be represented, for instance by their upper-
left corner coordinates (x, y) and their absolute dimensions (width, height)
in pixels, or by their relative coordinates (xrel, yrel) and dimensions
(widthrel, heightrel), with the values normalized by the image size, among oth-
ers;
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• Each performance assessment tool implements a set of different metrics, re-
quiring specific formats for the ground-truth and detected bounding boxes.

Even though many tools have been developed to convert the annotated boxes
from one format to another, the quality assessment of the final detections still
lacks a tool compatible with different bounding box formats and multiple met-
rics. Our previous work [171] contributed to the research community in this di-
rection, by presenting a tool which reads ground-truth and detected bounding boxes
in a closed format and evaluates the detections using the average precision (AP)
and mean average precision (mAP) metrics, as required in the PASCAL Chal-
lenge [172]. In this work that contribution is significantly expanded by incorpo-
rating 12 other metrics, as well as by supporting additional annotation formats
into the developed open-source toolbox. The new evaluation tool is available at
https://github.com/rafaelpadilla/review_object_detection_metrics. We
believe that our work significantly simplifies the task of evaluating object detec-
tion algorithms.

This work intends to explain in detail the computation of the most popular met-
rics used as benchmarks by the research community, particularly in online challenges
and competitions, providing their mathematical foundations and a practical example
to illustrate their applicability. In order to do so, after a brief contextualization of
the object-detection field in Section 6.2, the most common annotation formats and
assessment metrics are examined in Sections 6.3 and 6.4, respectively. A numerical
example is provided in Section 6.5 illustrating the previous concepts from a practi-
cal perspective. Popular metrics are further addressed in Section 6.6. Section 6.7
presents an open-source and freely distributed toolkit that implements all discussed
concepts in a unified and validated way, as verified in Section 6.8. Finally, Section
6.9 concludes the paper by summarizing its main technical contributions.

6.2 An Overview of Selected Works on Object De-

tection

Back in the mid-50s and 60s the first attempts to recognize simple patterns in
images were published [173, 174]. These works identified primitive shapes and convex
polygons based on contours. In the mid-80s, more complex shapes started gaining
meaning, such as in [175], which described an automated process to construct a
three-dimensional geometric description of an airplane.

To describe more complex objects, instead of characterizing them by their
shapes, automated feature extraction methods were developed. Different meth-
ods attempted to find important feature points that when combined could describe
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objects broadly. Robust feature points are represented by distinctive pixels, whose
neighborhood describe the same object irrespective of changes in pose, rotation, and
illumination. The Harris detector [176] finds such points in the object corners based
on local intensity changes. A local search algorithm using gradients was devised
in [177] to solve the image registration problem, which later was expanded to a
tracking algorithm [178] for identifying important points in videos.

More robust methods were able to identify characteristic pixel points and rep-
resent them as feature vectors. The so-called scale invariant feature transform
(SIFT) [179], for instance, applied the difference of Gaussians in several scales cou-
pled with histograms of gradients, yielding characteristic points with features that
are robust to scale changes and rotation. Another popular feature detector and
descriptor, the speed up robust features (SURF) [180], was claimed to be faster and
more robust than SIFT, and uses a blob detector based on the Hessian matrix for
interest point detection and wavelet responses for feature representations.

Feature-point representation methods alone are not able to perform object de-
tection, but can help in extracting a group of keypoints that are used to represent
them. In [181], the SIFT keypoints and features are used to detect humans in
images, and in [182] SIFT was combined with color histograms to classify regions
of interest across frames to track objects in videos. Another powerful feature ex-
tractor widely applied for object detection is the histogram of oriented gradients
(HOG) [183], which is computed for several image small cells. The histograms of
each cell are combined to form the object descriptor, which, associated to a classifier,
can perform the object detection task [183, 184].

The Viola–Jones object detection framework was described in the path-breaking
work of [166]. It could detect a single class object at a rate of 15 frames per second.
The proposed algorithm employed a cascade of weak classifiers to process image
patches of different sizes, being able to associate bounding boxes to the target object.
The Viola–Jones method was first applied to face detection and required extensive
training to automatically select a group of Haar-features to represent the target
object, thus detecting one class of objects at a time. This framework has been
extended to detect other object classes such as pedestrians [164, 165] and cars [16].

More recently, with the growth and popularization of deep learning in computer
vision problems [4, 26, 162, 185, 186], object detection algorithms have started to
develop from a new perspective [187, 188]. The traditional feature extraction [179,
180, 183] phase is performed by convolutional neural networks (CNNs), which are
dominating computer vision research in many fields. Due to their spatial invariance,
convolutions perform feature extraction spatially and can be combined into layers
to produce the desired feature maps. The network end is usually composed of
fully connected (FC) layers that can perform classification and regression tasks.
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The output is then compared to a desired result and the network parameters are
adjusted to minimize a given loss function. The advantage of using DNNs in object
detection tasks is the fact that their architectures can extract features and predict
bounding boxes in the same pipeline, allowing efficient end-to-end training. The
more layers a network has, the more complex features it is able to extract, but the
more parameters it needs to learn, demanding more computer processing power and
data.

When it is not feasible to acquire more real data, data augmentation techniques
are used to generate artificial but realistic data. Color and geometric operations
and changes inside the target object area are the main actions performed by data
augmentation methods for object detection tasks [189]. The work in [190] applied
generative adversarial networks (GANs) to increase by 10 times the amount of med-
ical chest images to detect patients with COVID-19. In [191], the number of images
was increased by applying filters in astronomy images so as to improve the perfor-
mance of galaxy detectors.

The CNN-based object detectors may be cataloged as single-shot or region-based
detectors, also known as one- or two-stage detectors, respectively. The single-shot
detectors work by splitting the images into a grid of cells. For each cell, they make
bounding-box guesses of different scales and aspect ratios. This type of detector pri-
oritizes speed rather than accuracy, aiming to predict both bounding box and class
simultaneously. Overfeat [192] was one of the first single-shot detectors, followed by
the single shot multiBox detector (SSD) [193], and all versions of you only look once
(YOLO) [27, 40, 41, 163, 194]. The region-based detectors perform the detection in
two steps. First, they generate a sparse set of region proposals in the image where
the objects are supposed to be. The second stage classifies each object proposal
and refines its estimated position. The region-based convolutional neural network
(R-CNN) [38] was a pioneer employing CNNs in this last stage, achieving signifi-
cant gains in accuracy. Later works such as Fast R-CNN [39], Faster R-CNN [25],
and region-based fully convolutional networks (R-FCN) [195] suggest changes in R-
CNN to improve its speed. The aforementioned detectors have some heuristic and
hand-crafted steps such as region feature extraction or non-maximum suppression
to remove duplicate detections. In this context, graph neural networks (GNNs) are
employed to compute region of interest features in a more efficient way and process
the objects simultaneously by modeling them according to their appearance feature
and geometry [196, 197].

Hybrid solutions combining different approaches have been proposed lately and
have proved to be more robust in various object-detection applications. The work
in [198] proposes a hybrid solution involving a genetic algorithm and CNNs to clas-
sify small objects (structures) presented in microscopy images. Feature descriptors
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coupled with a cuckoo search algorithm were applied by the authors of [20] to de-
tect vessels in a marine environment using synthetic aperture radar (SAR) images.
This approach was compared to genetic algorithms and neural network models in-
dividually, improving precision to nearly 96.2%. Vision-based autonomous vehicles
can also benefit from hybrid models as shown in [199], where a system integrating
different approaches was developed to detect and identify pedestrians and to predict
their movements. In the context of detecting objects using depth information, the
work in [200] proposes a hybrid attention neural network that incorporates depth
and high-level RGB features to produce an attention map to remove background
information.

Other works aim to detect the most important region of interest and segment
relevant objects using salient object detectors. The work in [201] proposes a pipeline
to separate an input image into a pair of images using content-preserving transforms.
Then, each resulting image is passed by an interweaved convolutional neural network,
which extracts complementary information of the image pairs and fuses them into
the final salient map.

As medical images are acquired with special equipment, they form a very spe-
cific type of image [19]. To detect lesions, organs, and other structures of interest
can be crucial for a precise diagnostic. However, most object detection systems
are designed for general applications and usually do not perform well in medical
images without adaptations [202]. Detecting anomalies such as glaucoma, breast,
and lung lesions, for instance, have been explored from the medical object-detection
perspective in [203, 204]. In the medical field, training and testing data usually
have significant differences due to data scarcity and privacy. In order to address this
issue, a domain adaptation framework, referred to as clustering CNNs (CLU-CNNs)
[205], has been proposed to improve the generalization capability without specific
domain training.

With new object detection methods being constantly released, it is highly de-
sirable that a consensual evaluation procedure is established. To do so, the most
common bounding box formats used by public datasets and competitions are revised
in the next section.

6.3 Bounding Box Formats

Given the large, ever growing number of object detectors based on supervised meth-
ods in different areas, specific datasets have been built to train these systems. Popu-
lar competitions such as the common objects in context (COCO) [206], PASCAL vi-
sual object classes (VOC) [6], and Open Images Dataset [5] offer annotated datasets
so that participants can train and evaluate their models before submission. Apart
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from using available datasets, collecting data for object detection tasks can be quite
challenging, as labeling images and videos is often a manual and quite demand-
ing exercise. The medical field provides a good example of this fact: Develop-
ing a database of X-ray, electroencephalography (EEG), magnetoencephalography
(MEG), or electrocardiography (ECG) images involves not only high costs for cap-
turing such signals, but also requires expert knowledge to interpret and annotate
them.

To ease the object annotation process in images and videos, many tools have
been developed to annotate different datasets. Such tools basically offer the same
features, such as bounding-box annotations and polygon-like silhouettes, as shown
in Figure 6.1.

(a)

(b)

Figure 6.1: Two different types of annotated images from OpenImage [5]: (a) Bound-
ing box annotations; (b) Silhouette annotations (in yellowish-green), also referred
to as segmentation and pixel-level annotations.

A vast amount of annotation tools are freely available. Table 6.1 lists the most
popular ones with their respective bounding box output formats.

Table 6.1: Popular free annotation tools and their supported output formats.

Annotation Tool Annotation Types Output Formats

LabelMe [207] Bounding boxes and polygons LabelMe, but provides conversion to COCO
and PASCAL VOC

LabelIMG [208] Bounding boxes PASCAL VOC and YOLO

Microsoft VoTT [209] Bounding boxes and polygons
PASCAL VOC, TFRecords, specific CSV,

Azure Custom Vision Service,
Microsoft Cognitive Toolkit (CNTK), VoTT

Computer Vision Annotation Tool (CVAT) [210] Bounding boxes and polygons COCO, CVAT, LabelMe, PASCAL VOC,
TFRecord, YOLO, and others

VGG Image Annotation Tool (VIA) [211] Bounding boxes and polygons COCO and specific CSV and JSON

Some datasets introduced new formats to represent their annotations, which
are usually named after the datasets themselves. The PASCAL VOC dataset [6]
established the PASCAL VOC XML format and the COCO dataset [206] represents
their annotations in the COCO format, embodied in a JSON file. Annotation tools
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also brought further formats. For example, CVAT [210], a popular annotation tool,
outputs bounding boxes in multiple formats, including its own specific XML-based
one, named a CVAT format. The most popular bounding box formats shown in
Table 6.1 are described in more detail. Note that whenever we refer to absolute
coordinates, we mean coordinates that are expressed on the image coordinate frame,
as opposed to coordinates that are normalized by the image width or image height.

1. PASCAL VOC: It consists of one XML file for each image containing none,
one or multiple bounding boxes. The upper-left and bottom-right pixel co-
ordinates are absolute. Each bounding box also contains a tag representing
the class of the object. Extra information about the labeled object can be
provided, such as whether, the object extends beyond the bounding box or
it is partially occluded. The annotations in the ImageNet [82] and PASCAL
VOC [6] datasets are provided using the PASCAL VOC format;

2. COCO: It is represented by a single JSON file containing all bounding boxes
of a given dataset. The classes of the objects are listed separately in the
categories tag and identified by an id. The image file corresponding to an
annotation is also indicated in a separate element (images) that contains its
file name and is referenced by an id. The bounding boxes and their object
classes are listed in a different element (annotations), with their top-left (x, y)

coordinates being absolute, and with explicit values of width and height;

3. LabelMe: The bounding-box annotations in this format are inserted in a
single JSON file for each image, containing a list of boxes represented by their
absolute upper-left and bottom-right coordinates. Besides the class of the
object, this format also contains the image data encoded in base64 type, thus
making the LabelMe format to consume more storage space than others;

4. YOLO: One TXT file per image is used in this representation. Each
line of the file contains the class id and the bounding box coordinates.
An extra file is needed to map the class id to the class name. The
bounding box coordinates are not absolute, being represented by the for-
mat

(
xcenter

image width ,
ycenter

image height ,
box width

image width ,
height

image height

)
. The advantage of represent-

ing the boxes in this format is that, if the image dimensions are scaled, the
bounding box coordinates do not change, and thus the annotation file does
not have to be altered. This type of format is the one preferred by those who
annotate images in one resolution and need to scale their dimensions to fulfill
the input shape requirement of a specific CNN. The YOLO object detector
needs bounding boxes in this format to execute training;
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5. VoTT: This representation of the bounding boxes coordinates and object class
is made in a JSON file (one file per image) and the coordinates are expressed as
the width, height and upper-left (x, y) pixel position in absolute coordinates.
The Visual Object Tagging Tool (VoTT) produces annotations in this format;

6. CVAT: It consists of a unique XML file with all bounding boxes in the dataset
represented by the upper-left and bottom-right pixel absolute coordinates.
This format has been created with the CVAT annotation tool;

7. TFRecord: This is a serialized representation of the whole dataset containing
all images and annotations in a single file. This format is recognized by the
Tensorflow library [212];

8. Tensorflow Object Detection: This is a CSV file containing all labeled
bounding boxes of the dataset. The bounding box format is represented by
the upper-left and bottom-right pixel absolute coordinates. This is also a
widely used format employed by the Tensorflow library;

9. Open Images Dataset: This format is associated with the Open Images
Dataset [5] to annotate its ground-truth bounding boxes. All annotations are
written in a unique CSV file listing the name of the images and labels, as well
as upper-left and bottom-right absolute coordinates of the bounding boxes.
Extra information about the labeled object is conveyed by other tags such as,
for example, IsOcclude, IsGroupOf, and IsTruncated.

As each dataset is annotated using a specific format, works tend to employ
the evaluation tools provided along with the datasets to assess their performance.
Therefore, their results are dependent on the specific metric implementation asso-
ciated with the used dataset. For example, the PASCAL VOC dataset employs the
PASCAL VOC annotation format, which provides a MATLAB code implementing
the metrics AP and mAP (intersection over union (IOU)=.50). This tends to in-
hibit the use of other metrics to report results obtained for this particular dataset.
Table 6.2 lists popular object detection methods along with the datasets and the
14 different metrics used to report their results, namely: AP@[.5:.05:.95], AP@.50,
AP@.75, APS, APM, APL, AR1, AR10, AR100, ARS, ARM, ARL, mAP (IOU=.50),
and AP.

As the evaluation metrics are directly associated with a given annotation for-
mat, almost all works report their results only for the metrics implemented for the
benchmarking dataset. For example, mAP (IOU=.50) is reported when the PAS-
CAL VOC dataset is used, while AP@[.5:.05:.95] is applied to report results on the
COCO dataset. If a work uses the COCO dataset to train a model and wants to
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evaluate their results with the PASCAL VOC tool, it will be necessary to convert
the ground-truth COCO JSON format to the PASCAL VOC XML format. This
scenario discourages the use of such cross-dataset assessments, which have become
quite rare in the object detection literature.

Table 6.2: Popular object detection methods along with the datasets and metrics
used to report their results.

Method Benchmark Dataset Metrics

CornerNet [213] COCO AP@[.5:.05:.95]; AP@.50; AP@.75; APS; APM; APL

EfficientDet [214] COCO AP@[.5:.05:.95]; AP@.50; AP@.75
Fast R-CNN [39] PASCAL VOC 2007, 2010, 2012 AP; mAP (IOU=.50)
Faster R-CNN [25] PASCAL VOC 2007, 2012 AP; mAP (IOU=.50)
Faster R-CNN [25] COCO AP@[.5:.05:.95]; AP@.50

R-CNN [38] PASCAL VOC 2007, 2010, 2012 AP; mAP (IOU=.50)
RFB Net [215] PASCAL VOC 2007 mAP (IOU=.50)
RFB Net [215] COCO AP@[.5:.05:.95]; AP@.50; AP@.75; APS; APM; APL

RefineDet [216] PASCAL VOC 2007, 2012 mAP (IOU=.50)
RefineDet [216] COCO AP@[.5:.05:.95]; AP@.50; AP@.75; APS; APM; APL

RetinaNet [217] COCO AP@[.5:.05:.95]; AP@.50; AP@.75; APS; APM; APL

R-FCN [195] PASCAL VOC 2007, 2012 mAP (IOU=.50)
R-FCN [195] COCO AP@[.5:.05:.95];AP@.50; APS; APM; APL

SSD [193] PASCAL VOC 2007, 2012 mAP (IOU=.50)
SSD [193] COCO AP@[.5:.05:.95]; AP@.50; AP@.75; APS; APM; APL; AR1; AR10; AR100; ARS; ARM; ARL

SSD [193] ImageNet mAP (IOU=.50)
Yolo v1 [40] PASCAL VOC 2007, 2012; Picasso; People-Art AP; mAP (IOU=.50)
Yolo v2 [41] PASCAL VOC 2007, 2012 AP; mAP (IOU=.50)
Yolo v2 [41] COCO AP@[.5:.05:.95]; AP@.50; AP@.75; APS; APM; APL; AR1; AR10; AR100; ARS; ARM; ARL

Yolo v3 [27] COCO AP@[.5:.05:.95]; AP@.50; AP@.75; APS; APM; APL; AR1; AR10; AR100; ARS; ARM; ARL

Yolo v4 [194] COCO AP@[.5:.05:.95]; AP@.50; AP@.75; APS; APM; APL

Yolo v5 [163] COCO AP@[.5:.05:.95]; AP@.50

An example of confusions that may arise in such a scenario is given by the
fact that some works affirm that the metrics AP@.50 and mAP (IOU=.50) are the
same [195], which may not always be true. The origins of such misunderstandings
are the differences in how each tool computes the corresponding metrics. The next
section deals with this problem by detailing the implementations of the several object
detection metrics and pointing out their differences.

6.4 Performance Metrics

Challenges and online competitions have pushed forward the frontier of the object
detection field, improving results for specific datasets in every new edition. To
validate the submitted results, each competition applies a specific metric to rank
the submitted detections. These assessment criteria have also been used by the
research community to report and compare object detection methods using different
datasets as illustrated in Table 6.2. Among the popular metrics to report the results,
this section will cover those used by the most popular competitions, namely Open
Images RVC [218], COCO Detection Challenge [219], VOC Challenge [172], Datalab
Cup [220], Google AI Open Images challenge [221], Lyft 3D Object Detection for
Autonomous Vehicles [222], and City Intelligence Hackathon [223]. Object detectors
aim to predict the location of objects of a given class in an image or video with a
high confidence. They do so by placing bounding boxes to identify the positions
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of the objects. Therefore, a detection is represented by a set of three attributes:
The object class, the corresponding bounding box, and the confidence score, usually
given by a value between 0 and 1 showing how confident the detector is about that
prediction. The assessment is done based on:

• A set of ground-truth bounding boxes representing the rectangular areas of an
image containing objects of the class to be detected, and

• a set of detections predicted by a model, each one consisting of a bounding
box, a class, and a confidence value.

Detection evaluation metrics are used to quantify the performance of detection
algorithms in different areas and fields [224, 225]. In the case of object detection, the
employed evaluation metrics measure how close the detected bounding boxes are to
the ground-truth bounding boxes. This measurement is done independently for each
object class, by assessing the amount of overlap of the predicted and ground-truth
areas.

Consider a target object to be detected represented by a ground-truth bounding
box Bgt and the detected area represented by a predicted bounding box Bp. Without
taking into account a confidence level, a perfect match is considered when the area
and location of the predicted and ground-truth boxes are the same. These two
conditions are assessed by the intersection over union (IOU), a measurement based
on the Jaccard Index, a coefficient of similarity for two sets of data [226]. In the
object detection scope, the IOU is equal to the area of the overlap (intersection)
between the predicted bounding box Bp and the ground-truth bounding box Bgt

divided by the area of their union, that is:

J(Bp, Bgt) = IOU =
area(Bp ∩Bgt)
area(Bp ∪Bgt)

, (6.1)

as illustrated in Figure 6.2.

Figure 6.2: Illustration of the intersection over union (IOU).

A perfect match occurs when IOU = 1 and, if both bounding boxes do not
intercept each other, IOU = 0. The closer to 1 the IOU gets, the better the detection
is considered. As object detectors also perform the classification of each bounding
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box, only ground-truth and detected boxes of the same class are comparable through
the IOU.

By setting an IOU threshold, a metric can be more or less restrictive on con-
sidering detections as correct or incorrect. An IOU threshold closer to 1 is more
restrictive as it requires almost-perfect detections, while an IOU threshold closer to,
but different than 0 is more flexible, considering as detections even small overlaps
between Bp and Bgt. IOU values are usually expressed in percentages, and the most
used threshold values are 50% and 75%. In Sections 6.4.1, 6.4.2, and 6.4.4 the IOU
is used to define the metrics that are most relevant to object detection.

6.4.1 Precision and Recall

Let us consider a detector that assumes that every possible rectangular region of the
image contains a target object (this would be done by placing bounding boxes of all
possible sizes centered in every image pixel). If there is one object to be detected,
the detector would correctly find it by one of the many predicted bounding boxes.
That is not an efficient way to detect objects, as many wrong predictions are made
as well. Conversely, a detector which never generates any bounding box, will never
have a miss-detection. These extreme examples highlight two important concepts,
referred as precision and recall, are further explained below.

Precision is the ability of a model to identify only relevant objects. It is the
percentage of correct positive predictions. Recall is the ability of a model to find
all relevant cases (all ground-truth bounding boxes). It is the percentage of correct
positive predictions among all given ground truths. To calculate the precision and
recall values, each detected bounding box must first be classified as:

• True positive (TP): A correct detection of a ground-truth bounding box;

• False positive (FP): An incorrect detection of a non-existing object or a
misplaced detection of an existing object;

• False negative (FN): An undetected ground-truth bounding box.

Assuming there is a dataset with G ground-truths and a model that outputs N
detections, of which S are correct (S ≤ G), the concepts of precision and recall can
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be formally expressed as:

Pr =

S∑
n=1

TPn

S∑
n=1

TPn +
N−S∑
n=1

FPn

=

S∑
n=1

TPn

all detections
, (6.2)

Rc =

S∑
n=1

TPn

S∑
n=1

TPn +
G−S∑
n=1

FNn

=

S∑
n=1

TPn

all ground truths
. (6.3)

6.4.2 Average Precision

As discussed above, the output of an object detector is characterized by a bounding
box, a class, and a confidence interval. The confidence level can be taken into account
in the precision and recall calculations by considering as positive detections only
those whose confidence is larger than a τ . confidence threshold τ . The detections
whose confidence level is smaller than τ are considered as negatives. By doing so, one
may rewrite Equations (6.2) and (6.3) to consider this dependence on the confidence
threshold τ as:

Pr(τ) =

S∑
n=1

TPn(τ)

S∑
n=1

TPn(τ) +
N−S∑
n=1

FPn(τ)

=

S∑
n=1

TPn(τ)

all detections(τ)
, (6.4)

Rc(τ) =

S∑
n=1

TPn(τ)

S∑
n=1

TPn(τ) +
G−S∑
n=1

FNn(τ)

=

S∑
n=1

TPn(τ)

all ground truths
. (6.5)

Both TP(τ) and FP(τ) are decreasing functions of τ , as a larger τ reduces the
number of positive detections. Conversely, FN(τ) is an increasing function of τ , since
less positive detections imply a larger number of negative detections. In addition,∑

TP(τ) +
∑

FN(τ) does not depend on τ and is a constant equal to the number
of all the ground truths. Therefore, from Equation (6.5), the recall Rc(τ) is a
decreasing function of τ . On the other hand, nothing can be said a priori about the
precision Pr(τ), since both the numerator and denominator of Equation (6.4) are
decreasing functions of τ , and indeed the graph of Pr(τ)×Rc(τ) tends to exhibit a
zig-zag behavior in practical cases, as later illustrated in Section 6.5.
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In practice, a good object detector should find all ground-truth objects (FN = 0

≡ high recall), while identifying only relevant objects (FP = 0 ≡ high precision).
Therefore, a particular object detector can be considered good if, when the confi-
dence threshold decreases, its precision remains high as its recall increases. Hence,
a large area under the curve (AUC) tends to indicate both high precision and high
recall. Unfortunately, in practical cases, the precision× recall plot is often not mono-
tonic, being zigzag-like instead, which poses challenges to an accurate measurement
of its AUC.

The average precision (AP) is a metric based on the area under a Pr×Rc curve
that has been pre-processed to eliminate the zig-zag behavior. It summarizes this
precision-recall trade-off dictated by confidence levels of the predicted bounding
boxes.

To compute the AP, one starts by ordering the K different confidence values
τ(k) output by the object detector as:

τ(k), k = 1, 2, . . . , K such that τ(i) > τ(j) for i > j. (6.6)

Since the Rc values also have a one-to-one, monotonic correspondence with τ ,
which has a one-to-one, monotonic, correspondence with the index k, then the Pr×
Rc curve is not continuous but sampled at the discrete points Rc(τ(k)), leading to
the set of pairs (Pr(τ(k),Rc(τ(k)) indexed by k.

Now one defines an ordered set of reference recall values Rr(n),

Rr(n), n = 1, 2, . . . , N such that Rr(m) < Rr(n) for m > n. (6.7)

The AP is computed using the two ordered sets in Equations (6.6) and (6.7). But
before computing AP, the precision × recall pairs have to be interpolated such that
the resulting precision × recall curve is monotonic. The resulting interpolated curve
is defined by a continuous function Printerp(R), where R is a real value contained in
the interval [0, 1], defined as:

Printerp(R) = max
k|Rc(τ(k))≥R

{Pr(τ(k))}, (6.8)

where τ(k) is defined in Equation (6.6) and Rc(τ(k)) is the recall value for the confi-
dence τ(k), computed according to Equation (6.5). The precision value interpolated
at recall R corresponds to the maximum precision Printerp(k) whose corresponding
recall value is greater than or equal to R. Note that an interpolation using a poly-
nomial fitting would not be convenient in this case, since a polynomial interpolation
cannot guarantee that the resulting interpolated curve is monotonic.

Now one is ready to compute AP by sampling Printerp(R) at the N reference
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recall values Rr defined in Equation (6.7). The AP is the area under the Pr × Rc
curve calculated by a Riemann integral of Printerp(R) using the K recall values from
the set Rr(k) in Equation (6.7) as sampling points, that is,

AP =
K∑
k=0

(Rr(k)−Rr(k + 1))Printerp(Rr(k)), (6.9)

where Printerp(R) is defined in Equation (6.8) and Rr(k) is given by Equation (6.12),
with Rr(0) = 1 and Rr(K + 1) = 0.

There are basically two approaches to compute this Riemann integral: The N -
point interpolation and the all-point interpolation, as detailed below.

N-point Interpolation

In the N -point interpolation, the set of reference recall values Rr(n) for the compu-
tation of the Riemann integral in Equation (6.9) are equally spaced in the interval
[0, 1], that is,

Rr(n) =
N − n
N − 1

, n = 1, 2, . . . , N. (6.10)

and thus the expression for AP becomes:

AP =
1

N

N∑
n=1

Printerp(Rr(n)). (6.11)

Actually the N -point interpolation as defined by Equation (6.11) computes an
AP value which is equal to the value computed by the Riemann integral in Equa-
tion (6.9) multiplied by N−1

N
.

Popular applications of this interpolation method use N = 101 as in the com-
petition [219] and N = 11 as initially adopted by the competition [172], which was
later changed to the all-point interpolation method.

All-Point Interpolation

For the computation of AP using the so-called all-point interpolation, here referred
to as APall, as the set values Rr(n) used to compute the Riemann integral in Equa-
tion (6.9) corresponds exactly to the set of recall values computed considering all
K confidence levels τ(k) in Equation (6.6), with the confidences τ(0) = 0 and
τ(K + 1) = 1 added so that the points Rr(0) = 1 and Rr(K + 1) = 0 are considered
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in Equation (6.9). More precisely,

Rr(0) = 1,

Rr(k) = Rc(τ(k)), k = 1, 2, . . . , K, (6.12)

Rr(K + 1) = 0.

where Rc(τ(k)) is given by Equation (6.5) with Rc(τ(0)) = 1 and Rc(τ(K+ 1)) = 0.
Using this definition of Rr(k) in Equation (6.12), APall is computed using Equa-

tion (6.9). In the all-point interpolation, instead of using the precision observed
at only a few points, the AP is obtained by interpolating the precision at each re-
call level. The Pascal Challenge [172] adopts the all-point interpolation method to
compute the average precision.

6.4.3 Mean Average Precision

Regardless of the interpolation method, AP is obtained individually for each class.
In large datasets with many classes, it is useful to have a unique metric that is able
to represent the exactness of the detections among all classes. For such cases, the
mean average precision (mAP) is computed, which is simply the average AP over
all classes [25, 193], that is,

mAP =
1

C

C∑
i=1

APi, (6.13)

where APi is the AP value for the i-th class and C is the total number of classes
being evaluated.

6.4.4 Average Recall

The average recall (AR) [227] is another evaluation metric used to measure the as-
sertiveness of object detectors for a given class. Unlike the average precision, the
confidences of the estimated detections are not taken into account in AR computa-
tion. This turns all detections into positive ones, which is equivalent to setting the
confidence threshold as τ = 0 in Equations (6.4) and (6.5).

The AR metric makes an evaluation at a large range of IOU thresholds, by taking
into account all recall values obtained for IOU thresholds in the interval [0.5, 1]. An
IOU of 0.5 can be interpreted as a rough localization of an object and is the least
acceptable IOU by most of the metrics, and an IOU equal to 1 is equivalent to the
perfect location of the detected object. Therefore, by averaging recall values in the
interval [0.5, 1], the model is evaluated on the condition of the object location being
considerably accurate.
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Let o be the IOU overlap between a ground truth and a detected bounding box
as computed by Equation (6.1), and RcIOU(o) a function that retrieves the recall for
a given IOU o. The AR is defined as twice the area under the RcIOU(o) × o curve
for the IOU interval [0.5, 1], that is,

AR = 2

∫ 1

0.5

RcIOU(o) do. (6.14)

The authors in [227] also give a straightforward equation for the computation of
the above integral from the discrete sample set, as twice the average of the excess
IOU for all the ground-truths, that is,

AR =
2

G

G∑
i=1

max(IOUi − 0.5, 0), (6.15)

where IOUi denotes the best IOU obtained for a given ground truth i and G is the
total number of ground-truths.

Interestingly, COCO also reports the AR, although its definition does not match
exactly that in Equation (6.15). Instead, what is reported as the COCO AR is the
average of the maximum obtained recall across several IOU thresholds. To do so
one first defines a set of O IOU thresholds:

t(o), o = 1, 2, . . . , O. (6.16)

Then, letting Prt(o)(τ(k)),Rct(o)(τ(k)) be the precision × recall points for a con-
fidence τ(k), given the IOU threshold t(o), the COCO AR is computed as:

AR =
1

O

O∑
o=1

max
k|Prt(o)(τ(k))>0

{Rct(o)(τ(k))}, (6.17)

that is, the average of the largest recall values such that the precision is greater than
zero for each IOU threshold, and τ(k) as defined in Equation (6.6). Effectively, this
yields a coarse approximation of the original integral in Equation (6.14), provided
that the IOU threshold set t(o) covers an adequate range of overlaps.

6.4.5 Mean Average Recall

As the AR is calculated individually for each class, similarly to what is done to
compute mAP, a unique AR value can be obtained considering the mean AR among
all classes, that is:

mAR =
1

C

C∑
i=1

ARi. (6.18)
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In the sequel, a practical example illustrates the differences reflected in the final
result depending on the chosen method.

6.5 A Numerical Example

Considering the set of 12 images in Figure 6.3, each image, except (a), (g), and
(j), has at least one target object of the class cat, whose ground-truth locations are
delimited by the green rectangles. There is a total of 12 target objects limited by
the green boxes. Images (b), (e), and (f) have each two ground-truth samples of
the target class. An object detector predicted 12 objects represented by the red
rectangles (labeled with letters ‘A’ to ‘L’) with their associated confidence levels
being represented as percentages also shown close to the corresponding boxes. From
the above, images (a), (g), and (j) are expected to have no detection, and images
(b), (e), and (f) are expected to have two detections each.

All things considered, to evaluate the precision and recall of the 12 detections it
is necessary to establish an IOU threshold t, which will classify each detection as TP
or FP. In this example, let us first consider as TP the detections with IOU > 50%,
that is t = 0.5.

As stated before, AP is a metric that integrates precision and recall in different
confidence values. Thus, it is necessary to count the amount of TP and FP clas-
sifications given the different confidence levels. Table 6.3 presents each detection
from our example sorted by their confidence levels. In this table, columns

∑
TP(τ)

and
∑

FP(τ) are the accumulated TPs and FPs, respectively, whose corresponding
confidence levels are larger than or equal to the confidence τ specified in the second
column of the table. Precision (Pr(τ)) and recall (Rc(τ)) values are calculated based
on Equations (6.4) and (6.5), respectively. In this example a detection is considered
as a TP only if its IOU is larger than 50%, and in this case the column ‘IOU >

0.5?’ is marked as ‘Yes’, otherwise it is marked as ‘No’ and is considered an FP.
In this example, all detections overlap some ground-truth with IOU > 0.5, except
detection ‘J’, which is not overlapping any ground-truth, so there is no IOU to be
computed in this case.

Some detectors can output one detection overlapping multiple ground truths, as
seen in the image from Figure 6.3b with detections ‘A’ and ‘B’. As detection ‘A’
has a higher confidence than ‘B’ (89% > 82%), ‘A’ has the preference over ‘B’ to
match the ground-truth, so ‘A’ is associated with the ground truth which gives the
highest IOU. Figure 6.4c,d show the two possible associations that ‘A’ can have,
ending up with the first one, which presents a higher IOU. Detection ‘B’ is left with
the remaining ground truth in Figure 6.4f. Another similar situation where one
detection could be associated with more than one ground truth is faced by detection

138



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.3: Samples of 12 images from the PASCAL VOC 2012 dataset [6] with
ground-truth objects of the class cat in green boxes, and the detections performed
by [163] in red boxes along with their respected confidence levels. In samples (b),
(c), (d), (f), (h), (i), (k) and (l) the amount of the ground-truth and detected objects
is the same. In samples of images (a), (g), and (j) no ground-truth object should be
detected but one false detection occurred in image (j). In sample (e) there are two
target objects to be detected, but the detector missed one of them.

‘E’ in Figure 6.3e. The application of the same rule results in matching detection
‘E’ with the ground truth whose IOU is the highest, represented by the fairer cat,
at the bottom of the image.

By choosing a more restrictive IOU threshold, different precision Pr(τ) and recall
Rc(τ) values can be obtained. Table 6.4 computes the precision and recall values
with a more strict IOU threshold of t = 0.75. By that, it is noticeable the occurrence
of more FP detections and less TP detections, thus reducing both the precision Pr(τ)

and recall Rc(τ) values.
Graphical representations of the Pr(τ) × Rc(τ) values presented in Tables 6.3

and 6.4 can be seen in Figure 6.5. By comparing both curves, one may note that
for this example:

• With a less restrictive IOU threshold (t = 0.5), higher recall values can be
obtained with the highest precision. In other words, the detector can retrieve
about 66.5% of the total ground truths without any miss detection.
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Table 6.3: Precision and recall values for detections in Figure 6.3, that contain a
total of 12 ground truths, considering an IOU threshold t = 0.5.

Bounding Box Confidence(τ ) IOU IOU > 0.5?
∑
TP(τ )

∑
FP(τ ) Pr(τ ) Rc(τ )

D 99% 0.91 Yes 1 0 1.0000 0.0833
K 98% 0.70 Yes 2 0 1.0000 0.1667
C 95% 0.86 Yes 3 0 1.0000 0.2500
H 95% 0.72 Yes 4 0 1.0000 0.3333
L 94% 0.91 Yes 5 0 1.0000 0.4167
I 92% 0.86 Yes 6 0 1.0000 0.5000
A 89% 0.92 Yes 7 0 1.0000 0.5833
F 86% 0.87 Yes 8 0 1.0000 0.6667
J 85% - No 8 1 0.8889 0.6667
B 82% 0.84 Yes 9 1 0.9000 0.7500
E 81% 0.74 Yes 10 1 0.9091 0.8333
G 76% 0.76 Yes 11 1 0.9167 0.9167

(a) (b)

(c) (d) (e) (f)

Figure 6.4: Particular cases showing detected bounding boxes overlapping multiple
ground truths. (a) Original image with predicted (red) and ground-truth (green)
bounding boxes. (b) Bounding boxes only. (c, d) Possible overlaps of the first ground
truth. (c) Detection ‘A’ overlapping the first ground truth with IOU = 0.92. (d)
Detection ‘A’ overlapping the second ground truth with IOU = 0.20. (e, f) Possible
overlaps of the second ground truth. (e) Detection ‘B’ overlapping the first ground
truth with IOU = 0.19. (f) Detection ‘B’ overlapping the second ground truth with
IOU = 0.84.

• Using t = 0.75, the detector is more sensitive to different confidence values τ .
This is explained by the more accentuated monotonic behavior for this IOU
threshold.

• Regardless the IOU threshold applied, this detector can never retrieve 100%

of the ground truths (Pr(τ) = 1) for any confidence value τ . This is due to
the fact that the algorithm failed to output any bounding box

Note that Figure 6.5 suggests that an IOU threshold of t = 0.5 is less affected by
different confidence levels. The graph for the lowest IOU threshold (t = 0.5) shows
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Table 6.4: Precision and recall values for detections in Figure 6.3, that contain a
total of 12 ground truths, considering an IOU threshold t = 0.75.

Bounding Box Confidence (τ) IOU IOU > 0.75?
∑
TP(τ )

∑
FP(τ ) Pr(τ ) Rc(τ )

D 99% 0.91 Yes 1 0 1.0000 0.0833
K 98% 0.70 No 1 1 0.5000 0.0833
C 95% 0.86 Yes 2 1 0.6667 0.1667
H 95% 0.72 No 2 2 0.5000 0.1667
L 94% 0.91 Yes 3 2 0.6000 0.2500
I 92% 0.86 Yes 4 2 0.6667 0.3333
A 89% 0.92 Yes 5 2 0.7143 0.4167
F 86% 0.87 Yes 6 2 0.7500 0.5000
J 85% - No 6 3 0.6667 0.5000
B 82% 0.84 Yes 7 3 0.7000 0.5833
E 81% 0.74 No 7 4 0.6364 0.5833
G 76% 0.76 Yes 8 4 0.6667 0.6667
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Figure 6.5: Precision× Recall points with values calculated for: (a) Results provided
in Table 6.3. (b) Results provided in Table 6.4.

that when confidence levels τ are high, the precision Pr(τ) does not vary, being
equal to the maximum (1.0) for most of confidence values τ . However, in order
to detect more objects (increasing the recall Rc(τ)), it is necessary to set a lower
confidence threshold τ , which reduces the precision at most by 12%. On the other
hand, considering the highest IOU threshold (t = 0.75), the detector can retrieve
half of the target objects (recall=0.5) with a precision of 0.75.

As previously explained, different methods can be applied to estimate the average
precision, that is, the area under the precision × recall curve. To obtain AP using
the N -point interpolation in Equation (6.11) with N = 11 points, the area under the
Pr × Rc curve is computed as the average of the interpolated precision Printerp(R)

(Equation (6.9)) samples considering the sampling recall points R at Rr(n) in the set
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} (Equation (6.10)). On the other hand,
to obtain AP using the all-point interpolation approach, the area under the Pr ×
Rc curve is computed by the Riemann integral in Equation (6.9), sampling the
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recall points R at Rr(n) coincident with the Rc(τ) values given by the last column
of Table 6.3 or of Table 6.4. The results can be seen in Figure 6.6. When an
IOU threshold t = 0.5 was applied, the 11-point interpolation method obtained
AP = 88.64% while the all-point interpolation method resulted in a slightly higher
AP, reaching AP = 89.58%. Similarly, for an IOU threshold t = 0.75, the 11-
point interpolation method obtained AP = 49.24% and the all-point interpolation
obtained AP = 50.97%.
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Figure 6.6: Results of different approaches to compute the AP metric. (a) 11-point
interpolation with IOU threshold t = 0.5. (b) All-point interpolation with IOU
threshold t = 0.5. (c) 11-point interpolation with IOU threshold t = 0.75. (d)
All-point interpolation with IOU threshold t = 0.75.

When a lower IOU threshold t was considered (t = 0.5 as opposed to t = 0.75),
the AP was considerably increased in both interpolation approaches. This is caused
by the increase in the TP detections, due to a lower IOU threshold.

If focus is shifted towards how well localized the detections are, irrespective of
their confidence values, it is sensible to consult the AR metrics (Equations (6.14)–
(6.18)). Computing twice the average excess IOU for the samples in this practical
example as in Equation (6.15), yields AR = 60%, while computing the average max

142



recall across the standard COCO IOU thresholds, that is t ∈ {0.50, 0.55, . . . , 0.95},
as in Equation (6.17), yields AR = 66%. As the latter computation effectively does
a coarser quantization of the IOU space, the two AR figures differ slightly. The next
section enlists and briefly describes which variations of the metrics based on AP and
AR are more frequently employed in the literature. In most cases they are the result
of combinations of different IOU thresholds and interpolation methods.

6.6 Most Employed Metrics Based on AP and AR

As previously presented, there are different ways to evaluate the area under the
precision × recall and recall × IOU curves. Nonetheless, besides such combinations
of different IOU thresholds and interpolation points, that are other variations that
result in different metric values. Some methods limit the evaluation by object scales
and detections per image. This section overviews the distinctions behind all the
metrics shown in Table 6.2.

6.6.1 AP with IOU Threshold t = 0.5

This AP metric is widely used to evaluate detections in the PASCAL VOC
dataset [6]. Its official implementation is in MATLAB and it is available in the
PASCAL VOC toolkit. It measures the AP of each class individually by computing
the area under the precision × recall curve interpolating all points as presented in
Equation (6.9). In order to classify detections as TP or FP the IOU threshold is set
to t = 0.5.

6.6.2 mAP with IOU Threshold t = 0.5

This metric is also used by the PASCAL VOC dataset and is also available in their
MATLAB toolkit. It is calculated as the AP with IOU t = 0.5, but the result
obtained by each class is averaged as given in Equation (6.13).

6.6.3 AP@.5 and AP@.75

These two metrics evaluate the precision × recall curve differently than the PASCAL
VOC metrics. In this method, the interpolation is performed in N = 101 recall
points, as given in Equation (6.11). Then, the computed results for each class are
summed up and divided by the number of classes, as in Equation (6.13).

The only difference between AP@.5 and AP@.75 regards the applied IOU thresh-
olds. AP@.5 uses t = 0.5 whereas AP@.75 applies t = 0.75. These metrics are com-
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monly used to report detections performed in the COCO dataset and are officially
available in their official evaluation tool.

6.6.4 AP@[.5:.05:.95]

This metric expands the AP@.5 and AP@.75 metrics by computing the AP@ with
10 different IOU thresholds (t = [0.5, 0.55, ..., 0.95]) and taking the average among
all computed results.

6.6.5 APS, APM, and APL

These three metrics, also referred to as AP Across Scales, apply the AP@[.5,.05:.95]
from Section 6.6.1 taking into consideration the area of the ground-truth object:

• APS only evaluates small ground-truth objects (area < 322 pixels);

• APM only evaluates medium-sized ground-truth objects (322 < area < 962

pixels);

• APL only evaluates large ground-truth objects (area > 962).

When evaluating objects of a given size, objects of the other sizes (both ground-
truth and predicted) are not considered in the evaluation. This metric is also part
of the COCO evaluation dataset.

6.6.6 AR1, AR10, and AR100

These AR variations apply Equation (6.14) limiting the number of detections per
image, that is, they calculate the AR given a fixed amount of detections per image,
averaged over all classes and IOUs. The IOUs used to measure the recall values are
the same as in AP@[.5,.05:.95].

AR1 considers up to one detection per image, while AR10 and AR100 consider at
most 10 and 100 objects per image, respectively.

6.6.7 ARS, ARM and ARL

Similarly to the AR variations with limited number of detections per image, these
metrics evaluate detections considering the same areas as the AP across scales. As
the metrics based on AR are implemented in the COCO official evaluation tool, they
are regularly reported with the COCO dataset.
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6.6.8 F1-Score

The F1-score is defined as the harmonic mean of the precision (Pr) and recall (Rc)
of a given detector, that is:

F1 = 2
Pr.Rc
Pr + Rc

=
TP

TP + FN+FP
2

. (6.19)

The F1-score is limited to the interval [0, 1], being 0 if precision or recall (or
both) are 0, and 1 when both precision and recall are 1.

As the F1-score does not take into account different confidence values, it is only
used to compare object detectors in a fixed confidence threshold level τ .

6.6.9 Other Metrics

Other less popular metrics have also been proposed to evaluate object detections.
They are mainly designed to be applied with particular datasets. The Open Images
Object Detection Metric, for example, is similar to mAP (IOU=.50), being specif-
ically designed to consider special ground-truth annotations of the Open Images
dataset [5]. This dataset groups into a single annotation five or more objects of the
same class that somehow are occluding each other, such as a group of flowers or
a group of people. This metric simply ignores a detection if it overlaps a ground-
truth box tagged as group of, whose area of intersection between the detection and
ground-truth boxes divided by the area of the detection is greater than 0.5. This
way, it does not penalize detections matching a group of very close ground-truth
objects.

The localization recall-precision (LRP) error, a new metric suggested in [228],
intends to consider the accuracy of the detected bounding box localization and
equitably evaluate situations where the AP is unable to distinguish very different
precision × recall curves.

6.6.10 Comparisons among Metrics

In practice, the COCO’s AP@[.5:.05:.95] and PASCAL mAP metrics are the most
popular ones used as benchmarks. However, as COCO’s AP@[.5:.05:.95] is affected
by different IOUs, it is not possible to evaluate the effectiveness of the detector with
a more or less restrictive IOU with this metric. For a more strict evaluation with re-
spect to the likeness of the ground truth and detection bounding boxes, the AP@.75
metric should be applied. In datasets where the objects appear to have relatively
different sizes, AP metrics concerning their areas should be employed. By that, the
assertiveness of objects with similar relative sizes can be compared. As shown in
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this work, the interpolation methods applied by the AP metrics try to remove the
non-monotonic behavior of the Pr(τ)×Rc(τ) curve before calculating its AUC. In an
N -point interpolation, a greater N leads to a better AUC approximation. Therefore,
the 101-point interpolation approach used by COCO’s AP metrics provides a better
AUC approximation than the 11-point interpolation approach. On the other hand,
PASCAL VOC uses the all-point interpolation, which is an even better approxima-
tion of the AUC. In cases where the detector is expected to detect at least a certain
amount of objects in a given image (e.g., detecting one bird in a flock of birds should
be sufficient), AR metrics regarding detections or sizes are more appropriate.

6.7 An Open-Source Toolbox

This work focuses on explaining and comparing the different metrics and formats
currently used in object detection, detailing the specifications and pointing out the
particularities of each metric variation. The existing tools provided by popular
competitions [172, 218–222] are not adequate to evaluate metrics using annotations
in formats that are different from their native ones. Thus, to complement the
analysis of the metrics presented here, the authors have developed and released an
open-source toolkit as a reliable source of object detection metrics for the academic
community and researchers.

With more than 3100 stars and 740 forks, our previously available tool for object
detection assessment [229] has received positive feedback from the community and
researchers. It has also been used as the official tool in competition [223], adopted in
3rd-party libraries such as [230], and parts of our code have been used by many other
works such as in YoloV5 [163]. Besides the significant acceptance by the community,
we have received many requests to expand the tool in order to support new metrics
and bounding box formats. Such demands motivated us to offer more evaluation
metrics, and to accept more bounding box formats.

This tool implements the same metrics used by the most popular competitions
and object-detection benchmark researches. This implementation does not require
modifications of the detection model to match complicated input formats, avoiding
conversions to XML, JSON, CSV, or other file types. It supports more than eight
different kinds of annotation formats, including the ones presented in Table 6.1. To
ensure the accuracy of the results, the implementation strictly followed the metric
definitions and the output results were carefully validated against the ones of the
official implementations.

Developed in Phython and supporting 14 object detection metrics for images,
the tool can also be adapted and expanded to support new metrics and formats.
The expanded project can be accessed at https://github.com/rafaelpadilla/
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review_object_detection_metrics [231].

6.8 Metrics Evaluation in a Practical Example

In this section, we use different object detection metrics to evaluate YOLOv5
model [163]. The chosen model was trained with the COCO dataset and was applied
in the training/validation PASCAL VOC 2012 dataset [6]. Intentionally different
datasets were used to train and evaluate the model to evidence the potential of our
tool to deal with different ground-truth and detected bounding-box formats. For
this experiment, the annotations of the ground-truth boxes are in PASCAL VOC
format containing 20 classes of objects, while the model was trained with COCO
dataset and was able to detect objects in 80 classes, predicting detections in text
files in the YOLO format.

By using our tool, one can quickly obtain 14 different metrics without the neces-
sity to convert files to specific formats. As some classes of the ground-truth dataset
are tagged differently by the detector (e.g., PASCAL VOC class tvmonitor is referred
to as tv in COCO dataset), the only required work is to provide a text file listing
the names of the classes in the ground-truth format. This way the evaluation tool
can recognize that the detected object airplane should be evaluated as aeroplane.

A total of 17,125 of images from the train/val PASCAL VOC 2012 dataset con-
taining 40,138 objects of 20 classes were evaluated by the YOLOV5 model to detect
objects in 80 different classes. A total of 74,752 detections were detected by the
model. Figure 6.7 compares the distribution of ground-truth and detected objects
per class. Due to the difference of classes in the training and testing datasets, many
predicted classes are not in the ground-truth set, so detections of the extra classes
are ignored by the metrics.

The AP results for each class are presented in Table 6.5. The highest AP values
over all classes were obtained when the AUC was measured with the 11-point in-
terpolation method and an IOU threshold of t = 0.5, resulting in mAP = 0.58. As
expected for all cases, a more rigorous IOU threshold (t = 0.75) resulted in a smaller
AP. Comparing the individual AP results among all classes, the most difficult object
for all interpolation methods was the potted plant, having an AP not higher than
0.37 for an IOU threshold of t = 0.5 and an AP not higher than 0.22 with an IOU
threshold of t = 0.75.

The results obtained by the variations which apply AP and AR with different
sizes and quantity of objects per image are summarized in Table 6.6.

Even if the same interpolation technique is applied, the results may vary de-
pending on the IOU threshold. Similarly, different interpolations with the same
IOU threshold may also lead to distinct results.
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Figure 6.7: Class distributions: (a) Ground-truth bounding boxes. (b) Detected
bounding boxes.

The metrics considering objects in different scales are useful to compare the
assertiveness of detections in datasets containing objects of different scales. In the
COCO dataset, for instance, roughly 42% of the objects are considered small (area
< 322 pixels), 34% are considered medium (322 < area < 962 pixels), and 24% are
considered large (area > 962 pixels). This explains the vast amount of works using
this dataset to report their results.
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Table 6.5: AP results obtained with different interpolation methods and IOU thresh-
olds.

Class IOU threshold = 0.5 IOU threshold = 0.75
101-point 11-point all-point 101-point 11-point all-point

aeroplane 0.76 0.79 0.77 0.57 0.58 0.58
bicycle 0.41 0.43 0.41 0.31 0.33 0.31
bird 0.66 0.67 0.66 0.49 0.48 0.50
boat 0.47 0.46 0.47 0.28 0.29 0.29
bottle 0.45 0.47 0.45 0.32 0.34 0.33
bus 0.79 0.78 0.80 0.74 0.69 0.74
car 0.52 0.53 0.53 0.39 0.39 0.39
cat 0.73 0.74 0.73 0.54 0.53 0.54
chair 0.41 0.40 0.41 0.30 0.32 0.30
cow 0.74 0.69 0.74 0.59 0.58 0.60

diningtable 0.44 0.46 0.44 0.28 0.31 0.28
dog 0.66 0.64 0.65 0.53 0.53 0.53
horse 0.42 0.43 0.43 0.35 0.36 0.35

motorbike 0.51 0.53 0.51 0.38 0.39 0.38
person 0.67 0.65 0.68 0.53 0.54 0.53

pottedplant 0.37 0.39 0.37 0.22 0.25 0.22
sheep 0.68 0.68 0.68 0.56 0.58 0.57
sofa 0.44 0.45 0.44 0.37 0.38 0.37
train 0.75 0.77 0.76 0.65 0.66 0.65

tvmonitor 0.54 0.55 0.54 0.43 0.45 0.43
average 0.57 0.58 0.57 0.44 0.45 0.44

Table 6.6: Values of AP and average recall (AR) variations for different object sizes
and number of detections per image.

Metric Result

APS 0.13
APM 0.33
APL 0.46
AR1 0.39
AR10 0.53
AR100 0.53
ARS 0.23
ARM 0.47
ARL 0.58

6.9 Conclusions

This work analyzed the formats of bounding boxes used to represent the objects in
popular datasets and demonstrated the most common benchmark object detection
metrics. The similarities and inconsistencies of each metric were examined, and our
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results revealed their dissimilarities by evaluating the predictions of a pre-trained
object detector in a largely used dataset.

A toolkit implementing all described metrics in a way compatible with the most
data-annotation formats in use was presented and validated. Such results may
facilitate direct and unified comparisons among most algorithms being proposed in
the field of object detection. For future work, we intend to perform a regular survey
update through its companion website, incorporating newly proposed metrics and
annotation formats, and extend it to the problem of object tracking.

150



Chapter 7

Conclusions

In this thesis, we proposed a technique for real-time anomaly detection and frame
classification in a cluttered environment using the VDAO database. Given two
videos, being the reference video recorded in the expected scenario without anoma-
lous objects and the target video, where anomalous objects may be presented, our
goal was to develop a technique able to classify each frame as anomalous or non-
anomalous, and identify regions of the anomalous frames containing such anomalous
objects.

Supervised object detection techniques were first evaluated. As the variety of
anomalous objects is limited in the VDAO database, and the nature of the problem
does not allow us to know beforehand the class of the anomalous object in the scene,
this approach was discarded. Nevertheless, our initial studies on object detection
metrics allowed us to identify a gap in existing works, which allowed us to contribute
with one conference [171] and one journal paper [232] on this topic.

As the perspective was changed to the anomaly detection point of view, we were
motivated by the work [2], which used deep features extracted from both target
and reference frames. We started developing a simple temporal alignment technique
between both frames, which later was incremented with a more robust geometrical
alignment.

Our initial attempts applied Bayesian optimization to find the best hyperparam-
eters to train a Random Forest classifier using deep features extracted from the tem-
porally aligned pair of frames. Our results did not show a significant improvement
in the approach without hyperparameter selection. Still using the Random Forest
classifier, we replaced the original feature reduction operation (average pooling) by
selecting features based on their energy criterion using PCA. The computation bur-
den was extremely high and the results were still not satisfactory. The incapacity
of improving the previous results motivated us to explore the problem from another
perspective.

A pipeline formed by well-defined operations allowed the processing of the fea-
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ture tensors in sequential modules. The combination of these modules formed a
network that produces an image containing blobs representing anomalous regions
of the target frame, which is classified by the last module, the classification mod-
ule (CM). The differentiable morphology module (MM) stands out from the other
modules not only due to its contribution in eliminating false positive pixels while
maintaining the true positive ones, but also due to its capacity to approximate mor-
phological operations in a differentiable way. Results produced by our proposed
network surpass those of previous works, showing the great potential of our model.

7.1 Future Work

In this section, we present the main ideas for future works that can be done in areas
addressed in this thesis.

7.1.1 Input Features

The feature extraction reported in Chapter 3 uses the pretrained Resnet-50 back-
bone, which produces the features for all models explored in our work. It is known
that shallower layers of a convolutional network produce low-level features such as
borders, edges, and simple textures. As the 4th convolutional layer, the residual
3, obtained the best results, only features extracted by this layer were used in the
network MM TCM proposed in Chapter 5. Nevertheless, the DM presented in Sec-
tion 5.3 could be used to combine feature maps from different layers in an attempt
to improve the classification results. Its structure could be replicated multiple times,
so that other feature maps are weighed with more sets of values, and possibly the
anomalous objects can be more distinguishable in the output image with fewer false
positive regions.

7.1.2 Retrain the Network

As reported in Chapter 5, the modules of the proposed network were trained in-
dividually. The reason for that is due the lower gradient values computed in the
dissimilarity module, resulting in the vanishing gradient problem, hindering the
learning process of the parameters of the previous modules.

The work [156] affirms that the correct initialization of the network parameters
may prevent the network to get stuck in poor solutions. As a possible solution
for the vanishing gradient problem observed when the MM and CM modules are
trained together, may be an alternative to use the already trained parameters as
initial values. This solution would use only the classification loss to update the radii
of morphology operations and the classification threshold.
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7.1.3 Apply Differentiable Morphology in Other Problems

The attempt to create differentiable morphology operations has been explored by
different works [151–153]. However, the simplicity and efficiency of our proposed
differentiable morphology could contribute to other tasks, such as noise suppression,
background removal, image segmentation, etc.

The radius of the circular structuring element of our proposed differentiable
morphological operations is the only learnable parameter, being able to produce
results similar to the traditional non-differentiable operations.

7.1.4 Replace the Geometric Alignment by the Temporal

Alignment

The results in Chapter 5 were obtained with the geometrical alignment. Although
this technique shows better results than previous works, the geometrical alignment
is time consuming and cannot be applied in real time.

As the temporal alignment is less time consuming and can be applied in real
time, a further experiment is required to evaluate the performance of the network
with the temporal alignment.
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Appendix A

Published and Submitted Papers

During the elaboration of this thesis, some works were published as listed further
below. We highlight the works J1. and C1. for achieving an expressive number of
citations in a relative short period of time. According to google scholar platform, by
the conclusion of this thesis, the workC1. has 121 citations and its associated github
repository has 3,741 stars, and the work J1. has 26 citations and its associated
github repository has 350 stars.

A.1 Journal Papers

J1. Padilla, R., Passos, W. L., Dias, Thadeu L. B., Netto, S. L., da Silva, E. A.
B., A Comparative Analysis of Object Detection Metrics with a Companion
Open-Source Toolkit, Electronics, Special Issue on Deep Learning Based Object
Detection, vol. 10, January, 2021.

J2. Cinelli, L. P., de Oliveira, J. F., L., de Pinho, V., Passos, W. L., Padilla,
R., Braz, P., Galves, B., Dalvi, D., Lewenfus, G., Ferreira, J., Ji, A., de
Oliveira, F., Gonçalves, C., Netto, S. L., da Silva, E. A., B., de Campos,
M. L. R., Automatic Event Identification and Extraction from Daily Drilling
Reports Using an Expert System and Artificial Intelligence, vol. 205, Journal
of Petroleum Science and Engineering, October, 2021.

A.2 Conference Papers

C1. R. Padilla, S. L. Netto and E. A. B. da Silva, A Survey on Performance Met-
rics for Object-Detection Algorithms, International Conference on Systems,
Signals and Image Processing, Niterói, Brazil, July, 2020.

C2. Dias, T. L. B., Tavares, L. G., Padilla, R., da Silva, A. F., Thomaz, L. A.,
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Netto, S. L., da Silva, E. A. B., Siamese Networks for Bounding-Box to Silhou-
ette Annotation of Video Databases, XXXVIII Simpósio Brasileiro de Teleco-
municações e Processamento de Sinais, Brazil, November, 2020.

C3. Barros, B., Passos, W. L., Padilla, R., da Silva, Netto, S. L., E. A. B., Araújo,
G. M., Acerca de Técnicas de Aumento de Dados para a Detecção Automática
de Focos de Mosquito, XXXVII Simpósio Brasileiro de Telecomunicações e
Processamento de Sinais, Petrópolis, Brazil, September, 2019.
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