
END-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN
PORTUGUESE USING DEEP LEARNING

Igor Macedo Quintanilha

Dissertação de Mestrado apresentada ao
Programa de Pós-graduação em Engenharia
Elétrica, COPPE, da Universidade Federal do
Rio de Janeiro, como parte dos requisitos
necessários à obtenção do título de Mestre em
Engenharia Elétrica.

Orientadores: Luiz Wagner Pereira Biscainho
Sérgio Lima Netto

Rio de Janeiro
Março de 2017

END-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN
PORTUGUESE USING DEEP LEARNING

Igor Macedo Quintanilha

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO
ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE
ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE
JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A
OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA
ELÉTRICA.

Examinada por:

Prof. Luiz Wagner Pereira Biscainho, D.Sc.

Prof. José Gabriel Rodríguez Carneiro Gomes, Ph.D.

Eng. Leonardo de Oliveira Nunes, D.Sc.

Eng. Ranniery da Silva Maia, D.Eng.

RIO DE JANEIRO, RJ – BRASIL
MARÇO DE 2017

Quintanilha, Igor Macedo
End-to-end speech recognition applied to Brazilian

Portuguese using Deep Learning/Igor Macedo Quintanilha.
– Rio de Janeiro: UFRJ/COPPE, 2017.

XX, 101 p.: il.; 29,7cm.
Orientadores: Luiz Wagner Pereira Biscainho

Sérgio Lima Netto
Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2017.
Referências Bibliográficas: p. 90 – 101.
1. lvcsr. 2. connectionist temporal classification.

3. deep learning. I. Biscainho, Luiz Wagner Pereira
et al. II. Universidade Federal do Rio de Janeiro, COPPE,
Programa de Engenharia Elétrica. III. Título.

iii

To my parents, my siblings, my
closest friends, and to my love,

Karina.

iv

Agradecimentos

Uma longa caminhada tem sido feita ao longo desses anos, e eu não conseguiria
realizá-la sem estar rodeado de pessoas especiais. São tantas pessoas que vieram,
me ajudaram e foram embora, e tantas outras que estão aqui desde o começo da
caminhada que fica impossível agradecer individualmente. Gostaria de agradecer a
todas essas pessoas especiais que apareceram (e estão) na minha vida e que permitem
que eu continue com os meus estudos. A todos vocês, minha eterna gratidão.

Gostaria de agradecer aos meus pais, Simone Macedo Quintanilha e Michel Cam-
pista Quintanilha, que nunca deixaram de acreditar em minhas capacidades e até
hoje me auxiliam de todas as formas possíveis.

Aos meus irmãos, Yuri Macedo Quintanilha e Juliana Macedo Quintanilha, que
são minha fonte diária de inspiração e força, pela garra que mantiveram ao longo de
suas caminhadas; pelas pessoas que estão se tornando; e pelo suporte incondicional
que me deram.

Agradeço também à minha família oriental, pois sem vocês não chegaria tão
longe. Vocês me proveram refúgio, alimento e aconchego nas horas mais necessitadas.

À Karina Yumi Atsumi: você sabe que não posso descrever o quanto lhe agradeço
por todos esses anos de companheirismo e amor. Essa dissertação é tão sua quanto
minha. Meu eterno obrigado, hoje e sempre.

À Thais Fernandes, por seu bom humor não importando a hora do dia, pelas
conversas, pela companhia diária e por me inspirar com a sua determinação de
sempre seguir em frente, independente dos obstáculos que surgem.

Ao Luiz Wagner Pereira Biscainho, meu orientador, agradeço imensamente por
tudo. Meus pais ficam mais tranquilos sabendo que tenho você para auxiliar meu
caminho acadêmico e profissional. Muito obrigado mesmo por toda a paciência,
dicas, por escutar meus problemas e por tantas outras coisas que surgiram nesses
anos.

Ao Sérgio Lima Netto, meu (co-)orientador, muito obrigado por ter aceitado essa
empreitada, por todas as dicas e conselhos que tive e pelo ótimo humor em todas as
nossas reuniões.

Ao pessoal do Laboratório de Sinais, Multimídia e Telecomunicações, pelo total
suporte que tive ao longo desses anos — vocês são minha segunda (primeira) casa.

v

Agradeço à Universidade Federal do Rio de Janeiro, ao Instituto Alberto Luiz
Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE) e em especial ao
Programa de Engenharia Elétrica (PEE) pela minha formação. Sem esses centros
de excelência eu não seria nada.

E, finalmente, agradeço à Fundação de Amparo à Pesquisa do Estado do Rio de
Janeiro (FAPERJ) pelo apoio financeiro.

Ao Matheus, ao Felipe e ao Rafael, que já iam reclamar por não estar nesses
agradecimentos, muito obrigado por todos esses anos e por conseguir me tirar dos
estudos de vez em quando. Gostaria de ter começado essa amizade anos antes.
Ao Roberto, que sempre me acompanhou nessa caminhada, muito obrigado pela
paciência e amizade em todos esses anos.

vi

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

RECONHECIMENTO DE VOZ PARA O PORTUGUÊS BRASILEIRO
UTILIZANDO REDES NEURAIS DE PONTA-A-PONTA

Igor Macedo Quintanilha

Março/2017

Orientadores: Luiz Wagner Pereira Biscainho
Sérgio Lima Netto

Programa: Engenharia Elétrica

Apresenta-se nesta dissertação um sistema de reconhecimento de voz utilizando
redes neurais profundas treinadas de ponta-a-ponta baseado em caracteres para o
idioma Português Brasileiro (PT-BR). Para isso, foi desenvolvida uma base de da-
dos através de um conjunto de quatro bases (sendo três distribuídas gratuitamente)
disponíveis. Foram conduzidos diversos testes variando o número de camadas, apli-
cando diferentes métodos de regularização e ajustando diversos outros hiperparâ-
metros da rede neural. O melhor modelo atinge, na nossa base de teste, uma taxa
de erro de caractere de 25,13%, 11% maior que a reportada pelos sistemas comer-
ciais. Esse resultado mostra que é possível construir um sistema automático de
reconhecimento de voz para o idioma PT-BR utilizando redes neurais treinadas de
ponta-a-ponta.

vii

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

END-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN
PORTUGUESE USING DEEP LEARNING

Igor Macedo Quintanilha

March/2017

Advisors: Luiz Wagner Pereira Biscainho
Sérgio Lima Netto

Department: Electrical Engineering

In this work, we present a character-based end-to-end speech recognition sys-
tem for Brazilian Portuguese (PT-BR) using deep learning. We have developed our
own dataset — an ensemble of four datasets (three publicly available) that we had
available. We have conducted several tests varying the number of layers, apply-
ing different regularization methods, and fine-tuning several other hyperparameters.
Our best model achieves a label error rate of 25.13% on our test set, 11% higher
than commercial systems do. This first effort shows us that building an all-neural
speech recognition system for PT-BR is feasible.

viii

Contents

List of Figures xii

List of Tables xiv

List of Symbols xv

List of Abbreviations xviii

1 Introduction 1
1.1 The rise of Deep Learning . 1
1.2 Evolution of automatic speech recognition (ASR) systems: from hid-

den Markov models (HMMs) to end-to-end solutions 2
1.3 Contributions of this dissertation . 3
1.4 Chapter organization . 3

2 Neural Networks 4
2.1 Feedforward neural networks . 4
2.2 Commonly used activation functions 7

2.2.1 Sigmoid . 7
2.2.2 Tanh . 7
2.2.3 ReLU . 8

2.3 Loss function . 8
2.3.1 Two-layer feedforward neural network as a universal model for

any continuous function . 9
2.4 The forward pass . 9

2.4.1 Toy example: Learning XOR 9
2.5 The backward pass . 12

2.5.1 Recursively applying the chain rule to obtain backprop 14
2.5.2 Computational graph . 15
2.5.3 Applying the chain rule to a computational graph 16
2.5.4 Backpropping through a neural network 17

2.6 Deep feedforward neural networks . 19

ix

2.6.1 Why did stacking layers not work? 20
2.6.2 Unsupervised learning as a bootstrap of deeper models 20
2.6.3 Xavier and He initialization 20
2.6.4 The internal covariate shift problem 22

2.7 Regularization for deep learning . 24
2.7.1 Weight decay . 25
2.7.2 Dropout as an exponential ensemble of thinner networks . . . 25

2.8 Network optimization . 26
2.8.1 Gradient descent . 27
2.8.2 Momentum . 27
2.8.3 Adaptive methods . 28

2.9 Sharing weights across time and space 29
2.10 Convolutional networks . 30

2.10.1 Convolutional layer . 30
2.10.2 Pooling layer . 32
2.10.3 ConvNet architectures . 33

2.11 Recurrent neural networks . 33
2.11.1 Vanilla RNNs . 34
2.11.2 Bidirectional RNNs . 34
2.11.3 Back propagation through time 36
2.11.4 Vanishing and exploding gradients in recurrent nets 37
2.11.5 Dealing with exploding gradients: clipping 38
2.11.6 Dealing with vanishing gradients: LSTM 38
2.11.7 LSTM and beyond . 41

2.12 On the difficulty of regularizing recurrent nets 43
2.12.1 Dropout for RNNs . 43
2.12.2 Zoneout . 44
2.12.3 Batch norm for RNNs . 44
2.12.4 Layer normalization . 45
2.12.5 Multiplicative integration . 45
2.12.6 General discussion . 46

3 All-neural speech recognition 47
3.1 Traditional speech recognizers . 47
3.2 End-to-end speech recognizers . 50
3.3 Connectionist Temporal Classification 50

3.3.1 Loss function . 55
3.3.2 Loss gradient . 55

3.4 Feature extraction . 56

x

3.4.1 MFCC . 56
3.4.2 Convolutional networks as features extractors 58

3.5 Decoding the sequence . 59
3.5.1 Improving performance: employing a language model 60

3.6 Related work . 62
3.6.1 Graves’ models . 62
3.6.2 Maas’ model . 64
3.6.3 EESEN . 64
3.6.4 Deep Speech 1 and 2 by Baidu Research 66

3.7 Proposed model . 68

4 Experiments on all-neural speech recognition 71
4.1 English and Portuguese datasets . 71

4.1.1 TIMIT . 71
4.1.2 Brazilian Portuguese dataset 73

4.2 Hardware and software . 75
4.3 Case study: Graves’ model . 77

4.3.1 Increasing the speedup with bigger batch size 77
4.4 Applying the knowledge: building an end-to-end ASR that under-

stands Brazilian Portuguese . 78
4.4.1 Stacking more layers . 81
4.4.2 Regularization . 81
4.4.3 Multiplicative integration and layer normalization 83
4.4.4 Broader context . 83
4.4.5 Final model . 84
4.4.6 Analyzing the transcriptions 84

5 Conclusions and future works 87
5.1 Future works . 89

Bibliography 90

xi

List of Figures

2.1 A 3-layer feedforward neural network 5
2.2 Single neuron details . 6
2.3 Most common activations . 8
2.4 XOR function . 10
2.5 Transformation of nonlinear input space x into a linearly separable

feature space h. 13
2.6 An example of computational graph 16
2.7 Chain rule of a computational graph 16
2.8 Backprop of z = (f ◦ g)(x) . 16
2.9 Computational graph of sigmoid . 17
2.10 Essential ops in a computational graph 18
2.11 Backprop through an affine layer with no activation. 19
2.12 Backprop through a ReLU layer. 19
2.13 Backprop through the XOR model. 19
2.14 Example of a 6-layer MLP with ReLU activation trained to classify

images with and without batch norm 24
2.15 Example of convolutional layer . 32
2.16 Example of pooling layer . 33
2.17 RNN modeling . 35
2.18 Example of a BRNN . 36
2.19 Unrolling the RNN in order to calculate the gradients. 37
2.20 Computational graph of an RNN. 37
2.21 Computational graph of LSTM. 39

3.1 Block-diagram for the ASR problem. 48
3.2 CTC trellis of word SKY . 54
3.3 40 filter banks on a mel-scale. 58
3.4 MFCCs calculation steps. 59
3.5 Example where the greedy decoding fails to find the most probable

labelling. 60

xii

4.1 Some statistics of BRSD. 76
4.2 Evolution of CTC loss for various batch sizes. 79
4.3 Results for training with the subset instead of the full training set . . 80
4.4 Different models ranging the number of layers from 1 to 7. 81
4.5 Different values of dropout and weight decay 82
4.6 Different values for the zoneout probability 82
4.7 The best model with and without MI. 83
4.8 Comparison of our best model without a context and with a context

of ±3 time steps. 84
4.9 Best model training. 85

xiii

List of Tables

2.1 Logic XOR truth table . 10

3.1 Graves 2006 model . 63
3.2 Graves2013 model . 63
3.3 Maas’ model . 65
3.4 Results from Maaset al. [90] . 65
3.5 EESEN model . 66
3.6 EESEN best results . 66
3.7 Deep Speech 1 model . 67
3.8 Deep Speech 1 WER. 67
3.9 Deep Speech 2 model . 68
3.10 Deep Speech 2 WER. 69
3.11 The proposed model . 70

4.1 Distribution over region and genre of the TIMIT dataset 72
4.2 The core test set distribution . 73
4.3 Basic summary of each dataset employed 73
4.4 Train, valid and test set of BRSD . 75
4.5 Results for the 4 commercial systems evaluated on our test set 75
4.6 Speed up achieved increasing the batch size. 78
4.7 Comparison between the ground truth sequence and the sequence

transcribed by our best model . 85
4.8 Comparison between the ground truth sequence and the sequence

transcribed by our best model . 86
4.9 Comparison between the ground truth sequence and the sequence

transcribed by our best model . 86

xiv

List of Symbols

{0, 1, . . . , n} A set of all integers between 0 and n, p. 6

A \ B Set subtraction, i.e., the set containing the elements of A that
are not in B, p. 60

A�B Element-wise (Hadamard) product of A and B, p. 18

ai Element i of the random vector a, p. 21

ai Element i of vector a, p. 6

a(l) A variable of the l-th layer, p. 6

a−1 The last element of vector a, p. 60

AT Transpose of matrix A, p. 5

a(t) A vector at time step t, p. 34

α Hyperparameter of RMSProp, p. 29

α{v,m} Hyperparameters of Adam, p. 29

Ai,j Element i,j of matrix A, p. 15

A A matrix, p. 6

a A vector, p. 5

A a set, p. 9

a A scalar random variable, p. 21

a A vector-valued random variable, p. 21

a A scalar (integer or real), p. 5

b Bias, p. 5

c(t) Cell state at time step t, p. 38

xv

δ Gradient of the loss w.r.t. the node’s output, p. 18

dy

dx
Derivative of y with respect to x, p. 13

η Learning rate, p. 27

E [·] Expectation, p. 9

f(x;θ) A model with input x parametrized by θ, p. 5

f ∗ Desired function, p. 5

f ◦ g Composition of the functions f and g, p. 6

f Forget gate, p. 38

g Block input gate, p. 39

h(t) Hidden state at time step t, p. 34

~h
(t)

Backward hidden state, p. 35

~h
(t)

Forward hidden state, p. 35

H Hypothesis set, p. 60

h Hidden unit, p. 5

i Input gate, p. 38

κ Pre-emphasis factor, p. 56

l+ Augmented label sequence, p. 52

λ Weight decay factor, p. 25

log x Natural logarithm of x, p. 50

L Loss function, L : RD → R, p. 8

l A label sequence, p. 51

µ Momentum factor, p. 28

m A mask, p. 25

o Output gate, p. 39

∂f

∂x
Jacobian matrix

∂f

∂x
∈ RM×N of f : RN → RM , p. 14

xvi

∂y

∂x
Partial derivative of y with respect to x, p. 14

Φ(l) A set of CTC paths for l, p. 52

φ (·) Activation function, applied element-wise, p. 5

P (a) A probability distribution over a variable a, p. 25

R The set of real numbers, p. 11

r Reset gate, p. 42

S Training set, p. 9

σ (x) Logistic sigmoid,
1

1 + e−x
, p. 7

s A signal, s ∈ RN , p. 56

u Update gate, p. 42

u Staircase function, p. 18

∅ Blank label, p. 51

var (·) Variance, p. 21

win A window function, win ∈ RL, p. 56

W Weights of a layer, p. 6

w Weights of a hidden unit, p. 5

x Input, p. 5

y Target, p. 8

ŷ Output of the model f(x;θ), p. 5

xvii

List of Abbreviations

Adam ADAptive Momentum Estimation, p. 29

AI Artificial Intelligence, p. 1

AlexNet Convolutional neural network topology proposed by
Krizhevsky et al. [1], p. 33

ASR Automatic Speech Recognition, p. 2

Backprop Backpropagation, p. 12

Batch Norm Batch Normalization, p. 22

BLSTM Bidirectional Long Short-Term Memory, p. 62

BN Batch Normalization, p. 22

BRNN Bidirectional Recurrent Neural Network, p. 35

BRSD Brazilian Portuguese Speech Dataset, p. 73

CLM Character level Language Model, p. 64

CNN Convolutional Neural Network, p. 30

CNTK Microsoft Cognitive Toolkit, p. 76

ConvNet Convolutional Neural Network, p. 30

CPU Central Processing Unit, p. 27

CSLU Center for Spoken Language Understanding, p. 73

CTC Connectionist Temporal Classification, p. 3

DARPA Defense Advanced Research Projects Agency, p. 71

DCT Discrete Cosine Transform, p. 57

DNN Deep Neural Networks, p. 64

xviii

FSH Fisher dataset, p. 66

GMM Gaussian Mixture Models, p. 47

GPU Graphics Processing Unit, p. 27

GRU Gated Recurrent Unit, p. 41

HMM Hidden Markov Model, p. 2

HOG Histogram of Oriented Gradient, p. 47

LDC Linguistic Data Consortium, p. 64, 71

LeNet Convolutional neural network topology proposed by Lecun et
al. [2], p. 33

LER Label Error Rate, p. 62

LN Layer Normalization, p. 45

LPC Linear Predictive Coding, p. 48

LSTM Long Short-Term Memory, p. 38

LVCSR Large Vocabulary Continuous Speech Recognition, p. 74

MBR Minimum Bayes’ risk, p. 49

MCE Minimum Classification Error, p. 49

MFCC Mel Frequency Cepstral Coefficients, p. 56

MILA Montreal Institute for Learning Algorithms, p. 1

MI Multiplicative Integration, p. 45

MIT Massachusetts Institute of Techonology, p. 71

ML Machine Learning, p. 33

MLP Multilayer Perceptron, p. 4

MMI Maximum Mutual Information, p. 49

MSE Mean Square Error, p. 10

NIST National Institute of Standards and Technology, p. 72

PHN Phoneme, p. 73

xix

PLP Perceptual Linear Predictive, p. 48

ReLU Rectified Linear Units, p. 8

ResNet Residual Network, p. 1

RGB Red, Green, and Blue, p. 29

RMSProp Root Mean Square Propagation, p. 28

RNN Recurrent Neural Network, p. 33

SGD Stochastic Gradient Descent, p. 27

SNR Signal-to-Noise Ratio, p. 74

SWB SwitchBoard dataset, p. 66

UBI Universal Basic Incoming, p. 1

VGG Visual Geometry Group, p. 33

WER Word Error Rate, p. 64

WFST Weighted Finite-State Transducer, p. 64

WRD Word, p. 73

WSJ Wall Street Journal corpus, p. 64

XOR eXclusive OR, p. 9

xx

Chapter 1

Introduction

1.1 The rise of Deep Learning

Since 2006, the world has drastically changed, but unfortunately, only a few peo-
ple have noticed. In that year, a game-changing algorithm was (re)born: deep learn-
ing [3]. After that, the artificial intelligence (AI) field has conquered research and
industry, from pedestrian recognition and self-driving cars [4, 5] to speech recognition
and disease identification [6, 7]. A billionaire market was raised, and big companies
are self-adapting and applying AI with deep learning in the oddest scenarios.

People, like Elon Musk, and nations, like Sweden, have been talking about uni-
versal basic incoming (UBI) – a monthly paid salary to every citizen, with or without
a job – worried that AI will destroy about 1/3 of jobs in the next few decades, leav-
ing a great fraction of population jobless. Specialists say that in the future, jobs
will be a privilege for specialized persons.

Studying deep learning topologies and algorithms will for sure increase the
chances of having employment in the near/far future. While Microsoft ends the
year of 2016 allocating 10,000 of its workers to work with artificial intelligence and
Google has donated millions of dollars to MILA lab, in Montreal – Canada, the
birthplace of deep learning, Elon Musk with others founded OpenAI, “a non-profit
research company responsible to build a safe AI and ensure AI’s benefits are as
widely and evenly distributed as possible”, which raised more than one billion of
investment in a few months.

The last couple of years has shown the power of deep learning. In 2015, Microsoft
presented a topology (called residual network or ResNet) that surpassed the human
capability of image classification on ImageNet – a dataset of millions of images
organized in 1000 classes, of which 100 are dog breeds. In the following, Google
showed a text-to-speech architecture (based on PixelCNN) capable of synthesizing
human speech that received 50% better evaluation in subjective tests than the best

1

previous system of the company. Using deep reinforcement learning, a team of
researchers of Deep Mind – a two-year old British start-up bought by Google for
U$650 million – managed to win the best Go (Chinese board game) player in the
world; and yet, 10 years before, people used to say it was impossible to build an AI
able to play Go, due to the (virtually infinite) number of possible movements on the
board.

Speech recognition, machine translation, pedestrian detection, image classifica-
tion, image detection, image segmentation, and gene-related disease identification
are some of the areas where deep learning has been responsible for a huge revolu-
tion in the last years. Despite researchers’ efforts, understanding what is behind
this magnificent idea is still a future, and much research is needed. For now, sci-
entists are creating and trying new architectures, improving their results, breaking
successive benchmarks and applying this knowledge in other fields far from image
classification.

We are in an exciting time for AI-related research.

1.2 Evolution of automatic speech recognition

(ASR) systems: from hidden Markov models

(HMMs) to end-to-end solutions

Seventy years ago [8], researchers gave the first steps on the automatic recognition
of spoken digits; later on, they have developed several systems for continuous speech
recognition, built on a small number of possible words. Without a doubt, the first
major technology breakthrough in this area was made at the end of 1960, with
the development of hidden Markov models [9] (HMM), enabling the combination of
acoustic, language and lexicon models in one probabilistic algorithm.

In the 1980s, it was already possible to build a speaker-dependent system capable
of recognizing more than 20,000 words. In the 1990s, commercial solutions have
arisen, like the famous IBM Via Voice Center, popularized in Brazil.

Although many others HMM-based algorithms have been developed from the
end of 1990s to the beginning of 2012, they brought few significant advances. The
increasing computational power — along with the development of powerful GPUs —
the availability of huge amount of data, and the development of deep learning made
possible, in 2012, the deployment of a new system [6, 10] that led to the highest
advance over 20 years in the speech recognition area, improving the previous system
performance by over 30%. From 2012 on, ASR got back to the spotlight, leading to
hundreds of papers in the speech processing area.

More recently, there is a hype among the researchers in applying only one neural-

2

based system to perform the speech recognition, in an end-to-end solution. Graves et
al. [11] have made the first successful algorithm, proposing the connectionist tem-
poral classification. Moreover, Chorowski et al. [12] have successfully applied an
encoder-decoder neural-based model with attention mechanism, which had primar-
ily been employed to neural machine translation, to an end-to-end ASR system.

The work in ASR is not done. The Holy Grail is to develop a unique automatic
speech recognition system capable of understanding human speech in the vastest sce-
narios — from a quiet room to a war zone — and in different languages. Fortunately,
we are far from this goal.

1.3 Contributions of this dissertation

The main contribution of this dissertation is the first freely available character-
based end-to-end ASR solution for the Brazilian Portuguese language we have knowl-
edge of. Furthermore, we have built our own dataset — a preprocessed ensemble
of four different datasets (three of which are publicly available, one paid) that were
available to us. The best model achieves a character error rate of 25.13%.

1.4 Chapter organization

We give a brief revision of (deep) neural networks in Chapter 2 — from neurons,
layers, optimization, initialization methods, and regularizers to convolutional neural
networks and recurrent neural networks.

In Chapter 3, we describe the problem behind HMM-based systems and how the
connectionist temporal classification (CTC) method has arisen to overcome it. Also,
we discuss how we can decode the sequences from CTC-based models, and how we
can improve our ASR system with a language model. Then, we go through several
end-to-end models that have been proposed over the years. Finally, we discuss our
proposed model.

In Chapter 4, we introduce the TIMIT dataset, used to validate our implemen-
tation. Also, we present our Brazilian Portuguese dataset, built from an ensemble
of four distinct datasets. Next, we conduct several experiments to build our best
final model and discuss many design choices.

Finally, in Chapter 5 we conclude our work and point to possible future directions
that our work could bring.

3

Chapter 2

Neural Networks

“Virtually nothing is known about the
computational capabilities of this latter kind of
machine. We believe that it can do little more
than can a low order perceptron.”

— Minsky and Papert, 1971

Created in 1958 and giving hope to the research community as a pillar to con-
struct a real AI system, being disgraced in 1969 by Marvin Minsky and Seymour
Papert, gaining its way back as a suitable machine learning algorithm in 1989, and
growing at an unseen rate with deep learning since 2006, neural network had its ups
and downs, but it is undeniable that it has gained its space recently as a state-of-
the-art algorithm for many applications.

This chapter introduces the basic concepts of neural networks (and deep learn-
ing).

2.1 Feedforward neural networks

The feedforward neural network, also often called multilayer perceptron (MLP),
can be defined as a directional acyclic graph and has the property of being a universal
approximator [13, 14]. It is easier to understand than it looks.

This seminal neural network is made of simpler structures called neurons, which
are organized in layers, each with one or more neurons. Neurons between two
adjacent layers are fully pairwise connected, but neurons within a single layer share
no connections, as illustrated in Fig. 2.1. The feedforward neural network has an
input, connected to all neurons in the first layer, and has an output, connected to
every neuron in the last layer. Commonly, the input is called input layer, the output
is called output layer, and the layers between them, hidden layers. This network is
called feedforward because the information flows only from input to output: there

4

Hidden Layer 1 Hidden Layer 2 Output LayerInput Layer

Figure 2.1: A 3-layer feedforward neural network with three inputs, two hidden
layers of four neurons each, and one output layer with two neurons. Notice that
there are connections between neurons across layers, but not within a layer.

is no information from the output being fed back to the input.
A neuron can be viewed as a node in a graph, and each connection as an edge

with its own weight. A generic neuron is illustrated in Fig. 2.2. The information
flows from input to output (from one layer to another) through the edges, giving
directionality to the graph. Neurons of one layer are only connected to the neurons
of the adjacent layers, and there is no feedback connection in this model; thus the
graph is acyclic, i.e., starting from one node you cannot reach this point again
following the edges.

Mathematically, neurons apply an arbitrary function called activation (of neu-
ron), φ, to an affine projection of its inputs, x, returning a single output,

h = φ(wTx+ b), (2.1)

where w and b are the weights and bias of the neuron, respectively. Here, we will
simply denote Eq. (2.1) as h = φ(x) to make some concepts easier to understand. As
we said, a feedforward network contains many layers with many neurons. The goal
of such network is to approximate some function f ∗. A feedforward network defines
a mapping ŷ = f(x;θ) and learns the value of those parameters θ that results in
the best approximation to the desired model f ∗.

Due to its layered form, we can compute all outputs of a layer at once. The l-th

5

x3

x1

x2 hφ

w1

w2

w3

b

1

h = φ(x1w1 + x2w2 + x3w3 + b)

Figure 2.2: Every input (inbound edges) of the neuron (node), xi, i ∈ {1, 2, 3}, is
weighted by wi, i ∈ {1, 2, 3}, (given by the value of its edge), summed together with
a bias, and transformed by a function φ. Another way to look at this is considering
the bias as another input with a fixed value of 1.

layer of a network can be described as

h(l) = φ(W Th(l−1) + b) = f (l)(h(l−1)), (2.2)

where

W =
[
w1 w2 · · · wn · · · wN

]
,

b =
[
b1 b2 · · · bn · · · bN

]T (2.3)

are the learnable parameters of the network, i.e. θ; φ is the activation function
applied element-wise; and f (l) represents the overall transformations performed by
the l-th layer of the network.

Therefore, the output ŷ of an arbitrary L-layer feedforward neural network is a
composition of functions (denoted as “◦”) applied to the input:

ŷ = (f (L) ◦ f (L−1) ◦ · · · ◦ f (2) ◦ f (1))(x). (2.4)

If every layer f (l), l ∈ {1, 2, . . . , L}, is linear, the composition of linear functions
can be reduced to a single linear function,

ŷ = (f (L) ◦ f (L−1) ◦ · · · ◦ f (2) ◦ f (1))(x) = W ′Tx+ b′. (2.5)

Thus, a feedforward neural network made of linear neurons in arbitrary layers can
always be described by a neural network with a single layer. This is not attractive
because this network can only distinguish classes that are linearly separable, which
limits the power of learning more complex functions. For this reason, it is desirable

6

that each activation is a nonlinear function [15].

2.2 Commonly used activation functions

As mentioned, every activation takes a single value and performs a fixed math-
ematical operation on it. There are several functions commonly found in practice.

2.2.1 Sigmoid

The sigmoid is described as

σ(x) =
1

1 + e−x
, (2.6)

and has the form shown in Fig. 2.3. It takes a real-valued number and maps it into
a range from 0 to 1. The sigmoid function became very popular in the past because
it has a plausible interpretation as the fire rate of a neuron: from not firing (0) to
fully-saturated firing at an assumed maximum frequency (1). In practice, it has two
major drawbacks:

• Saturation:. When the sigmoid approaches 0 or 1, its derivative is almost
zero. This impacts the gradient computations required by the network opti-
mization method are discussed later.

• Output with non-zero mean. Sequential processing of layers in a neural
network works by receiving as inputs the activations from previous layers. A
sigmoid will always produce non-negative activation values, and these biased
inputs fed to the next layer slow down the network training [16].

2.2.2 Tanh

The hyperbolic tangent (represented by tanh) is also shown in Fig. 2.3, and looks
like the sigmoid. Indeed, we can express the tanh as a scaled version of the sigmoid:

tanh(x) = 2σ(x)− 1. (2.7)

Like in the sigmoid neuron, the activation of the tanh neuron also saturates, but its
output is zero-centered. This is why the tanh nonlinearity is often chosen in practice
instead of the sigmoid.

7

2.2.3 ReLU

The rectifier linear unit (ReLU) has become very popular recently due to its
successful use in different areas [17–19]. It computes the function

φ(x) = max(0, x), (2.8)

and its shape is also shown in Fig. 2.3. The activation is a simple threshold at
zero. Krizhevsky et al. [1] argued that due to its linear non-saturating form, the
training speeds up significantly. Moreover, ReLU performs inexpensive operations
compared to sigmoid or tanh. Unfortunately, this kind of activation has a drawback
that gained the name of “die ReLU”: if the ReLU learns a large negative bias term
for its weights, no matter the inputs, the output will be zero. Besides that, the
gradient will also be zero, meaning that the ReLU unit will stay at zero indefinitely.

1.0

−1.0

−0.5

0.5

10−10 −5 5

sigmoid

tanh

ReLU

Figure 2.3: The most common nonlinear activation functions in neural networks.

2.3 Loss function

Our objective is to best approximate our model ŷ = f(x;θ) to the desired model
y = f ∗(x). We can define a scalar loss function L(f(x;θ), f ∗), also known as cost
function or error function, that measures how well f(x;θ) approximates f ∗. Low
values indicate better approximations, while high values mean worse approximations.
Then, the goal is to find the set of parameters θ that minimizes the expected loss

8

over the parameters
min
θ

E[L(f(x;θ),y)]. (2.9)

Unfortunately, the true data distribution (x,y) is often unknown. What one usually
has available is a finite set of fixed data points (xi,yi) that is known as the training
set S. The solution is approximated by substituting the sample mean loss computed
over the training set for the expected loss:

min
θ

E[L(f(x;θ),y)] ≈ min
θ

1

|S|
∑

(xi,yi)∈S

L(f(xi;θ),yi). (2.10)

Due to the nonlinearity of the model, this minimization problem cannot be solved
by the common techniques designed for convex optimization. Instead, a gradient-
based method (which follows the steepest descent from each point over the loss
hyper-surface) is often preferred. To perform the minimization, all computation in
a neural network should be differentiable.

2.3.1 Two-layer feedforward neural network as a universal

model for any continuous function

It has been shown that a feed-forward network with a single hidden layer with
nonlinear activation containing a finite number of neurons can approximate any
continuous function. This is the basic idea behind the universal approximation
theorem1, proved firstly by George Cybenko [13] in 1989 for one kind of activation
function and generalized in 1991 by Kurt Hornik [14].

2.4 The forward pass

We have already seen the inner parts of a neural network – neuron, layers, and
connections – and how to evaluate its performance, but we have not seen yet how
those parts stick together and perform a real computation.

2.4.1 Toy example: Learning XOR

In this example, we will use a feedforward network to predict the outputs shown
in Tab. 2.1 — the logic XOR.

The XOR function is the target function y = f ∗(x), and our goal is to correctly
predict the four points X = {[0, 0]T , [0, 1]T , [1, 0]T , [1, 1]T}. Our network provides
a function ŷ = f(x; θ), and our learning algorithm will try to adapt the parameter
θ to make f closest to f ∗.

1Proof of this theorem is beyond the scope of this work.

9

Table 2.1: Truth table that the neural network will try to predict.

Inputs Output
0 0 0
0 1 1
1 0 1
1 1 0

We will treat this problem as a regression problem [20] and adopt a mean squared
error (MSE) as the loss function to make the math easier. In practical applications,
MSE is usually not an appropriate cost function for modeling binary data [15].

After evaluating the training set, the MSE loss is

L(f(x;θ), y) =
1

4

∑
xi∈X

(yi − f(xi;θ))2. (2.11)

Now that we have a training set and a loss function, we can choose the form of
our model, f(x;θ). Suppose that we pick a linear model, with θ consisting of w
and b, such that

f(x;w; b) = wTx+ b. (2.12)

We can minimize our cost function f(x;w, b) in closed form with respect to w and
b. Doing some math, we obtain w = 0 and b = 1

2
. The model simply outputs 1

2

everywhere. This occurs because a linear model is not able to represent the XOR
function, as demonstrated in Fig. 2.4. One way to overcome this problem is to use
a model that can learn a different feature space in which a linear model can find a
solution.

1

1

x1

x2

Figure 2.4: XOR is an example of function that cannot be learnt by a linear model,
i.e. a straight line cannot separate the classes. This kind of function is also known
as linearly non-separable function.

10

For instance, a 2-layer feedforward network with 2 hidden units (neurons) is
capable of solving this kind of problem. The first layer will be responsible for
mapping the input x into a new set of features h that are computed by a function
f (1)(x;W ; b). The values of the hidden units are then used as input for the second
layer. Hence, the second layer is the output layer of the network. The output layer
is still just a linear model, but applied to h rather than x. Mathematically, the
network contains two functions chained together:

h = φ(W Tx+ b), (2.13)

ŷ = wTh+ c, (2.14)

whereW ∈ R2×2, b ∈ R2×1 are the parameters of the first (hidden) layer (containing
2 neurons) and w ∈ R2×1, c ∈ R are the parameters of the second (output) layer.
Our model is finally described as:

f(x) = wTφ(W Tx+ b) + c. (2.15)

As we wrote before, if we define the first layer as a linear model, then the feed-
forward network would remain a linear function of its input,

f(x) = wT (W Tx) +wTb+ c

= w′Tx+ b′,
(2.16)

where w′ = wTW T and b′ = wTb+ c.
To avoid this problem, φ must be a nonlinear function, as described in Sec. 2.2.

One could choose ReLU — the default recommendation for modern neural net-
works [3]. Finally, our complete network is defined as

f(x) = wT max(W Tx+ b,0) + c. (2.17)

Setting

W =

[
1 −1

−1 1

]
, b = [0 0]T , w = [1 1]T , c = [0 0]T , (2.18)

we can calculate the output of our model by propagating the information from input
to output, also known as network forwarding. Let X be our batch input containing

11

all four points in the binary input space:

XT =

0 0

0 1

1 0

1 1

 . (2.19)

The first step is to compute the affine projection of the input2

(W TX)T =

0 0

−1 1

1 −1

0 0

 ; (2.20)

then, we calculate the value of h by applying the ReLU transformation. This non-
linearity maps the input to a space where a linear model can solve this problem, as
shown in Fig. 2.5. We finish our calculation by applying the last layer function to
the last result:

wT
(
W TX

)
=
[
0 1 1 0

]
. (2.21)

From this expression, the neural network has correctly predicted the right answer
for every example in the batch.

In this example, we have demonstrated how the forward pass of a neural network
works. In real applications, there might be millions of model parameters and millions
of training examples, making it impossible to guess the solution as we did. Instead,
a gradient-based optimization is preferred to find the parameters that produce a
minimum error. To perform the gradient-based optimization, we must know the
gradient of the loss with respect to each parameter. This is done by performing the
backpropagation algorithm as discussed below.

2.5 The backward pass

Backpropagation, also known as backprop, is a highly efficient algorithm respon-
sible for the backward flow of information through a neural network, which will be
used by a learning method. People use to associate backprop with the learning algo-
rithm itself, but it is only a method for computing the gradients. Also, backprop is
often misunderstood as a particular algorithm for neural networks, but it computes
the derivative chain rules through any computational graph [3].

2The affine projections for all inputs X = [x1, x2, x3, x4] are done at once.

12

1-1

1

-1

2

h′
1

h′
2

(a) Inputs lying into a straight line af-
ter the affine projection performed in the
first layer.

1-1

1

-1

2

h1

h2

(b) After being transformed by the non-
linearity, the inputs lie in a space of fea-
tures where a linear model can distin-
guish the correct output.

Figure 2.5: Transformation of nonlinear input space x into a linearly separable
feature space h.

Definition 2.1. The chain rule
It is worth remembering that the differentiation chain rule states for z = f(y)

and y = g(x) that

dz

dx
=

dz

dy

dy

dx
, (2.22)

which intuitively means that if f(y) depends on y and y depends on x, we can
calculate how f(y) changes with x by multiplying how f(y) changes with y and how
y changes with x. This is useful in many applications, but turns out to be essential
when analyzing and computing how gradients flow through a computational graph.

The chain rule can be extended to a broader context that includes vectors and
matrices. Considering g : RM → RN , f : RN → R, for x ∈ RM , y ∈ RN , and z ∈ R,
then

∂z

∂xi
=
∑
j

∂z

∂yj

∂yj
∂xi

. (2.23)

We can denote it in vector form:

∂z

∂x
=

(
∂y

∂x

)T
∂z

∂y
, (2.24)

13

where

∂z

∂y
=

∂z

∂y1
...
∂z

∂yn
...
∂z

∂yN

(2.25)

is the gradient of z with respect to y and

∂y

∂x
=

∂y1

∂x1

· · · ∂y1

∂xm
· · · ∂y1

∂xM...
∂yn
∂x1

· · · ∂yn
∂xm

· · · ∂yn
∂xM...

∂yN
∂x1

· · · ∂yN
∂xm

· · · ∂yN
∂xM

(2.26)

is the N ×M Jacobian matrix of g.

2.5.1 Recursively applying the chain rule to obtain backprop

With the differentation chain rule, generating an algebraic expression for the
gradient of a scalar w.r.t. any input is straightforward. Consider a scalar function
f : RN → R composed by L functions f = (f (L) ◦ · · · ◦ f (l) ◦ · · · ◦ f (1))(x), where
f (l) : RNl → RNl+1 , N1 = N , and NL+1 = 1. Applying the chain rule, we can obtain
the gradient of f w.r.t its input x ∈ RN such that

∂f

∂x
=

(
∂x(L)

∂x

)T
∂f (L)

∂x(L)
, (2.27)

where x(l) is the input of f (l). Reapplying the chain rule,

∂f

∂x
=

(
∂x(L−1)

∂x

)T (
∂x(L)

∂x(L−1)

)T
∂f

∂x(L)
. (2.28)

After repeating the same operation until l = 1, we have

∂f

∂x
=

L−1∏
l=1

(
∂x(l+1)

∂x(l)

)T
∂f (L)

∂x(L)
=

L−1∏
l=1

(
∂f (l)

∂x(l)

)T
∂f (L)

∂x(L)
. (2.29)

By applying the chain rule recursively, we can obtain the derivative of the output

14

w.r.t its input. More than that, we can get the derivative of a complex function by
computing several simpler derivatives and multiplying them. However, calculating
the Jacobian matrices directly may not be efficient.

Consider for instance a linear model f(x;W) = W Tx, where W ∈ RM×N and
x ∈ RM . Finding the Jacobian matrix w.r.t. x is straightforward: ∂f/∂x = W T .
Computing the Jacobian w.r.t. matrixW can be done by reshapingW into a vector

w =
[
W1,1 W1,2 · · · W1,n W2,1 · · ·WM,N

]
∈ RMN , (2.30)

resulting in a Jacobian matrix ∂f/∂w ∈ RMN×N with elements

∂fn
∂Wi,j

=

0, n 6= j

xi, n = j
. (2.31)

Since our objective is to compute the gradient of a scalar loss function
L(f(x;W), f ∗) w.r.t. W , we can use the chain rule

∂L
∂Wi,j

=
N∑
n=1

∂fn
∂Wi,j

∂L
∂fn

. (2.32)

Using Eq. (2.31), the gradient becomes much simpler:

∂L
∂Wi,j

=
∂fj
∂Wi,j

∂L
∂fj

= xi
∂L
∂fj

, (2.33)

which can be represented in a vectorized form

∂L
∂W

= x
∂L
∂f

T

. (2.34)

As in the example above, training neural networks only requires a scalar loss
function. Analogously, for each parameter we only need to calculate the derivative
of the output w.r.t. the parameter and multiply it with the gradient of the loss
w.r.t. its outputs, avoiding a lot of additional operations.

2.5.2 Computational graph

A computational graph, or computational circuit, is an acyclical directed graph
where each node is an operation (referred simply as op), or computation, that trans-
forms its inputs into outputs (see Fig. 2.6). The operations in a graph can be defined
arbitrarily. An easy example would be a graph with Boolean operations (logic gates),
which we know as a logic graph or logic circuit.

15

zfgx

y = g(x) f(y)

Figure 2.6: An example of computational graph. This graph implements the function
z = (f ◦ g)(x).

2.5.3 Applying the chain rule to a computational graph

The chain rule can be interpreted in a very interesting way: to calculate the
gradient with respect to an input of an op, we simply need the local derivatives
and the gradient of the graph’s output, represented as y, with respect to the node’s
output. This concept is illustrated in Fig. 2.7 and an example is shown in Fig. 2.8.

v

u

zf
∂y
∂z

∂f
∂v

∂y
∂z

∂f
∂u

∂y
∂z

Figure 2.7: Calculating the gradient in a computational graph. We only have to
calculate the local gradient given the graph’s output (y) gradient.

zf
∂z
∂z = 1

gx

y = g(x) f(y)

∂z
∂y

∂y
∂x

∂z
∂y

Figure 2.8: An example of backpropagation through the computational graph rep-
resentation of Eq. (2.22).

Toy example: sigmoid function

As a concrete example, let us compute the derivative of the logistic sigmoid
function defined as:

σ(x) =
1

1 + e−x
. (2.35)

The ops we use to define the graph are entirely up to us. We should define ops
which we know the derivatives of. We have defined the graph in Fig. 2.9, and the
values on the top of the arrows, in black, are computed by applying the operation
to its inputs. The values on the bottom, in red, are the derivatives, calculated by

16

the chain rule: the left term is the local gradient, which multiplies the propagated
gradient, on the right.

Knowing some derivatives

∂

∂x

(
1

x

)
= − 1

x2
,

∂(x± 1)

∂x
= 1,

∂ex

∂x
= ex,

∂(−x)

∂x
= −1, (2.36)

the total derivative of the input w.r.t. the output is straightforwardly calculated by
applying the chain rule throughout the graph:

∂σ

∂x
= e−xσ2(x) = σ(x)[1− σ(x)]. (2.37)

It should be noted that, since ∂σ(x)
∂σ(x)

= 1, we always assume an initial gradient of 1.

σ(x)++× 1
xex

−1 1

x

−x e−x 1 + e−x
1

1+e−x

1−σ2(x)× 1−σ2(x)× 1e−x ×−σ2(x)−1× e−x ×−σ2(x)

Figure 2.9: Computational graph of sigmoid. The values in black/red on the
top/bottom of the arrows indicate the forward/backward calculations. Red arrows
indicating the backprop flow are omitted for clarity.

Essential ops

As we saw in a simple example using the logistic function, we were able to
calculate the gradients rather easily. That was possible only because we already
knew the local gradients of each operation. This is the essential idea: each node
changes how the gradient is propagated backwards into the graph; so, as long as we
have performed the forward pass (obtain the op’s output) and the backward pass
(obtain the gradients with respect to its inputs given the gradients with respect to
outputs), we can find any gradient desired. Fig. 2.10a shows the adding operation,
which acts as a gradient distributor, and Fig. 2.10b shows the multiplying operation,
which “swaps” the inputs.

2.5.4 Backpropping through a neural network

As we pointed before, a feedforward neural network can be viewed as an acyclic
directional graph — the same way that we have defined a computational graph. We
will use everything we have learned of the computational graph to backpropagate

17

v

u

z+
∂ŷ
∂z

∂ŷ
∂z

∂ŷ
∂z

(a) Adding operation in a computational
graph

v

u

z×
∂ŷ
∂z

u∂ŷ
∂z

v∂ŷ
∂z

(b) Multiplying operation in a computa-
tional graph

Figure 2.10: Essential basic operations that we must know in advance. The addition
op works as a gradient distributor, while the multiplying op works as a “swap” input.

the signal through the network used in our toy example that predicted the XOR
function (Sec. 2.4.1).

First, we need to define the backpropagation through a layer with an arbitrary
number of neurons and no activation, which is represented in Fig. 2.11. We have for
an arbitrary layer

∂L
∂z

= δ,
∂L
∂b

= δ,
∂L
∂W

= xδT ,
∂L
∂x

= Wδ, (2.38)

where δ is the derivative of the loss w.r.t. the output of the computational graph.
Then, we need to define the backpropagation through a layer with ReLU activation.
Note that the derivative of operation φ(x) = max(x,0) applied element-wise is

∂φ

∂x
=

0, for x ≤ 0

1, for x > 0,
(2.39)

i.e., the step function, u. Next, we can calculate the backprop of a ReLU layer,
shown in Fig. 2.12, where � denotes the element-wise multiplication (generalizing
the multiplicative case for real variables in Fig. 2.10b).

Finally, computing the gradients of the loss w.r.t. any variable of our XOR model
(shown in Fig. 2.13) is straightforward:

∂L
∂y

= δ,
∂L
∂c

= δ,
∂L
∂w

= hδ,
∂L
∂b

= u[z]� (wδ),
∂L
∂W

= x(u[z]� (wδ))T .

(2.40)

18

+x

b

×

W

W Tx z =W Tx+ b

δ

δ

δWδ

xδT

Figure 2.11: Backprop through an affine layer with no activation.

hx

b

W

max(x, 0)

max(z, 0)

W(u[z] � δ)

x(u[z] � δ)T

δ
u[z] � δ

affine
layer

u[z] � δ

z

Figure 2.12: Backprop through a ReLU layer.

+x

b

×

W

δ =
∂l

∂y

W (u[z]�wδ)

×

w

+

c

yReLU

δ

δ

hδ

wδu[z]� (wδ)

z

u[z]� (wδ)x(u[z]�wδ)T

u[z]� (wδ)

Figure 2.13: Backprop through the XOR model.

2.6 Deep feedforward neural networks

Stacking more than one hidden layer in a feedforward network sounds a bit
awkward because of the universal approximation theorem. As we said, the theorem
states that an MLP with one hidden layer with a finite number of neurons can
approximate any function, but the theorem does not give an upper bound for the
number of neurons. It has been noticed that the number of the neurons in the hidden
layer grows exponentially with the complexity of the function that must be learned.
The solution, which has an analogy with circuit theory, is stacking more than one
layer to turn the solution more tractable in the same way that a multiplier works in a
circuit [21]. The rationale behind constructing deeper models is that the first layers
will be responsible for learning simple concepts (e.g. detecting edges in an image)
while deeper layers will learn complex concepts (e.g. detecting faces in an image).

19

Practical experiments have shown that deeper models provide better results than the
shallow ones when one has a large number of features at its inputs (e.g. raw pixels
from an image, speech, and video). However, as every real-life problem, stacking
more layers did not work well at first.

2.6.1 Why did stacking layers not work?

In fact, this solution works. In the 1990s and until the beginning of the 2000s, re-
searchers did not have enough computation power to fine-tune the hyperparameters
in a viable time.

2.6.2 Unsupervised learning as a bootstrap of deeper models

In 2006, Geoffrey Hinton et al. [22], discovered that training an unsupervised
generative model called Restricted Boltzmann Machine3, transferring the learning
weights to a feedforward network, and then fine tuning the model with the labeled
data enabled stacking more layers. They observed that a better weight initialization
makes deeper models able to train. This was the beginning of the deep learning era.

2.6.3 Xavier and He initialization

After that, researchers have noticed that further study was needed to understand
why using an unsupervised way of weight initialization worked better than random
initialization with the old backpropagation. One of these studies was made by Xavier
Glorot and Yoshua Bengio in 2010 [24]. In short, they observed two phenomena:

1. If the weights start too small, then the signal shrinks as it passes through the
layers until it is too little to be useful;

2. If the weights start too large, then the signal grows as it passes through the
layers until it is too massive to be useful.

Based on those observations, they proposed the Xavier initialization, which ensures
that the weights are “just right”, keeping the signal within a reasonable range through
many layers.

Math behind Xavier

Considering a linear neuron, we will have at any layer4

h = wTx = w1x1 + . . .+ wnxn + . . .+ wNxN . (2.41)

3More about how it works can be found in [23].
4The bias term was ignored to simplify the equations.

20

Let us denote xn, wn, and h the random variables associated to xn, wn, and h,
respectively. Glorot and Bengio observed that the variance

var(h) = var(w1x1 + . . .+ wnxn + . . .+ wNxN) (2.42)

should be kept the same throughout the layers. Assuming that both weights and
inputs are mutually independent and share the same distribution, we can compute

var(h) = var(w1x1) + . . .+ var(wnxn) + . . .+ var(wNxN), (2.43)

where

var(wnxn) = E[xn]2 var(wn) + E[wn]2 var(xn) + var(wn)var(xn). (2.44)

Now, if both inputs and weights have zero mean, Eq. (2.44) simplifies to

var(wnxn) = var(wn)var(xn); (2.45)

then,
var(h) = N var(wn)var(xn). (2.46)

If we want to keep the variance between input and output the same, that means the
variance of the weights should be

var(wn) =
1

N
=

1

Nin
. (2.47)

This is a simplification of the final formula found by Glorot and Bengio [24]. If we
go through the same steps for the backpropagated signal, we find that

var(wn) =
1

Nout
(2.48)

to keep the variance between the input and output gradient the same. These two
constraints are only satisfied simultaneously if Nin = Nout. Keeping a compromise,
the authors defined

var(wn) =
2

Nin +Nout
. (2.49)

In the original paper, the authors made a lot of assumptions (e.g. linear neurons
and both input and weights i.i.d), but it works. Xavier initialization, also termed
Glorot initialization, was one of the big enablers of the move away from unsupervised
pre-training.

The strongest assumption made was the linear neuron. It is true that the regions
of the traditional nonlinearities considered at the time (tanh and sigmoid) that are

21

explored just after initialization are close to zero, with gradients close to 1. However,
for newer nonlinearities, like ReLU, that does not hold.

Tiny modification on behalf of rectified linear units

The ReLU activation has become essential for state-of-the-art neural network
models. However, unfortunately, training deeper architectures even with Xavier
initialization did not work well when the activations were changed to ReLU, due
to the misbehavior around the origin. To surpass that, He et al. [19] published in
2015 a paper proposing a new “robust” initialization that mainly considers the ReLU
nonlinearities. He et al. suggested using

var(wn) =
2

Nin
, (2.50)

instead. The rationale is: a rectifying linear unit is zero for half of its inputs, and
to compensate for that, we need to double the variance of the weights to keep the
variance of the signals constant.

This tiny correction had made possible training deeper models of up to 30 layers
when the problems with Xavier initialization started to arise. However, at the same
time, the authors have not observed the benefit from training extremely deep models.
A 30-layer model was less accurate than a 14-layer model in image recognition.
They supposed that either the method of increasing depth was not appropriate, or
the recognition task was not complex enough. The performance degradation of very
deep models was solved by using shortcut connections that create identity mappings
that enable the training algorithm to focus on learning the residual mapping. This
kind of network is known as residual network [25], and made possible to construct
deep models of up to 1000 layers.

2.6.4 The internal covariate shift problem

Covariate shift refers to a change in the input distribution of a learning model. In
deep neural networks, it means that the parameters of each layer below the layer’s
input change the input distribution. Even small changes can get amplified down
to the network, and this effect increases with depth. This change of each layer’s
input distribution is known as internal covariate shift. It has been long known that
the network training converges faster if its inputs are whitened. To address this
problem, Sergey Ioffe and Christian Szegedy [26] proposed the batch normalization
(BN) algorithm, often termed as batch norm.

Full whitening of each layer’s input is too expensive, as it requires comput-
ing the covariance matrix and its inverse square root to produce the whitened

22

activations, as well as the derivatives of those transforms for backpropagation.
Hence, a normalization is made through each scalar of a D-dimensional input,
x = [x1 x2 · · · xd · · · xD]T , as

x̂d =
xd − E[xd]√

var(x)
. (2.51)

We also do not want to change what the layer can represent. Therefore, we should
make sure that the transformation inserted in the network can represent the identity
transform. Ioffe and Szegedy introduced two new variables γd and βd for each
activation xd, which scale and shift the normalized value:

yd = γdx̂d + βd. (2.52)

It is worth to mention that these parameters γd and βd are learned jointly with
the other parameters of the network, since γd and βd are differentiable, and they
can restore the representation of the network. Indeed, by setting γd = var(xd) and
βd = E[xd], we can restore the original activation, if the learning algorithm decides
that it is the “best” for the loss.

If the entire training set is used at each step of optimization, we might use it
also to normalize the activations. However, we will see that this is impractical (Sec-
tion 2.8.1). Since we use mini-batches in the gradient-based training, the statistics
are re-computed at each mini-batch.

Obviously, in the test step (inference) the output must depend deterministically
on the input; therefore, it employs statistical parameters that have been previously
averaged during the training step.

In traditional deep networks, even with a careful initialization (using Xavier or
He strategies), a very high learning rate may result in gradients that explode or
vanish, as well as get stuck in poor minima. Batch normalization prevents small
changes in the parameters to be amplified into large and suboptimal changes in
the gradients [26]. Also, Ioffe and Szegedy [26] have shown that models with batch
normalization are more robust to the weights initialization, and make the training
faster. The former behavior is illustrated in Fig. 2.14.

Nowadays, batch normalization is essential for deep learning, especially for dense
neural networks and convolutional neural networks (see Sec. 2.10). Unfortunately,
batch normalization does not scale well for recurrent neural networks (Sec. 2.11) —
where the internal covariate shift and vanishing gradients are more severe — but
some research has been done [27, 28] to solve this problem.

We have learned how to initialize our deep neural network: if the activations are
close to zero and the gradients close to one, we might choose Xavier initialization; if

23

10−4 10−3 10−2 10−1 100

Weight initialization scale

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
B

es
t

ac
cu

ra
cy

baseline batchnorm

(a) Accuracy

10−4 10−3 10−2 10−1 100

Weight initialization scale

1.0

1.5

2.0

2.5

3.0

3.5

F
in

al
tr

ai
n

in
g

lo
ss

baseline

batchnorm

(b) Loss

Figure 2.14: Example of a 6-layer MLP with ReLU activation trained to classify
images. Batch normalization was added before each activation. Weights were ini-
tialized with samples from a Gaussian distribution with standard deviation equal
to the values of x-axis. Dashed lines are the results obtained for the training set,
while the solid line are the results for the validation set. Accuracy is the average
percentage of examples that are correctly predicted.

we prefer ReLU as the nonlinear activation, we might choose He initialization. For
both of them, we must use5 batch normalization before each activation in order to
accelerate the training.

However, even after enabling a deeper model to be trained, we can not assure that
it will be better than the shallow one. Deeper models are more prone to overfitting
and often do not generalize well. We can mitigate the first problem using one concept
from machine learning, early stopping [20], or we may reduce both problems by using
some regularization methods, also called regularizers, as addressed in the following
section.

2.7 Regularization for deep learning

Regularization is the key to get a better model generalization and prevent over-
fitting. We can say for sure that there are hundreds of ways to regularize a neural
network.

The best regularization method is to increase the training data. Sometimes,
increasing the training data can be time demanding, pricey, or both. Instead of
generating new real samples, we could generate fake data (e.g. flipping images or
adding white Gaussian noise in speech), which is often termed as data augmentation.

Creating fake data is not applicable to every task. For example, it is difficult to
generate new fake data for a density estimation task unless we have already solved

5This is not true if we are using a recurrent neural network.

24

the density estimation problem.
Even with a great amount of data augmentation, we still can have some prob-

lems with generalization: either the input (or augmented) data is not representative
enough, or the learning algorithm finds large weights that can cause numerical over-
flow. Thus, adding one or more regularizers is pretty common in deep learning. All
in all, the two regularization methods described below are the most common in the
deep learning area [3].

2.7.1 Weight decay

Weight decay means an `2-norm penalty for the weights. The idea is to constrain
the `2-norm of the weights (or to constrain the Frobenius norm if the weights are
matrices), heavily penalizing peaky vectors and preferring smooth weights because
peaky weights appear when the network is specializing to the training dataset (over-
fitting the network), what must be avoided. It can be implemented by adding an `2

constraint for every weight in the network to the total loss

Lreg(S;θ) =
1

|S|
∑

(xi,yi)∈S

L(f(xi;θ),yi) +
∑
l

1

2
λ‖W (l)‖2

F, (2.53)

where λ is a hyperparameter. Typically, we initially set this variable to zero, and
increase it slowly at small steps. Usually, the weight decay is not applied to the
biases of the network.

2.7.2 Dropout as an exponential ensemble of thinner net-

works

Dropout [29] is another regularization method that reduces overfitting, working
by randomly dropping units (along with their connections) from the neural network
at each training step. Dropout can be viewed as a layer

h = m� x, (2.54)

where m is a mask sampled from a Bernoulli distribution P(mi = 1) = p at ev-
ery training step, and p is a hyperparameter which represents the probability of
dropping out units. A probability of p = 0.5 is commonly adopted and seems to
work well in a wide range of networks and tasks. Dropout works by preventing the
co-adaptation [30] of units – which occurs when units are highly dependent on other
units and are not useful without them. By randomly choosing its units, dropout
ensures robustness against such co-adaptation, thus preventing overfitting.

25

Also, dropout can be viewed as an extreme case of an ensemble technique where
several models are trained, and at test time the predictions of each model are av-
eraged together. At each training step, the dropout regularizer samples from an
exponential number of “thinner” networks that share some weights. The thinned
networks consist of all units that survived from dropout. A neural net with n units
can be seen as a collection of 2n possible thinner networks, all sharing weights. At
the test time, the whole network is used, and each dropout layer scales its input by
a factor of p, i.e. h = px, approximating the effect of the averaging predictions of
all these thinned networks, ensuring that for each unit the expected output is the
same as the actual output at test time. Indeed, in practical scenarios, it is always
preferable to use the inverted dropout, which performs the scaling at training time,
leaving the network at test time untouched.

2.8 Network optimization

The loss function is a measure that quantifies the quality of our model given any
set of hyperparameters θ. The goal of optimization is to find θ that minimizes the
loss function. Unfortunately, this is not a trivial task. Due to the nonlinearities
inside the neural network, the problem is not convex, and we can have millions of
parameters to set, facing a hard computational problem to solve. Not all hyperpa-
rameters of the neural network can be learned automatically by a gradient-based
algorithm, such as number of layers, number of hidden units (neurons), activation
function, and so on. For this case, we need to make several design choices based
on previous successful models or test several models with different parameters. Pa-
rameters that can be learned by a gradient-based algorithm, like weights, bias, and
batch normalization parameters are called learnable parameters, or just weights.

We need to find a place in the weight space (see next section) where the loss
is better than the previous loss. Due to the differentiability of the loss function
w.r.t. the weights, we can find the steepest-descent direction in the weight space.
The gradient tells us the direction in which the function reaches the steepest rate
of increase, but it does not tell us how far along this direction we would step.
Choosing the right step size (also called learning rate) is one of the most important
hyperparameters that we will have to choose. If we pick a tiny step, we will for sure
make progress, but small. On the other hand, if we choose a large step, thinking
that the function will descend faster, we may find that it oversteps, reaching a higher
loss than before.

26

2.8.1 Gradient descent

The procedure of repeatedly evaluating the gradient and then updating the pa-
rameters is called gradient descent [20]. The vanilla version looks like6

θ ← θ − η∂L
∂θ

, (2.55)

where L is the total loss evaluated over the training data given our model, and
η is the learning rate. This simple update is at the core of every neural network
optimization program, and the gradient descent is by far the most common way of
optimizing the neural network (although there are other ways to perform this).

In large-scale applications, where we have training data on order of million im-
ages, it is wasteful to compute the gradients for the entire training set to perform
only a single parameter update. A common approach is to calculate the gradient
over mini-batches of the training data. In practice, this works very well, and the
explanation behind this is that the training data are correlated by themselves. The
gradient will not be the same, but it is a good approximation of the full objective’s
gradient, and the training gets a much faster convergence, due to the more frequent
parameter updates.

In the extreme, we can adopt a mini-batch of one example. This process is called
a stochastic gradient descent (SGD). This process is not commonly used because
this does not take advantage of the vectorized code optimization of modern CPUs
and GPUs. In fact, it can be much more computationally efficient to evaluate the
gradient for a mini-batch of 128 examples than for a mini-batch of 1 example 128
times. Usually, as said, SGD applies to the evaluation of one example at a time, but
the community uses SGD even when referring to the mini-batch gradient descent.
The size of the mini-batch is also a hyperparameter, but it is usually constrained
according to memory restrictions (e.g. to fit in your GPU memory), or set to some
power of 2, like 32, 64 or 128, because many vector operations are accelerated in
this way.

2.8.2 Momentum

Sometimes, learning with SGD can be a slow process. The method of momen-
tum [31] was created to accelerate learning by introducing a new variable v, initial-
ized at zero, that plays the role of velocity – the direction and velocity at which
the parameters move through the parameter space. This can be accomplished by

6θ here will be used here for simplicity to indicate the learnable parameters.

27

accumulating an exponentially decaying moving average of the past gradients

v ← µv − η∂L
∂θ

θ ← θ + v,
(2.56)

where the new hyperparameter µ ∈ [0,1) determines how quickly the contributions
of previous gradients decay.

Nesterov momentum

A slight and yet powerful modification introduced by Sutskever [32] is to compute
the update velocity on an estimate of future position θ̂:

θ̂ ← θ + µv

v ← µv − η∂L
∂θ̂

θ ← θ + v.

(2.57)

This minor modification works better than the standard momentum in practice.

2.8.3 Adaptive methods

Machine learning practitioners have long realized that the learning rate is one of
the most difficult hyperparameters to be defined, because it significantly affects the
model performance. The momentum-based algorithm tries to mitigate this issue,
but at the cost of adding another hyperparameter.

Much work has gone to create methods that can adaptively tune the learning
rates, ideally per parameter and with addition of no new hyperparameter. Unfor-
tunately, this goal has not been achieved yet. Adaptive methods were created to
overcome the first problem and still require that hyperparameters are set, but are
arguably more reliable for a broader range of values than the raw learning rate.

RMSProp

RMSProp is a powerful adaptive learning rate method that has not been pub-
lished yet7. It uses a moving average of squared gradients,

m← αc+ (1− α)

(
∂L
∂θ

)2

θ ← θ − η 1√
m+ ε

∂L
∂θ

,

(2.58)

7People usually refer to [33], slide 29 of lecture 6 of Geoffrey Hinton’s Coursera class.

28

where cache variable m keeps track of a per-parameter smoothed sum of squared
gradients, α is a hyperparameter whose typical values are {0.9, 0.99, 0.999}, and ε
is a small value that avoids division by zero. The feeling behind RMSProp is that
parameters that receive high gradients will have their true learning rate reduced,
whereas parameters that receive small updates will have their true learning rate
increased.

Adam

Adam [34], or ADAptive Moment estimation, is one of the most recent adaptive
learning rate methods proposed. It looks like the RMSProp update, but the first
order momentum is used instead of the possibly noisy gradient. The (simplified)
algorithm looks like

v ← αvv + (1− αv)
∂L
∂θ

m← αmm+ (1− αm)

(
∂L
∂θ

)2

θ ← θ − η v√
m+ ε

,

(2.59)

where αv ∈ [0,1) and αm ∈ [0,1) are hyperparameters, and ε = 10−8, αv = 0.9, and
αm = 0.99 are the recommended values [34].

Adam usually works slightly better than RMSProp and is the recommended
algorithm to use when we are searching for the hyperparameters, because Adam
is faster than Nesterov. The most common approach is: searching the best model
configuration (tuning the hyperparameters) with Adam and training the best model
with SGD + Nesterov.

2.9 Sharing weights across time and space

A fully connected network does not scale well to full images. If we take into
account that we are interested in applications with images of medium size in an
RGB channel (256× 256× 3), and we apply this input into a single fully-connected
neuron, we will have 256 · 256 · 3 = 196,608 weights. However, we would almost
certainly want to have several such neurons, and the number of parameters will add
up quickly. Clearly, the number of parameters would quickly lead to overfitting (and
we want to avoid this).

Besides that, fully connected networks are not very adequate for modeling se-
quences, such as temporal ones. As we saw, the basic principle in an MLP is
modeling a function that transforms the input data into the desired output. This

29

limits their applicability in cases where inputs are part of a sequence, and their or-
der implies correlation between them and, most important, between the outputs. A
common example of a temporal sequence is a sound signal: samples (or even small
sequences of samples) often contain little meaning by themselves, and to truly un-
derstand the data the network must be able to analyze not only the current sample
but its relationship to past inputs. Commonly adopted solutions to adapt neural
networks to sequences include the usage of windows to the sequence into chunks,
which are then used as input for the network. This has some limitations, such as:

• Input lengths are fixed, which limits the amount of temporal information the
network can take into account.

• The model does not naturally adapt to different input sizes.

• The model cannot, by itself, learn how long it should remember things since it
has no memory and the available temporal information depends on the chosen
window size, which is set by a human expert.

• At each window, it completely forgets information about previous windows,
which might be relevant.

To address these problems, two kinds of networks were invented: convolutional
neural network and recurrent neural network.

2.10 Convolutional networks

Convolutional neural networks (CNNs) [35], often termed as ConvNets, have
proved very effective as feature extractors [36, 37]. They have been successful in
object recognition [25, 38], instance segmentation [39–42], identifying faces [43–45],
and powering vision of self-driving cars [5]. Nowadays, ConvNet is one of the most
powerful tools for every machine learning practitioner.

Unlike MLPs, ConvNets take advantage of the grid-like topology of the input.
They expect and preserve the spatial relationship between neighbors (e.g. pixels in
images) by learning internal feature representation using small filters.

A typical convolutional network has three stages: convolutional layer, nonlinear
function, and pooling layer.

2.10.1 Convolutional layer

The convolutional layer is the core element of the convolutional network. Dif-
ferently from a fully connected (affine) layer, it takes spatial structure into account.

30

Not only that, it also employs a great deal of weight sharing, which makes possible
to work with large inputs (such as images) with a reasonable amount of parameters.

The convolutional layer owes its name to the operation it performs: convolution.
The layer input is no longer a vector, but a 3-D tensor that has C channels, height
H and width W . It has, therefore, dimensions (C ×H ×W). The layer has sets of
weights called filters, each one with dimensions (C × Hf ×Wf). The convolution
process is characterized by sliding (convolving) the filter across the input, performing
at each position an inner product through which we obtain a scalar called activation.
If we organize activations according to the position of the filter w.r.t. the image, we
obtain an activation map with dimensions (Hout ×Wout).

The activation map dimensions depend on the input size, the filter size, and
three hyperparameters: stride, padding, and zero-padding. Fig. 2.15 illustrates the
convolution procedure. When stride is one, we move the filters one sample at a
time. A larger stride produces smaller output volumes spatially. If we applied one
convolution layer after another with stride greater than one, the spatial size would
decrease at each layer until vanishing out. Zero-padding is used to address this
issue: we add a border of zeros to the input just for keeping the output with the
same input size after convolution. Typical choices are filters with small kernel sizes
(3× 3 or 7× 7) with stride 2 and zero-padding.

Each convolution between the input and the filter gives rise to an activation
map; therefore, if there are F filters, the output has dimension (F ×Hout ×Wout).
Note that all filters will have the same dimensions, and share the same depth of the
input.

Each filter can be trained to look for specific patterns in the input and, when
convolved with the input, is expected to produce an activation map that retains
spatial information regarding that feature in the image. The number of filters we
use represents how many different patterns we are looking for in the input.

Typically, after each convolutional layer, a nonlinear function, such as ReLU, is
applied. This stage (convolutional layer + nonlinear function) is sometimes called
detection stage.

31

Input: (C ×H ×W)

Filters: (C ×Hf ×Wf)

Activations: (Hout ×Wout)

inner product

Figure 2.15: Example of convolutional layer. Three kernels (filters) of size C×Hf ×
Wf are applied to the input, resulting in three activations maps of size Hout×Wout.
A single convolution is shown for each filter.

2.10.2 Pooling layer

In a typical ConvNet architecture, it is common to periodically insert a pooling
layer in between successive convolutional layers.

The pooling layer reduces the spatial size, reducing the number of parameters
of the network, and controls the overfitting. Pooling also helps to make the repre-
sentation approximately invariant to small translations of the input. Pooling is also
defined by a learnable parameter contained in the kernel. Unlike a convolutional
layer, the pooling layer has as hyperparameters only the filter size and the stride.
It only operates independently on every depth slice of the input. Its most common
form is a pooling layer with filters of size 2× 2 applied with a stride of 2, and per-
forms the max operation over the activations, reducing the spatial size by 4. The
depth dimension remains unchanged. Intuitively, the max pooling layer retains the
strongest feature detected. Average pooling is another widely used pooling layer.

32

An example is shown in Fig. 2.16.

4 1 −6 0

4

2

6

−8

−1

5

−3

−3

−2

0

−6

1

4

6 1

0

0.25 −2.25

3 −3

Max Pooling

Mean Pooling

Input

Figure 2.16: Example of pooling layer. The filter has size of C × 2 × 2 where C is
the number of channels of the input, with stride 2. Only the first channel values are
shown.

2.10.3 ConvNet architectures

Commonly, ConvNet architectures are composed of several blocks of convolu-
tional layers + batch norm + nonlinear activation with periodical insertions of
pooling layer between successive blocks. In the end, a fully connected layer or a
global average pooling [46] is appended to generate the output (e.g. predictions of
the class of an image). There are several hyperparameters to be set like number of
layers, filter size of each layer, and stride. There is no default recipe for building a
ConvNet model.

Over the years, several models have been proposed and became popular.
LeNet [2] was the first of its kind, and AlexNet [1] won by a large margin the
ImageNet challenge — the first time that deep learning surpassed other ML al-
gorithms. VGG [47] is an “old” model and yet has been widely used due to its
simplicity. ResNets [25] have allowed training models with depth up to 1000 layers,
becoming the state-of-the-art in several visual recognition tasks and are the default
choice for real applications.

2.11 Recurrent neural networks

Recurrent Neural Networks (RNNs) were created in the 1980s but have just been
gaining recent popularity with the advances of deep learning and with the increasing
computational power of graphical processing units. One of most attractive features

33

of RNNs is that, in theory, they can learn correlations between samples in a sequence,
unlike feedforward neural networks. RNNs have been used as the state-of-the-art
model for machine translation [48–50], language modeling [51, 52] and many others.

For simplicity, we refer to RNNs as operating over a sequence that contains
vectors x(t) ∈ RD with the time step index t ranging from 1 to T . In practice, RNNs
operate on mini-batches of such sequences, with a different sequence length T for
each member of the mini-batch. We have omitted the mini-batch indices to simplify
notation. To better understanding about recurrent networks, one could read the
textbook of Graves [53].

2.11.1 Vanilla RNNs

We can model sequences with recurrent neural networks, whose computation
depends not only on the present input but also on the current state of the network,
which keeps information on the past. They allow us to operate over sequences
of vectors: sequence at the input, at the output, or both. Fig. 2.17 shows a few
examples of what RNNs can model.

In general, an RNN can be defined by two main parts:

1. A function that maps the input and the previous state into the current state;

2. A function that maps the current state into the output.

On a vanilla RNN, these functions are represented by

h(t) = tanh(W T
xhx

(t) +W T
hhh

(t−1) + bh) (2.60)

y(t) = W T
hyh

(t) + by, (2.61)

where h(t) and y(t) are the input state and the output at time step t, respectively,
W u,v contains the weights that map vector u in vector v, and bu is the bias term of
vector u. Notice that the same set of weights is applied at each time step, sharing
the weights across different sequences.

2.11.2 Bidirectional RNNs

The RNN presented has a causal structure, meaning that the output at time t
only depends on the information from the past and the current time.

In many applications, however, the output at time t may depends on future
samples. In speech recognition, for example, the correct prediction of the current
phoneme may rely on the next few phonemes due to co-articulation. In character
prediction, we may need the information of both future and past context because of
linguistic rules. This is also true for many other sequence-to-sequence applications.

34

(a) one-to-one (b) one-to-many (c) many-to-one

(d) many-to-many (e) many-to-many

Figure 2.17: Following the convention of the feedforward network, inputs are in red,
outputs are in green, and RNN states are in blue. From left to right: (a) Vanilla
neural network without RNN; fixed input size and fixed output size (e.g. image
classification). (b) Sequence at the output (e.g. image captioning, where the input
is an image, and the output is a variable-size sentence of words. (c) Sequence at
the input (e.g. sentiment analysis, where a given sentence at the input is classified
as expressing some sentiment). (d) Synced sequences at the input and the output
(e.g. video classification, where we wish to label every frame).(e) Sequence at the
input and sequence at the output (e.g. Machine translation, where a sentence of
words at the input is translated to another sentence of words in another language).
Images adapted from Karpathy’s blog8.

Bidirectional RNNs (BRNNs) aim to address that issue [54]. They combine two
RNNs, one that moves forward through time, beginning from x(0), and another that
moves backward through time, starting from x(T). Fig. 2.18 illustrates a bidirec-
tional RNN. This allows output ŷ to depend on both the past and the future, by
concatenating the forward hidden state ~h

(t)
and the backward hidden state ~h

(t)
.

Although BRNNs have been extremely successful in several tasks, such as speech
recognition [55–57] and handwriting recognition [58], they cannot be applied in real-
time applications. Since the output at any time step depends on all future sequences,
the information at time t will be available only when all the sequence is processed.

8http://karpathy.github.io

35

http://karpathy.github.io

Figure 2.18: Example of a BRNN, which can be understood as two distinct RNNs,
one fed at positive time steps (from 1 to T) and the other reversely fed (from T to
1). The output, however, depends on the concatenation of the two hidden states.

2.11.3 Back propagation through time

Despite its apparent recursive nature, we can analyze an RNN as a feedforward
network whose depth evolves in time. In order to perform backpropagation, we set
a depth to stop unrolling the network and propagate the gradients from there, as
shown in Fig. 2.19. As we see from Fig. 2.20, the gradients w.r.t the current state
result from both its output y(t) and another gradient that flows through the state
on the next step. Since the weights and biases are all shared between different time
steps, the total gradient is the summation of the gradients at each time step. The
backward computation is, therefore,

∂L
∂by

=
∑
t

∂L
∂y(t)

,
∂L

∂W hy

=
∑
t

ht

(
∂L
∂y(t)

)T
,

α(t) = [1− (h(t))2]�
[
W hy

∂L
∂y(t)

+ δt

]
,

∂L
∂W hx

=
∑
t

xt
(
α(t)

)T
,

∂L
∂W hh

=
∑
t

h(t−1)(α(t))T ,

∂L
∂bh

=
∑
t

α(t), δ(t−1) =
∂L

∂h(t−1)
= W hhα

(t),

∂L
∂xt

= W xhα
(t).

(2.62)

2.11.4 Vanishing and exploding gradients in recurrent nets

As we saw previously, the RNN was created to overcome the limitations of the
vanilla neural network in modeling sequences. One of the claims of RNNs is the

36

x(t)

y(t)

h(t)

x(1)

y(1)

h(1)

x(2)

y(2)

x(T)

y(T)

h(2) h(T−1) h(T)

Figure 2.19: Unrolling the RNN in order to calculate the gradients.

×

×

h(t−1)

x(t)

W hh

W xh

+

bh

tanh

h(t)

×

W hy

y(t)
+

by

×x(t+1)

W xh

+ tanh

h(t+1)

W hh

×
bh

α(t)

δ(t)

δ(t−1)

Figure 2.20: Computational graph of an RNN.

idea that they might be able to connect prior information to the present task. One
might wonder how much context they are actually able to remember.

Sometimes, we only need to look at recent information to perform the present
task. For example, consider a language model trying to predict the next word based
on the previous ones. If we seek to predict the last word in “the clouds are in the
[last word]”, we do not need any further context — it is quite probable that the next
word is going to be “sky”. In such situations, where the gap between the relevant
information and the place where it is needed is small, RNNs can learn to use the
preceding information.

However, there also circumstances where we require more context. Consider

37

trying to predict the last word in the subsequent text:
“I grew up in Teresópolis, Brazil. I studied [...] I am working [...] I speak fluent

[last word].”
Recent information (“I speak fluent”) suggests that the next word has a high prob-

ability of being the name of a language, but if we want to discover which language,
we need the context of Brazil, from further back. We can imagine several situations
where the gap between relevant information and the point where it is needed be-
comes very significant. In such cases, RNNs become unable to learn to connect the
information, due to vanishing and exploding gradients caused by repeated matrix
multiplications [59].

2.11.5 Dealing with exploding gradients: clipping

A simple but highly effective method for dealing with exploding gradient is to
rescale the norm of gradient δ whenever it goes over a threshold. If δ ≥ threshold,

δ ← threshold
‖δ‖ δ. (2.63)

Besides being simple, this technique is very efficient computationally, but it intro-
duces an additional hyperparameter, the threshold. The value of the threshold is
arbitrary, commonly set as 1, 5 or 10.

2.11.6 Dealing with vanishing gradients: LSTM

Long short-term memory networks – usually just called LSTMs – are a special
kind of RNN, capable of learning long-term dependencies. They were introduced
almost two decades ago [60] and several different implementations of LSTMs have
been proposed.

In the vanilla LSTM, at each time step we receive an input x(t) and the previous
hidden state h(t−1); the LSTM also maintains an H-dimensional cell state, so we
also receive the previous cell state c(t−1). The relationship between the hidden state,
the cell state, and the inputs is controlled by four gates. The learnable parameters
of LSTM are an input-to-hidden matrix W x ∈ RD×4H , a hidden-to-hidden matrix
W h ∈ RH×4H , and a bias vector b ∈ R4H .

At each time step, we first compute an activation vector a ∈ R4H as a =

W T
xx+W T

hh
(t−1) + b. We then divide it into four vectors a = [ai, af , ao, ag]

T , for
a? ∈ RH . We then compute the input gate i ∈ RH , the forget gate f ∈ RH , the
output gate o ∈ RH , and the block input g ∈ RH as

i = σ(ai), f = σ(af), o = σ(ao), g = tanh(ag), (2.64)

38

×

×

h(t−1)

xt

W h

W x

+

b

a

ai

af

ao

ag

σ

σ

σ

tanh

i

f

o

g

c(t−1)

�

�

c(t)

+

�

tanh

h(t)
α(t)

δ(t)

δ(t−1)

ϕ(t)
ϕ(t−1)

Figure 2.21: Computational graph of LSTM.

where σ is the sigmoid function, applied elementwise. Finally, we compute the next
cell state c(t) and next hidden state h(t) as

c(t) = f � c(t−1) + i� g (2.65)

h(t) = o� tanh(c(t)). (2.66)

The key to LSTMs is the cell state, which runs straight down the entire chain,
with only minor linear interactions. The LSTM does have the capacity to remove
or add information to the cell state, carefully regulated by the four structures called
input gate, forget gate, output gate, and block input.

The first step in our LSTM is to decide what information we are going to throw
away from the cell state. This decision is made by the sigmoid layer called forget
gate f . It looks at h(t−1) and x(t), and outputs a number between 0 and 1 for each
number in the cell state. A 1 will keep the state unchanged, and 0 will completely
erase the state. The next step is to select what new information we are going to
store in the cell state. This has two parts. First, the input gate i determines which
values we will update. Next, a tanh layer (called block input g) creates a vector of
new candidate values for c(t) that could be added to the state. In the next step,
we combine these two to create an update to the state. Finally, the current hidden
state is based on our current cell state (after a tanh operation to map the values
between −1 and 1), but filtered by the output gate o. The computational graph for
all these operations is shown in Fig. 2.21.

39

Backpropagation through the LSTM

As we saw in vanilla RNN, we can analyze it as a feedforward network whose
depth evolves in time. In order to perform backpropagation on the LSTM, we set a
depth to stop unrolling the network and propagate the gradients from there. As we
see from the graph (Fig. 2.21), the gradients w.r.t. the current hidden state come
from both its output y(t) (not shown) and a gradient that flows through the state on
the next step, and the gradients w.r.t. the current cell state come from its previous
cell state. Since the weights and biases are all shared between different time steps,
the total gradient is the summation of the gradients in each time step. The backward
computation is, therefore,

α(t) =

[
Why

∂L
∂y(t)

+ δ(t)

]
� o

∂L
∂c(t)

=
[
1− (tanh c(t))2

]
�α(t) +ϕ(t)

ϕ(t−1) =
∂L

∂c(t−1)
=

∂L
∂c(t)

� f
∂L
∂i

=
∂L
∂c(t)

� g
∂L
∂f

=
∂L
∂c(t)

� c(t−1)

∂L
∂o

=

[
Why

∂L
∂y(t)

+ δ(t)

]
� tanh c(t)

∂L
∂g

=
∂L
∂c(t)

� i
∂L
∂ai

= i� (1− i)� ∂L
∂i

∂L
∂af

= f � (1− f)� ∂L
∂f

∂L
∂ao

= o� (1− o)� ∂L
∂o

∂L
∂ag

= (1− g2)� ∂L
∂g

,

(2.67)

where ∂L
∂a

=
[
∂L
∂ai

; ∂L
∂af

; ∂L
∂ao

; ∂L
∂ag

]
. Finally,

40

∂L
∂b

=
∑
t

∂L
∂a

∂L
∂W h

=
∑
t

h(t−1)

(
∂L
∂a

)T
∂L
∂W x

=
∑
t

x(t)

(
∂L
∂a

)T
δ(t−1) =

∂L
∂h(t−1)

= W h
∂L
∂a

∂L
∂x(t)

= W x
∂L
∂a

.

(2.68)

2.11.7 LSTM and beyond

After the original LSTM was introduced in 1997, several variations have been
proposed. Forget gates, as described, were introduced by Gers et al. [61] and are in
the standardized model presented by Graves [53] (which we called vanilla LSTM)
due to its effectiveness. It is worth mentioning some other variations.

LSTM with peepholes

Gers et al. [61] developed one of the most popular LSTM variants, adding what
they called peephole connections. This means that we let the gate layers look at the
cell state. Mathematically, we create a new learnable parameter W c ∈ RH×4H and

a = W T
xx

(t) +W T
hh

(t−1) +W T
c c

(t) + b. (2.69)

The peephole connections improve the LSTM’s ability to learn tasks that require
precise timing and counting of internal states [53]. Note that the peephole connection
was added to all gates, but this is not strictly necessary.

GRU

Another LSTM variation couples the forget and input gates. Instead of making
the decisions separately, whether forget something or add new information to the cell
state, we should make this decision together. That is, we only add new information
to the state when we forget something older. This means that

c(t) = f � c(t−1) + (1− f)� g. (2.70)

A simpler modification of the LSTM that shares many of the same properties is
the gated recurrent unit, firstly used by Cho et al. [48]. It combines the forget and

41

input gates into a single update gate u and also merges the hidden state with the
cell states, among some other changes. The model requires fewer parameters than
the vanilla LSTM.

At each time step, the activation vector a ∈ R2H is computed as a = W T
xx +

W T
hh + b. We then divide it into two vectors a = [au, ar]

T , for a? ∈ RH , and
compute the reset gate r ∈ RH and the update gate u ∈ RH as

r = σ(ar), u = σ(au). (2.71)

Finally, we compute the next hidden state h(t) as

h̃
(t)

= tanh
[
W T

xh̃
x(t) +W T

hh̃
(r � h(t−1)) + bh̃

]
h(t) = (1− u)� h(t−1) + u� h̃(t)

,
(2.72)

where W xh̃ ∈ RD×H , W hh̃ ∈ RH×H , and b ∈ RH also are learnable parameters of
GRU.

Intuitively, the reset gate determines how to blend the information between the
new input and the previous memory, and the update gate determines how much
of the previous memory will be kept. If we set the reset gate to 1 and the update
gate to 0, we will have the vanilla RNN model. This simpler model has been proved
better than the LSTM for some tasks, reducing the number of parameters and hence
being less prone to overfitting.

Which is better?

Several different models have been proposed over the years, like depth gated
RNN [62], recurrent highway network [63], and clockwork RNN [64] (which takes a
different approach to the long-term dependencies). Although the presented models
deal with remembering the past by creating a hidden state, they do not have an
explicit memory. Some progress has been made on creating an explicit memory
block, such as neural Turing machine [65], and end-to-end memory networks [66].

There are a plenty of LSTMs and GRU variations. Indeed, it seems that every
paper that uses a recurrent neural network makes its own adaptation to achieve its
goal. Greff et al. [67] presented a study of eight most popular LSTM variants and
found that they are all about the same. Jozefowicz et al. [68] went beyond, using a
genetic algorithm to vary the building blocks of RNN, generating more than 10,000
different architectures. They found that some architectures are better than others
in certain tasks. They also discovered that initializing the LSTM’s forget gate to
one closes the gap between the LSTM and GRU.

All in all, machine learning practitioners avoid using RNN due to the gradient

42

problems. LSTM and GRU, the more common recurrent networks, can be used
interchangeably, if the LSTM’s forget bias is initialize to one. Other recurrent
networks are highly experimental and used only in specific contexts.

2.12 On the difficulty of regularizing recurrent nets

Several papers have pointed the problems on training RNNs [59, 69–71]. Re-
current neural networks are more prone to overfitting, have several issues regarding
generalization, and have the problem of vanishing and exploding gradients. LSTM,
which introduces a way of dealing with vanishing gradient, only alleviates it. Clip-
ping gradient, a simple trick of dealing with exploding gradient, seems to be a rough
method.

Most of the regularization methods were developed without considering recurrent
connections and long-term dependency. Regularizing an RNN by applying too much
`2 penalty to the weights could work against long-term dependencies [59]. Dropout,
one of the most powerful techniques for regularization of deeper models, is not very
effective for RNN [70]. Indeed, dropout in recurrent weights generates noise that is
multiplied over the time steps, exploding its gradients. The internal covariate shift
is also a common problem inside RNN due to its non zero-centered nonlinearities,
and direct application of BatchNorm is still an issue [27, 28].

Techniques like the injection of white noise into the training data seem to work
well when modeling acoustic data [53, 72]. Applying noise to the weights has also
been demonstrated effective under some scenarios [55]. Although weight and gradi-
ent noise are analogous when using standard SGD methods, using adaptive learning
methods breaks this equivalence, and promising results have been made on applying
the latter on recurrent networks [73].

Besides all research that have been done over the years, an efficient method for
regularization of recurrent networks is still necessary. In the next five sections, we
go through some recent advances on this topic.

2.12.1 Dropout for RNNs

Bayers (2013) et al. [74] argued that conventional dropout does not work well
with recurrent networks because the recurrence amplifies the noise, which is harmful
to the training. Zaremba, Sutskever, and Vinyals (2015) [70] applied the dropout
only in non-recurrent connections, preventing noise amplification. They showed
promising results in language modeling, speech recognition, machine translation,
and image captioning. In the following year, Gal et al. [75] have developed a mathe-
matics ground for dropout in RNN models. Previous techniques consisted of differ-

43

ent dropout masks at each time step for inputs and outputs alone. Their proposed
method, called variational dropout, applies the same mask at each time step for
inputs, outputs, and recurrent layers. Their theoretically motivated method out-
performed existed methods and improved the state-of-the-art model in language
modeling.

2.12.2 Zoneout

Zoneout [76] slightly resembles dropout, but it was specifically designed for re-
current networks. Instead of masking some units’ activation as in dropout, the
zoneout method randomly replace some units’ activation with the activation from
the previous time step. Mathematically,

h(t) = m(t) � h(t−1) + (1−m(t))� tanh(W T
xhx

(t) +W T
hhh

(t−1) + bh), (2.73)

where m(t) is the mask sampled at time step t over a Bernoulli distribution with
probability p. Krueger et al. [76] argued that zoneout preserves the information flow
forward and backward through the time step, unlike the dropout approach.

2.12.3 Batch norm for RNNs

Recurrent neural networks are hard to train and difficult to parallelize. Batch
norm (BN) aims to significantly reduce training time and can act as a regularizer [26].
Unfortunately, applying BN to RNNs is not a trivial task. Laurent et al. (2015) [27]
showed that using BN to hidden-to-hidden weights does not seem to speed up the
training. Applying BN to input-to-hidden weights could lead to faster convergence,
but it seems not to affect the generalization. Cooijmans et al. (2016) [28] noticed
that RNNs usually are deeper in the time steps9, and BN would be most beneficial
when applied horizontally — throughout the time steps (hidden-to-hidden weights).
In the case of LSTM, they applied BN on the recurrent termW T

hh
(t−1), on the input

term W T
xx

(t) and on the cell state when updating the hidden state. They kept the
statistics over each BN independently for each time step. Albeit they presented
promising results, this strategy requires more computational power when we are
dealing with long sequences (e.g. speech), precluding some applications; furthermore,
if we have longer sequences in test time than in training time, we will not have the
statistics for those longer sequences. Also, BN does not work if we adopt a batch
size of one.

9We usually have much more time steps to unroll than stacked layers.

44

2.12.4 Layer normalization

To overcome some of the BN issues, Ba et al. [77] proposed the layer normaliza-
tion (LN). Instead of normalizing through the batch, they suggested normalizing all
inputs to the neurons in a layer on a single training case. Unlike BN, layer norm
performs the same computation at training and test times. They presented em-
pirical results, showing that LN can reduce the training time when compared with
BatchNorm for RNN. In the case of vanilla RNN, layer norm re-centers and re-scales
its activation by performing

a(t) = W T
xhx

(t) +W T
hhh

(t−1)

h(t) = tanh
[αLN

σ(t)
� (a(t) − µ(t)) + βLN

]
µ(t) =

1

H

H∑
h=1

a
(t)
h

σ(t) =

√√√√ 1

H

H∑
h=1

(a
(t)
h − µ(t))2,

(2.74)

where H denotes the number of hidden units in a layer, and αLN and βLN are defined
as the gain and bias learnable parameters, respectively. Ba et al. [77] recommended
initializing the gain with zero and the bias with a vector of ones. As we can notice,
layer norm does not lay any restriction over the batch size.

2.12.5 Multiplicative integration

Another simple and yet very powerful modification was made by Wu et al. [78],
called multiplicative integration (MI). Instead of describing the activation of recur-
rent units by a sum, they proposed to use the Hadamard product. For a vanilla
RNN

a(t) = αMI � (W T
xhx

(t))� (W T
hhh

(t−1)) + βMI � (W T
hhh

(t−1)) + γMI � (W T
xhx

(t)) + b,

(2.75)

where αMI, βMI, and βMI are hyperparameters. The effect of multiplication results
in a gating type structure, where W T

xhx
(t) and W T

hhh
(t−1) are gates to each other.

These changes enjoy better gradient properties due to the gating effect, and MI gives
better generalization and it is easier to optimize. They have shown empirical results
demonstrating the effectiveness of this method.

45

2.12.6 General discussion

All these recently proposed regularization methods have demonstrated their ef-
fectiveness through empirical results. However, strategies mixing them have not
been deeply studied yet.

46

Chapter 3

All-neural speech recognition

Deep learning is conquering its place as the state-of-the-art in several applica-
tions, such as image classification [25], instance segmentation [79], machine transla-
tion [49], and speech recognition [80]. In image task areas, deep learning methods
are applied directly to raw input images, outperforming several engineering features,
such as the use of histogram of oriented gradient (HOG) for image detection [81].

Unfortunately, the same cannot be said of the speech recognition area. Auto-
matic speech recognition has had significant advances with the introduction of the
neural network and unsupervised learning; however, it has been applied only as a
single component in a complex pipeline. The first step of the pipeline is the in-
put feature extraction: standard techniques include mel-scale filter banks (and an
optional transformation into cepstral coefficients) and speaker normalization tech-
niques. Neural networks are then trained to classify individual frames of acoustic
data, and their output distributions are fed as emission probabilities for an HMM.
The loss function used to train the network is different from the true performance
measure (sequence-level transcription accuracy). This is exactly the sort of incon-
sistency that end-to-end learning want to avoid. Over the years, researchers found
that a significant gain in frame accuracy could not translate to transcription accu-
racy; in fact, it could even degrade the performance. Thus, building state-of-the-art
ASR systems remains a complicated, expertise-intensive task (dictionaries, phonetic
questions, segmented data, GMM models to obtain initial frame-level labels, multi-
ple stages with different feature processing techniques, an expert to determine the
optimal configurations of many hyperparameters, and so on). Why not developing
a system applying neural networks as a single pipeline?

3.1 Traditional speech recognizers

An automatic speech recognition system aims at transcribing an utterance in
a word sequence W ∗, as summarized in Fig. 3.1. The raw waveform from a mi-

47

crophone is converted into a sequence of fixed-size acoustic vectors X in a process
called feature extraction. Then, the decoder tries to find the word sequenceW that
is most likely to have generated X. This could be done by maximizing the prob-
ability of the word sequence given the utterance, P(W |X). Unfortunately, finding
argmax

W
P(W |X) is a difficult task. One way to discover this posterior probability

is to transform the problem using the Bayes rule

W ∗ = argmax
W

P(X|W) P(W)

P(X)
, (3.1)

where the likelihood P(X|W) is called the acoustic model, the prior P(W) is the
language model, and P(X) is the observation. If one chooses the maximum likeli-
hood criterion to decode the word sequence, P(X) may be assumed constant for all
X and can be ignored. In traditional ASR systems, the acoustic model represents
the likelihood of phone sequence instead of word sequence. Therefore, we may write

W ∗ = argmax
W

P(X|F) P(F |W) P(W)

P(X)
, (3.2)

where F is the phone sequence, and P(F |W) is termed pronunciation model.

Raw
waveform

Feature
extraction

Decoder

Acoustic
model

Language
model

Pronunciation
model

P(X|F) P(W)

P(F |W)

X W ∗

Figure 3.1: Block-diagram for the ASR problem.

In the ASR scheme depicted in Fig. 3.1, the feature extraction is responsible for
providing a fixed-size compact representation X of speech waveform. Several algo-
rithms have been used over the years. Linear predictive coding (LPC), perceptual
linear predictive (PLP), log filter banks, and mel-frequency cepstral coefficients are
the more common. A good feature extractor is one that provides a good match with

48

the distribution assumptions made by the input of an acoustic model. The prepro-
cessing can be (optionally) followed by one or more normalization schemes, such
as the mean and variance normalization (to cancel some of the speaker variation)
and the vocal tract length normalization (to cancel the difference between male and
female speakers) [82, 83].

Usually, a Gaussian mixture model is responsible for emitting the probabilities
of a phone given the acoustic vectors to an HMM model, which is responsible for
modeling the possible transitions at each time step and allows the occurrence of
multiple pronunciations (provided by the pronunciation model P(L|W)).

The language model is typically an n-gram model [84] — where the probability
of each word depends only on its (n− 1) predecessors — trained in a separated text
corpus with millions (even billions) of texts.

The decoder combines the acoustic scores P(X|F) produced by the HMM with
the language model prior P(W) and performs a search through all possible word
sequences using a clever algorithm to pruning weak hypothesis thereby keeping the
search tractable. When the end of utterance is reached, the most likely word se-
quenceW ∗ is output. Recent algorithms use a compact trellis of possible hypothesis
and perform the decodification with the Viterbi algorithm [9].

Instead of training with the maximum likelihood criterion, discriminative train-
ing criteria are more common in state-of-the-art HMM-based models, such as maxi-
mum mutual information [85, 86] (MMI), minimum classification error [87] (MCE),
and minimum Bayes’ risk [88, 89] (MBR), which try to relate directly the problem
of minimizing the expected word error rate instead of minimizing the frame-level
accuracy.

For over 30 years, the speech recognition area has not seen much improvement.
The major breakthrough was given by Geoffrey Hinton et al. [6], in 2012, where
they proposed to replace the GMM by a deep neural network (DNN), improving the
state-of-the-art model performance by over 30%.

Following recent trends in deep learning applications for computer vision, where
deep models with raw pixel at the input have outperformed traditional machine
learning algorithms with hand-engineering feature extractors [1, 38, 40], the end-
to-end area for speech recognition has been rising over the years [53, 57, 90, 91].
End-to-end model is a system where as much of the ASR problem pipeline as pos-
sible is replaced by a deep neural network architecture. With a single model, the
parameters and features learned are solely tuned by the training algorithm to in-
crease the accuracy rate of the system, and detailed in the following section.

49

3.2 End-to-end speech recognizers

The first successful shot was made by Graves et al. in 2006 [11], proposing the
connectionist temporal classification (CTC). The main goal of this method is that
CTC was specifically designed for temporal classification tasks, i.e., for sequence la-
beling problems where the alignment between the inputs and the targets is unknown.
It also does not require pre-segmented training data, or external post-processing to
extract the label sequence from the network outputs. Since then, the CTC method
has been extensively used in end-to-end speech recognition systems, and was adopted
by Google as the default algorithm in Google Voice Search [92].

More recently, attention-based recurrent networks have been successfully ap-
plied to speech recognition [12, 93]. Those RNNs are based on the encoder-decoder
architecture (shown in Fig. 2.17e), often used to deal with variable-length input
and output sequences, such as in neural machine translation [94], image caption
generation [95], and handwriting synthesis [96]. The encoder is typically an RNN
that transforms the input into an intermediate representation. The decoder, also
typically an RNN, uses this representation to output the desired sequences. The
attention mechanism acts by selecting relevant content from the input at every time
step, thus helping the decoder.

Although showing promising results, the encoder-decoder method has not out-
performed the CTC method yet. We focus the rest of the chapter on the CTC
method, since it is the basis of our end-to-end ASR system.

3.3 Connectionist Temporal Classification

The CTC consists of a softmax output layer [20], with one more units than
there are labels. The activations of softmax indicate the probabilities of outputting
the corresponding labels at a particular time, given the input sequence and the
network weights. Considering K unique labels, the neural network output will emit
probabilities of K + 1, where the extra label will give a probability of outputting a
blank, or no label. The softmax can be computed as:

σ(z) =
ez∑
k e

zk
, (3.3)

where the exponentiation is taken element-wise. The softmax function is often used
as the final layer of neural networks trained for classification, alongside with the
cross-entropy loss [3]

L(ŷ,y) = −
∑
i

yi log ŷi, (3.4)

50

where y is the desired distribution (target label), and ŷ = σ(z) is the output of our
model. The derivative of the loss with respect to the input of softmax layer z is
given by:

∂L
∂zj

= −
∑
i

yi
ŷi

∂ŷi
∂zj

= −yi(1− ŷi)︸ ︷︷ ︸
i=j

−
∑
i 6=j

yi
ŷi

(−ŷj ŷi)

= ŷi
∑
j

yj − yi = ŷi − yi, (3.5)

which can be represented in vector form as

∂L
∂z

= ŷ − y. (3.6)

Unfortunately, the cross-entropy loss is not suitable to problems where we have a
sequence as input (raw audio) and another sequence with different size as output
(text transcription). This is where the CTC comes in.

Given an utterance X = (x(1), . . . ,x(T)), its label sequence (e.g. characters,
words, phonemes) is denoted as l = (l1, . . . ,lu, . . . ,lU), where the blank label ∅ will
be indexed as 0. Therefore, lu is an integer ranging from 1 to K. The length of l is
constrained to be no greater than the length of the utterance, i.e., U ≤ T . CTC tries
to maximize log P(l|X)1, the log-likelihood of the label sequence given the inputs,
by optimizing the RNN model parameters.

The last layer of the RNN is a softmax layer which has (K + 1) elements that
correspond to the (K + 1) labels (including ∅). At each frame t, we get an output
vector ŷ(t) whose k-th element y(t)

k is the posterior probability of label k.
Then, if we assume the output probabilities at each time step to be independent

given X2, we get the following conditional distribution:

P(p|X) =
T∏
t=1

ŷ(t)
pt , (3.7)

where p = (p1, . . . , pT) is the CTC path, a sequence of labels at frame level. It differs
from l in that the CTC path allows the occurrences of the blank label and repetitions
of non-blank labels. The label sequence l can be mapped to its corresponding
CTC paths. This is a one-to-multiple mapping because multiple CTC paths can
correspond to the same label sequence, e.g., both “A A ∅ B C ∅” and “∅ A A B ∅
C C” are mapped to the label sequence “A B C”. Considering the set of CTC paths

1We will denote P(a = a|b = b) as P(a|b) for clarity.
2i.e., a Markovian assumption

51

for l as Φ(l), the likelihood of l can be evaluated as a sum of the probabilities of its
CTC paths:

P(l|X) =
∑
p∈Φ(l)

P(p|X). (3.8)

This is the core of CTC. Performing this mapping of different paths into the same
label sequence is what makes it possible for CTC to use unsegmented data, because
it allows the network to predict the labels without knowing where they occur. In
practice, CTC tends to output labels close to where they occur in the input sequence.

As we can see, summing over all CTC paths is computationally impractical. A
solution is to represent the possible CTC paths compactly as a trellis. To allow
blanks in CTC paths, we add “0” (the blank label) at the beginning and the end of
l, and also insert “0” between each two original labels in l. The resulting augmented
label sequence l+ = (l+1 , . . . ,l

+
2U+1) is input to a forward-backward algorithm [9] for

efficient likelihood evaluation. In the forward pass, α(t,u) represents the total proba-
bility of all CTC paths that end with label l+u at frame t. As with the case of HMMs,
α(t,u) can be recursively computed from the previous states. Similarly, a backward
variable β(t,u) carries the total probability of all CTC paths that start with label
l+u at time t and reach the final frame T , and can be computed recursively from the
next states. So, defining the set ϕ(t,u) = {pt = (p1, . . . , pt) : pt ∈ Φ(lu/2), pt = l+u },
one has

α(t,u) =
∑

pt∈ϕ(t,u)

t∏
i=1

ŷ(t)
pi
. (3.9)

Given the above formulation it is easy to see that the probability of l can be expressed
as the sum of the forward variables with and without the final blank at time T :

P(l|X) = α(T, 2U + 1) + α(T, 2U). (3.10)

Since all paths must start with either a ∅ or the first symbol l1 in l, we have the
following initial conditions:

α(1,1) = ŷ
(1)
∅ (3.11)

α(1,2) = ŷ
(1)

l+2
(3.12)

α(1,u) = 0, ∀u > 2. (3.13)

For t = 2 we have:

52

α(2,1) = α(1,1)ŷ
(2)

l+1
(3.14)

α(2,2) = (α(1,1) + α(1,2))ŷ
(2)

l+2
(3.15)

α(2,3) = α(1,2)ŷ
(2)

l+3
(3.16)

α(2,4) = α(1,2)ŷ
(2)

l+4
(3.17)

α(2,u) = 0, ∀u > 4, (3.18)

For t = 3:

α(3,1) = (α(1,1) + α(2,1))ŷ
(3)

l+1
(3.19)

α(3,2) = (α(2,1) + α(2,2))ŷ
(3)

l+2
(3.20)

α(3,3) = (α(2,2) + α(2,3))ŷ
(3)

l+3
(3.21)

α(3,4) = (α(2,2) + α(2,3) + α(2,4))y
(3)

l+4
(3.22)

α(3,5) = α(2,4)ŷ
(3)

l+5
(3.23)

α(3,6) = α(2,4)ŷ
(3)

l+6
(3.24)

α(3,u) = 0 ∀u > 6. (3.25)

If we go on with the trellis (shown in Fig. 3.2), we can find the following recursion:

α(t,u) = ŷ
(t)

l+u

u∑
i=f(u)

α(t− 1, i), (3.26)

where

f(u) =

u− 1 if l+u = ∅ or l+u−2 = l+u

u− 2 otherwise,
(3.27)

with the boundary condition

α(t,0) = 0 ∀t. (3.28)

We can see that

α(t,u) = 0 ∀u < 2U + 1− 2(T − t)− 1, (3.29)

because these variables correspond to states for which there is not enough time steps

53

left to complete the sequence.

S

Y

K

1 2 3 T-2 T-1 T

Figure 3.2: CTC trellis of word SKY. Black circles represent blank labels. The
arrows represent the paths that will possibly output the correct sentence.

Doing the same thing to β(t,u) and defining the set %(t,u) = {pT−t : (pT−t∪pt) ∈
Φ(l), ∀pt ∈ ϕ(t,u)}, we have the following initial conditions:

β(T, 2U + 1) = β(T, 2U + 1− 1) = 1 (3.30)

β(T, u) = 0, ∀u < 2U + 1− 1. (3.31)

Calculating β(t,u), we have

β(t,u) =

g(u)∑
i=u

β(t+ 1, i)ŷ
(t+1)

l+i
, (3.32)

where

g(u) =

u+ 1 if l+u = ∅ or l+u+2 = l+u

u+ 2 otherwise.
(3.33)

We can see that

β(t,u) = 0, ∀u > 2t, (3.34)

54

with the boundary conditions

β(t,2U + 1 + 1) = 0 ∀t. (3.35)

3.3.1 Loss function

The CTC loss function L(S) is defined as the colog probability of correctly la-
belling all the training examples in some training set S:

L(S) = − log
∏

(X,l)∈S
P(l|X) = −

∑
(X,l)∈S

log P(l|X). (3.36)

The likelihood of sequence l can then be computed as

P(l|X) =
2U+1∑
u=1

α(t,u)β(t,u), (3.37)

where t can be any frame 1 ≤ t ≤ T . Finally, for any time t, we can compute the
loss

L(S) = −
∑

(X,l)∈S

log
2U+1∑
u=1

α(t,u)β(t,u). (3.38)

3.3.2 Loss gradient

The objective function log Pr(l|X) now is differentiated w.r.t. the RNN outputs
ŷ(t). Defining an operation on the augmented label sequence Γ(l+, k) = {u : l+u = k}
that returns the elements of l+ which have the value k, the derivative of the objective
function log Pr(l|X) with respect to ŷ(t)

k can be derived as:

∂ log P(l|X)

∂ŷ
(t)
k

=
1

P(l|X)

1

ŷ
(t)
k

∑
u∈Γ(l+,k)

α(t,u)β(t,u). (3.39)

Finally, we can backpropagate the gradient through the input of softmax layer
z(t) such that

∂L(X, l)

∂z
(t)
k

= ŷ
(t)
k −

1

P(l|X)

∑
u∈Γ(l+,k)

α(t,u)β(t,u), (3.40)

which is similar to Eq. (3.6). Indeed, we can interpret the CTC loss as a soft
version of cross-entropy loss [20] where all the paths that form sequence label l are
considered.

55

3.4 Feature extraction

Feeding the recurrent neural network with raw audio does not seem to work
well. Raw audio data is noisy, each sample by itself is meaningless, and a recurrent
neural network does not have the capacity of correlating them and extracting useful
information to predict the desired sequences. Indeed, some recent work has already
attempted this, with promising results reported [97, 98]. However, learning from
raw data may arguably increase the amount of data and model complexity needed
to achieve almost the same performance as learning from hand-designed features.

Usually, a preprocessing stage called feature extraction is performed. Despite
not being a neural-network block, this pre-processing stage is usually performed by
a single algorithm far less complex than those employed with HMM systems. For
this reason, this kind of feature-driven SR system is often called (strictly speaking,
misnamed) “all-neural”.

The main goal of feature extraction is to identify those components of the sig-
nal that are suitable for our objective (recognizing speech) and discard all other
information that can be harmful (e.g. background noise).

3.4.1 MFCC

Mel-frequency cepstral coefficients (MFCCs) are a feature widely used in speech
and speaker recognition systems. Introduced by Davis and Mermelstein in the
1980’s [99], the MFCCs are required in almost every real application in ASR.

The first stage in MFCC is to boost the amount of energy at high frequencies. It
is well known that high frequencies contain relevant information that could improve
the accuracy of speech recognition systems. One example is the spectrum of vowels,
where there is more energy at lower frequencies than at higher frequencies, but high-
frequency information is needed to differentiate similar vowels. This pre-emphasis
is applied by a first-order filter

s̃n = sn − κsn−1, (3.41)

where s ∈ RN is the digitized audio signal, and 0.9 ≤ κ < 1.0 is the pre-emphasis
factor.

Speech is a non-stationary signal, meaning that its statistical properties are
not constant over time. Instead of analyzing the entire signal, we want to extract
features from a small window of speech that could characterize a particular phone
or character and for which we can make the assumption of stationarity. We extract
this stationary portion of the signal by running an (overlapping) window win ∈ RL

56

across the speech signal
S̃m,l = slw

in
l−mS, (3.42)

where l = {1, . . . , L}, S is the hop between successive windows, and m =
⌈
N−(l−S)

S

⌉
is the index of the frame. The more common window used in MFCC extraction is
the Hamming window

win
n = 0.54− 0.46 cos

(
2πn

N − 1

)
. (3.43)

The following step is to calculate the power spectrum of each windowed signal

Sm,k =

∣∣∣∣∣∑
l

S̃m,le
−j2πkl
L

∣∣∣∣∣
2

, (3.44)

where k is the index of the discrete frequency. This is motivated by the human
cochlea, which vibrates at different spots depending on the frequency of the incoming
sounds. Depending on the spatial location along the cochlea that vibrates, different
nerves are activated to inform the brain that certain frequencies are present. The
power spectrum performs a similar job, identifying which frequencies are present in
the frame.

The cochlea does not have a fine resolution to distinguish two closely spaced
frequencies, and this effect is more pronounced as frequency increases. For this
reason, we use the mel-scale filter bank, which divides the spectrum in non-uniform
bins (to emulate the variable auditory resolution) and sum them up, getting the
idea of how much energy exists in different frequency regions. As shown in Fig. 3.3,
the first mel-scale filters are very narrow and give an indication of how much energy
exists at low frequencies. As frequencies get higher, filters get wider. The mel scale
can be computed as

mel = 2595 log10

(
1 +

f

700

)
, (3.45)

where f is the frequency in Hz. Once we have the filtered energies, we take their
logarithm. This is also motivated by human hearing, whose response to sound inten-
sity is also logarithmic (exhibiting higher resolution at lower intensities). Moreover,
using a log function makes the feature estimates less sensitive to variations in input,
such as power variations due to the speaker’s movements.

The next stage is to compute the discrete cosine transform (DCT) of those log
filter-bank energies. As the filter banks are all overlapping, the filter-bank ener-
gies are quite correlated with each other. The DCT decorrelates those energies,
improving the performance of the model to predict the sequences. For the relevant

57

0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency, Hz

0.0

0.2

0.4

0.6

0.8

1.0

M
ag

n
it

u
d

e

Figure 3.3: 40 filter banks on a mel-scale.

MFCC extraction, we just take the first 12 cepstral3 values (excluding the 0th), be-
cause higher information represent quick changes in the filter-bank energies, which
tend to degrade the ASR performance. One may apply sinusoidal liftering4 to de-
emphasize higher MFCCs, which has been claimed to improve the ASR systems’
performance in noisy signals [100].

Finally, to balance the coefficients and improve the signal-to-noise ratio, we can
subtract the mean of each coefficient calculated over all frames, often termed as
cepstral mean normalization (CMN). Also, one might include the first and second
derivatives of the coefficients (called delta and double delta features), which has
been claimed to help the recognizer. All stages of the MFCCs calculation are shown
in Fig. 3.4.

All stages needed to compute filter banks were motivated by the internal corre-
lation of speech and human perception of such signals. The extra steps necessary to
calculate the MFCCs, however, are justifiable in part by the limitation of classical
ASR systems. For example, the main DCT role is to decorrelate the filter-bank
energies. MFCCs became very popular when GMM HMM-based models were very
popular, and they coevolved to be the standard way of doing ASR. However, re-
searchers involved in speech recognition powered by deep learning have argued [6]
whether MFCCs are still the correct choice, given that deep models are more robust
to highly correlated inputs.

3.4.2 Convolutional networks as features extractors

As we described in the last chapter, convolutional neural networks are good as
feature extractors. Recently, researchers have achieved promising results [97, 98,
101, 102] when applying CNNs to the raw audio signal. The convolutional neural
network applied to raw audio differ from that shown in Sec. 2.10 because it needs
to be applied to one-dimensional data. In a simple way, we can just use the 2D

3Cepstral relates to spectral in the MFCC domain.
4Liftering relates to filtering in the cepstral domain.

58

0.0 0.5 1.0 1.5 2.0 2.5

Time, s

−1.0

−0.5

0.0

0.5

1.0
A

m
p

lit
u

d
e

(a) Raw signal

0.0 0.5 1.0 1.5 2.0 2.5

Time, s

−1.0

−0.5

0.0

0.5

1.0

A
m

p
lit

u
d

e

(b) Pre-emphasis signal

0.0 0.5 1.0 1.5 2.0 2.5

Time, s

0.0

2.0

4.0

6.0

8.0

F
re

qu
en

cy
,

kH
z

(c) filter bank calculated over
mel-scale

0.0 0.5 1.0 1.5 2.0 2.5

Time, s

2
4
6
8

10
12

M
F

C
C

s

(d) DCT

0.0 0.5 1.0 1.5 2.0 2.5

Time, s

2
4
6
8

10
12

M
F

C
C

s

(e) Sinusoidal lifter

0.0 0.5 1.0 1.5 2.0 2.5

Time, s

2
4
6
8

10
12

M
F

C
C

s

(f) CMN

Figure 3.4: MFCCs calculation steps.

convolutional layer by setting the height of inputs and filters to 1, the width as the
number of time steps, and the channel size as the number of features. Doing these
modifications, all CNN framework described to spatial data can also be applied to
the raw audio.

Furthermore, CNNs have also been applied over the preprocessed signal [91, 103,
104]. Their unique architecture characterized by local connectivity, weight sharing,
and pooling has exhibited less sensitivity to small shifts in speech features along the
frequency axis, which is important to deal with different speakers and environment
variations.

3.5 Decoding the sequence

During the inference, our model with CTC method will return at each time step
the probability of each label, including the blank label. One simple way to decode
the CTC’s output into a legible sequence is based on the premise that the most
probable path corresponds to the most probable labeling

l̂ = Φ−1(argmax
p

P(p|X)), (3.46)

often known as greedy decoding. However this strategy can lead to errors, particu-
larly if a label is weakly predicted for several consecutive time steps, as depicted in
Fig. 3.5. More accurate decoding can be achieved with a beam search algorithm.

59

A

0.7 0.6

0.3 0.4

P(̂l = ∅) = P(∅∅) = 0.7× 0.6 = 0.42

P(̂l = A) = P(AA) + P(A∅) + P(∅A)

= 0.3× 0.4 + 0.3× 0.6 + 0.7× 0.4

= 0.58

∅

Figure 3.5: Example where the greedy decoding fails to find the most probable
labelling.

The beam search decoder [90] maintains a small number B of partial hypotheses,
where a partial hypothesis is some partial labelling. At each time step we extend each
partial hypothesis in the beam with every possible new label. This greatly increases
the number of hypotheses; so, we discard all but the B most likely hypotheses
according to their probabilities. The decoder ends by returning the most probable
labelling at time step T from the B most likely hypotheses. The pseudocode in
Alg. 1 describes a simple beam search procedure for a CTC network. For each
time step t and for each labelling sequence l̃ in our hypothesis set H, we consider
concatenating a new label l to l̃, denoted as l̃

+ ← l̃+ l. Blanks and repeated labels
with no separating blank are handled separately. We initialize our hypothesis set
with one sequence l̃ = ∅. If Pb(̃l|X :(t)) and Pnb(̃l|X :(t)) mean, respectively, the
probabilities of sequence l̃ ending and not ending with blank label given the input
X :(t) = (x(1), . . . ,x(t)) up to time t, then P(̃l|X :(t)) = Pb(̃l|X :(t)) + Pnb(̃l|X :(t)).
The last label of sequence l̃ is denoted as l̃−1.

3.5.1 Improving performance: employing a language model

None of those decoding methods, however, have a prior knowledge of the language
idiosyncrasies (e.g. how to spell the words). Including a language model into the
decoding has shown to boost the accuracy of speech recognition systems, turning it
into an essential tool. One simple way to construct a language model is building a
dictionary. In [56], the authors have proposed an easy way of changing the beam
search decoding to constrain the search to a dictionary of possible words.

Another simple way of creating a language model is through statistics. Our
objective is to compute the probability of a label l (e.g. phoneme, character, or word)
given some history hIS from a corpus (e.g. texts from the Web, books’ transcription),
or P(l|hIS). One way to estimate P(l|hIS) is counting the relative frequency:

P(l|hIS) ≈ C(hIS + l)

C(hIS)
, (3.47)

where C(·) is the operator for counting and hIS + l is the concatenation of sequence
hIS with label l. The idea of calculating the probability of a label given the entire

60

Algorithm 1 Beam Search Decoding

Input CTC likelihoods y(t)
l = P(l|x(t)), ∀t ∈ {1, . . . , T}, l ∈ L, where L is the set

of valid labels (including the blank label, |L| = K + 1).
Parameters beam width B
Initialize H← {∅}, Pb(∅|X :(0))← 1, Pnb(∅|X :(0))← 0
1: for t = 1, . . . , T do
2: Ĥ← {}
3: for l̃ ∈ H do
4: Pb(̃l|X :(t))← P(∅|x(t)) P(̃l|X :(t−1)) . Handle blanks
5: Pnb(̃l|X :(t))← P(̃l−1|x(t)) Pnb(̃l|X :(t−1)) . Handle repeat character

collapsing
6: Add l̃ to Ĥ
7: for l ∈ L \ {∅} do
8: l̃

+ ← l̃ + l
9: if l 6= l̃−1 then

10: Pnb(̃l
+|X :(t))← P(l|x(t)) P(̃l|X :(t−1))

11: else
12: Pnb(̃l

+|X :(t))← P(l|x(t)) Pb(̃l|X :(t−1)) . Repeat label have ∅
between

13: end if
14: Add l̃

+
to Ĥ

15: end for
16: end for
17: H← B most probable l̃ by P(̃l|X :(t)) in Ĥ
18: end for
Return argmaxl̃∈H P(̃l|X)

history is the base of n-gram models [84]. Instead of computing this probability given
the entire history, which would be impractical, we can approximate the history by
just the last few labels. For example, a 2-gram model gives the probability that a
label occurs given the last label, while a 3-gram model gives the probability that a
label occurs given the last couple of labels. Another way of performing the same
estimate is through an RNN model [51, 105, 106], where it tries to predict the label
given the previous ones.

Applying those language models to the decoder does not seem straightforward.
One solution was given by Graves et al. [55], where they rescore the softmax output
by the probability of the character occurring given the past context. Another way
of introducing a character language model into the decoding is rescoring the beam
search, as demonstrated in [90].

61

3.6 Related work

We have already described how neural networks work in Chapter 2, how we can
adapt them to handle sequences with recurrent networks in Sec. 2.11, and how to
initialize the network parameters and perform the training. Note that our goal is to
construct an all-neural speech recognition system, often termed end-to-end speech
recognizer. For this reason, we have handled variable length sequences at the input
(e.g. MFCCs) and variable length sequences at the output (e.g. text transcriptions,
phonemes) by introducing the CTC method. Also, we have shown how to parse the
output of the softmax layer in a legible sequence using decoders. Finally, we have
pointed how we can improve the decoder by employing a language model. Thus, at
this point, we already have the tools to construct an all-neuron speech recognizer,
but we can profit from other researcher’s previous experience. Therefore, we will go
through a short discussion of end-to-end ASR CTC-based models published in the
past years.

3.6.1 Graves’ models

Graves et al. [11] have proposed the first successful end-to-end solution to the
speech recognition task. Their model, depicted in Tab. 3.1, consisted in one bidi-
rectional LSTM (BLSTM) with peephole connections, with 100 hidden units. The
input layer was size 26 — 12 MFCCs calculated over a window of 10 ms and hop of
5 ms from 26 filter banks, plus the log energy and delta coefficients. Training was
carried out with SGD+Nesterov with a learning rate η = 10−4 and a momentum
µ = 0.9. During the training, Gaussian noise with standard deviation of 0.6 was
added to the inputs. They achieved the label error rate (LER)5 of 30.51 ± 0.19%

over five runs using the TIMIT phoneme recognition dataset [107].
In 2013 [55], Graves et al. proposed a novel method combining the CTC-like

model with a separate recurrent net that predicts each phoneme given the past ones,
training both acoustic and language models together, called RNN transducer [108].
Their best acoustic model, depicted in Tab. 3.2, was different from Tab. 3.1 not just
by the jointly training but for stacking more layers. They have achieved a label error
rate of 17.7% on the TIMIT, the best score at that time. The regularization was
done by applying early stopping and weight noise (the addition of Gaussian noise
to the network weights during the training [109]). Weight noise was added once per
training sequence, rather than at every time step. The audio data was preprocessed
by log filter banks with 40 coefficients (plus energy) distributed on a mel-scale,
together with their first and second temporal derivatives. Training was also carried

5Label error rate (LER) is the summed edit distance [84] between the output sequences and
the target sequences, normalized by the total length of the target sequences.

62

Table 3.1: Graves 2006 model [11]. The input has size B × T × D, where B is
the batch-size, T is the time step, and D is the number of features. The TimeDis-
tributedDense layer, with N hidden units and without an activation function, ap-
plies the same fully connected (dense) layer to each time step. Finally, the CTC loss
function includes the softmax calculation.

Operation Units Nonlinearity
Network Input T × 26

Gaussian noise σ = 0.6
BLSTM 100 peepholes connections
TimeDistributedDense 62
Preprocessing 12 MFCCs + log energy + delta coefficients
Loss CTC
Decoder Prefix search decoding
Optimizer SGD+Nesterov, with η = 10−4 and µ = 0.9
Regularization
Batch size 1
Epochs
Learning rate schedule
Weight Initialization Uniform distribution ranging from −0.1 to 0.1

out with SGD+Nesterov with a learning rate η = 10−4 and a momentum µ = 0.9.
Beam search decoding was used, with a beam width of 100. The advantage of deep
networks was obvious with the error rate of CTC dropping from 23.9% to 18.4% as
the number of layers increased from one to five, without the transducer [55].

Table 3.2: Graves2013 model. The label 5× indicates that the BLSTM layer is
repeated 5 times.

Operation Units Nonlinearity
Network Input T × 123

5× BLSTM 250
TimeDistributedDense 62
Preprocessing 40 log filter banks

+ log energy
+ 1st and 2nd derivatives

Loss CTC + RNN Transducer
Decoder Beam search, with beam width = 100
Optimizer SGD+Nesterov, with η = 10−4 and µ = 0.9
Regularization Weight noise
Batch size 1
Epochs
Learning rate schedule
Weight Initialization Uniform distribution ranging from -0.1 to 0.1

63

3.6.2 Maas’ model

Maas et al. [90] was one of the first successful papers proposing to convert speech
into characters instead of phonemes using CTC. They achieved competitive re-
sults on the challenging Switchboard telephone conversation transcription task [110].
They have presented a speech recognition system that uses only a neural network for
the acoustic model, a character-level language model (CLM), and the beam search
procedure. By operating over characters, they eliminated the need for a lexicon6

and enabled the transcription of new words, fragments, and disfluencies. Also, they
proposed using the clipped ReLU activation

σ(x) = min(max(x,0), threshold), (3.48)

where this ReLU function is clipped to a maximum delimited by a threshold to
prevent overflow.

Their input consists of MFCCs coefficients with a context window of 10 frames at
each side. Their network has five layers and is described in Tab. 3.3. One intriguing
characteristic is that the model not only relies on RNN layers. Instead, they have
used more fully connected layers than RNNs. Their output label set consists of 33
characters, including the special blank character, “-”, and apostrophe, as used in
contractions. They have trained their model using SGD + Nesterov with a learning
rate η = 10−5 and momentum µ = 0.95. After each epoch, they divided the learning
rate by 1.3 and trained the model for 10 epochs using the Switchboard dataset (over
300 hours of speech), available at LDC under catalog number LDC97S62. The model
was evaluated over the HUB5’00 (full) dataset [111]. To learn how to spell words,
they used a corpus with over 31 billion words gathered from the web to train an
n-gram model. Also, they modified the beam search decoder to accept information
from the CLM. Their filtered results are shown in Tab. 3.4. It is worth noticing that
without a language model they have achieved 27.7% of label error rate.

3.6.3 EESEN

EESEN [57] is distinct from the others by proposing a new way of decoding the
sequences using a weighted finite-state transducer (WFST) [84], which enables the
efficient incorporation of lexicons and language models into CTC decoding. They
have shown WERs comparable to those of standard hybrid DNN systems (using
HMM model). Their topology is summarized in Tab. 3.5. Training was carried out
with a batch size of 10 samples, sorted by their sequence lengths. The learning
rate η started with value 4 × 10−5 and remained constant until the drop of LER

6Lexicon could be a simple dictionary converting sequences of phonemes to words.

64

Table 3.3: Maas’ model. The batch size and the number of features are “?” (un-
known), because the author did not specify them properly. “merge by sum” means
that the forward and backward states of the BRNN were merged by sum instead of
concatenation.

Operation Units Nonlinearity
Network Input T×?

2× TimeDistributedDense 1824 Clipped ReLU, theshold=20
BRNN 1824 Clipped ReLU, theshold=20

merge by sum
2× TimeDistributedDense 1824 Clipped ReLU, theshold=20

TimeDistributedDense 33
Preprocessing MFCCs + context window of ±10 frames
Loss CTC
Decoder Beam search, with beam width = 100 and CLM
Optimizer SGD+Nesterov, with η = 10−5 and µ = 0.95
Regularization
Batch size
Epochs 10
Learning rate schedule Divide by 1.3 after each epoch
Weight Initialization

Table 3.4: Results from Maas et al. [90]. Label error rate and word error rate
(WER) results for the model without a language model, with 7-gram character
language model (CLM), and CLM built with an RNN of 3 layers, respectively.

Model LER WER
Maas w/o LM 27.7% 47.1%
Maas + 7-gram 24.7% 35.9%
Maas + RNN-3 24.7% 30.8%

on the validation set within two consecutive epochs fell below 0.5%. Then, the
learning rate is reduced by a factor of 0.5 at each of the subsequent epochs. The
whole training process terminates when the LER fails to decrease by 0.1% between
two consecutive epochs. The experiments were conducted on the Wall Street Jour-
nal [112, 113] (WSJ) corpus. Inputs of the model were 40-dimensional filter bank
features together with their first and second-order derivatives. These features were
normalized via mean subtraction and variance normalization by speaker. For the
phoneme recognition, a set of 72 labels were used, whereas for the character-based
systems, a set of 59 labels were employed, including letters, digits, punctuation
marks, and so on. The best results are presented in Tab. 3.6. Notice that without
a proper decoder, the WER rises quickly to 26.92%.

65

Table 3.5: EESEN model. “phn” stands for the phoneme-based system, and “char”
stands for the character-based system.

Operation Units Nonlinearity
Network Input T × 120

4× BLSTM 320

TimeDistributedDense phn: 72
char: 59

Preprocessing 40 log filter banks + 1st and 2nd derivatives
Mean and variance normalization by speaker

Loss CTC
Decoder WFST-based
Optimizer SGD+Nesterov, with η = 4× 10−5

Regularization
Batch size 10, sorted by the sequence length
Epochs Until LER fails to decrease by 0.1% between 2 epochs
Learning rate schedule Decayed by 0.5 at each epoch after special condition
Weight Initialization Uniform distribution ranging from -0.1 to 0.1

Table 3.6: EESEN best results.

Model LM WER
EESEN-PHN lexicon 26.92%
EESEN-PHN trigram 8.5%
EESEN-CHAR trigram 7.34%

3.6.4 Deep Speech 1 and 2 by Baidu Research

Baidu research has distinguished from the others by employing model and data
parallelism [1, 114], combined with its own massive dataset with huge data aug-
mentation by a complex addition of synthetic noise. Their first model, called Deep
Speech 1 [115], is described in Tab. 3.7, which is inspired a lot by the Maas’ model.
Regularization was done by applying dropout only in the non-recurrent connection,
with one different mask for each time step, and by applying a special type of jitter
on the input. Training was performed using SGD+Nesterov with a momentum µ of
0.99. Inputs were preprocessed by computing the spectrogram of 80 linearly spaced
log filter banks and an energy term with a context window of ±9 frames. The filter
banks were computed over windows of 20 ms with a hop of 10 ms.

In [115], the authors have stated that the errors made by an RNN tend to be a
phonetically plausible rendering of English words. The model was integrated with an
n-gram language model trained on a dataset up to 220 million phrases, supporting
a vocabulary of 495,000 words. Aiming to minimize the running time of recurrent
layers, they have shortened the recurrent layers by taking strides of size 2 in the
original input, halving the unrolled RNN.

Results are shown in Tab. 3.8. Training was spawned over the SwitchBoard
dataset (SWB) + Fisher [116] (FSH) and over the combination of its own dataset,

66

Table 3.7: Deep Speech 1 model. The Deep Speech SWB+FSH model is an ensemble
of 4 models with 2304 neurons in each layer.

Operation Units Nonlinearity
Network Input T/2× 1539

3× Dense block
BRNN 2048 Clipped ReLU, threshold= 20

merge by sum
Dropout dropout probability between 5% and 10%
Dense block
TimeDistributedDense 29

Dense block TimeDistributedDense 2048 Clipped ReLU, threshold= 20
Dropout dropout probability between 5% and 10%
Preprocessing 80 linearly spaced log filter banks

+ log energy + context window ±9
Loss CTC
Decoder Customized with language model
Optimizer SGD+Nesterov, with µ = 0.99
Regularization
Batch size
Epochs
Learning rate schedule
Weight Initialization

Fisher, SwitchBoard, and WSJ, totalizing over 7000 hours of speech. The former
was evaluated over the HUB5’00 and the latter over a constructed noisy speech
dataset. The noisy experiment has shown that their system outperformed several
commercial speech systems.

Table 3.8: Deep Speech 1 model. WER over different datasets.

Train set Test set WER
SWB HUB5’00 25.9%

SWB + FSH HUB5’00 16.0%
All Noisy 11.85%

Deep speech 2 [91] proposed a unique model that could be used to recognize
either English or Mandarin Chinese speech with minor modifications. One of the
key approaches of Deep Speech 2 was the efficient use of hyper power computer
techniques, including an extremely efficient GPU implementation of the CTC loss
function, resulting in a 7× speedup over their previous model.

The model, detailed in Tab. 3.9, was quite different from the previous system.
Instead of dense layers, convolutional layers were adopted. Batch norm was em-
ployed to accelerate training. For the recurrent connection, batch norm was applied
only to the non-recurrent weights, as denoted in [27]. Also, a novel algorithm called
SortaGrad [91] was proposed. In the first training epoch, the iteration through the

67

training set is done in increase order of the length of the longest utterance in the
mini-batch. After the first epoch, training is normally performed. They argued that
long sequences are more likely to cause the internal state of the RNNs to explode
at an early stage in training, and the SortaGrad helps to avoid this phenomenon.
Inputs were preprocessed by computing its spectrograms, and the output for the
English-based system is a bi-grapheme or bigram labels. For the Chinese-based
model, they have adapted the output to handle more than 6000 characters, which
include the Roman alphabet. Their reported results are shown in Tab. 3.10. All
models were trained for 20 epochs on either the full English Dataset (11940 hours
of speech) or the full Mandarin dataset (9400 hours of speech).

Training was carried out with SGD+Nesterov with a momentum µ of 0.99, along
with mini batches of 512 utterances. Gradient clipping was set to 400. The learning
rate η was chosen from [10−4, 6×10−4] to yield the fastest convergence and annealed
by a factor of 1.2 at the end of each epoch.

Table 3.9: Deep Speech 2 model. The best result were given by a 11-layer architec-
ture.

Operation Units Nonlinearity
Network Input T/2× 1539

3× Conv block
7× BRNN 2048 Clipped ReLU, threshold= 20

merge by sum
Recurrent batch norm

TimeDistributedDense ?
Conv block Conv2D Clipped ReLU, threshold= 20

Batch normalization
Preprocessing 80 linearly spaced log filter banks

+ log energy + context window ±9
Loss CTC
Decoder Customized with language model
Optimizer SGD+Nesterov

η = [10−4, 6× 10−4], and µ = 0.99
Regularization
Batch size 512
Epochs 20 (SortaGrad)
Learning rate schedule Annealed by a factor of 1.2 after each epoch
Weight Initialization

3.7 Proposed model

All architectures listed above follow the same recipe: starting with fully con-
nected layers (or convolutional layers), followed by recurrent layers, and then by
further fully connected layers.

68

Table 3.10: Deep Speech 2 WER over different datasets. Baidu Test is their internal
English test set with 3,300 examples. The test set contains a wide variety of speech
including accents, spontaneous and conversational speech. WSJ is the Wall Street
Journal corpus test set available in the LDC catalog. CHiME eval real dataset has
1320 utterances from the WSJ test set read in various noisy environments. The
internal test set for Chinese Mandarin speech is its internal corpus consisting of
1882 examples.

Language Test set DS1 DS2 Human

English
Baidu Test 24.01% 13.59% -
WSJ eval’93 6.94% 4.98% 8.08%

CHiME eval real 67.94% 21.79% 11.84%
Chinese Mandarin Internal - 7.93% -

Both Baidu’s models need to parallelize the model and the data, being necessary
more than one GPU available, and a lot of expertise and optimized implementations
to get everything working. Moreover, their models require a huge dataset, and it is
unfeasible for us.

Unfortunately, there is a lack of detailed explanation (or any information at all)
about the regularization methods to achieve better generalization in some models.
We try to investigate the different methods to regularize the network presented in
Sec. 2.12.

Overall, our topology is quite simple, as given in Tab. 3.11. We avoid using dense
layers, because they add many parameters, potentializing the overfitting problem.
Using a lot of dense layers only scales well for an enormous amount of data. The
input will be preprocessed by extracting the MFCCs (as described in Sec. 3.4.1)
with their first and second derivatives and applying cepstral mean and variance
normalization to each utterance. We also investigate the use of context window.

Then, the inputs are fed to a BLSTM layer, with forget gate initialized with one.
As explained in Sec. 2.11.2, bidirectional recurrent networks are better in model-
ing the co-articulation effect on speech and show some improvements in accuracy
rate on ASR systems [56] over the unidirectional ones. Variational dropout will be
utilized as a regularizer, and we investigate the use of layer normalization, and mul-
tiplicative integration, to improve generalization and speed up the training. Also,
we investigate using zoneout instead of variational dropout. Weight decay is applied
to all weights of the network. One or more layers of BLSTM is employed. In the
end, a dense layer is appended to the output of the last BLSTM at each time step.
Our model, at each time step, emits the probability of a character given the input.
Finally, the CTC (with a softmax) computes the loss of our network. At training
time, the greedy decoder is used to calculate the label error rate (LER) at every
epoch. At test time, beam search decoder with a beam width of 100 is used, without

69

any language model. Unfortunately, we do not test the impact of a language model
in this dissertation.

Training will be carried out with Adam, maintaining their default parameters
ε = 10−8, αv = 0.9 and αm = 0.99, and a search over the hyperparameters, such
as the learning rate η, number of layers, and the number of hidden units, will be
performed.

Table 3.11: The proposed model. The variables batch size B, size of context window
C, number of layers N , number of hidden units H, dropout probability P , and
number of labels L will be investigated in the next chapter.

Operation Units Nonlinearity
Network Input T × (1 + 2 ∗ C)

N× BLSTM H
TimeDistributedDense L
Preprocessing 12 MFCCs

+ log energy
+ delta and double delta

Loss CTC
Decoder Beam search, with beam width = 100
Optimizer Adam
Regularization Weight decay

Variational dropout
Batch size B
Epochs 30-100
Learning rate schedule None
Weight Initialization Recurrent: orthogonal [117]

Nonrecurrent: Xavier
Forget bias = 1

70

Chapter 4

Experiments on all-neural speech
recognition

In this Chapter, we go through a discussion of several topologies, different reg-
ularization techniques, and hyperparameters choices. Firstly, we validate our im-
plementation by replicating the first Graves’ model [11]. After that, we apply our
knowledge to build an end-to-end Brazilian Portuguese speech recognition system.

4.1 English and Portuguese datasets

Two datasets were used to perform the evaluations. The TIMIT dataset was
employed to validate our implementation details, duplicating the Graves’ model
and results. The second dataset, the main target of this dissertation, is an ensemble
of four different datasets.

4.1.1 TIMIT

TIMIT [107] is a speech dataset that was developed by Texas Instruments and
MIT with DARPA’s (Defense Advanced Research Projects Agency) financial support
by the end of 1980, and now is maintained by the linguistic data consortium (LDC)
under catalog number LDC93S1. This dataset has many applications, such as the
study of acoustic and phonetic properties and the evaluation/training of automatic
speech recognition systems (ASR).

There are broadband recordings of 630 speakers of 8 major dialects of American
English, each reading ten phonetically rich sentences. Each utterance is separated
into 3 broad categories: SA (dialect sentence), SX (compact sentence), and SI (di-
verse sentence). The distribution of the dataset is detailed in Tab. 4.1

The SA sentences were meant to show the dialectal variants among the speakers
and were read by all 630 speakers. Therefore, for an automatic speaker-independent

71

Table 4.1: Distribution over region and genre of the TIMIT dataset. Dialect re-
gions: (1) New England, (2) Northern, (3) North Midland, (4) South Midland, (5)
Southern, (6) New York City, (7) Western, (8) Army Brat (moved around).

Region Men Women Total
1 31 (63%) 18 (27%) 49 (8%)
2 71 (70%) 31 (30%) 102 (16%)
3 79 (67%) 23 (23%) 102 (16%)
4 69 (69%) 31 (31%) 100 (16%)
5 62 (63%) 36 (37%) 98 (16%)
6 30 (65%) 16 (35%) 46 (7%)
7 74 (74%) 26 (26%) 100 (16%)
8 22 (67%) 11 (33%) 33 (5%)

Total 438 (70%) 192 (30%) 630 (100%)

recognition system, these sentences must be ignored.
The phonetically-compact (SX) sentences were designed to provide a good cov-

erage of pairs of phones, with extra occurrences of phonetic contexts thought to be
either difficult or of particular interest. Each speaker read 5 of these sentences and
each text was spoken by 7 different speakers.

Finally, the phonetically-diverse (SI) sentences were selected from existing text
sourcesto add diversity in sentences types. Each speaker reads 3 of these sentences,
with each sentence being read only by 1 speaker. All audio files were recorded in a
controlled environment.

Each utterance in the TIMIT dataset has its own time-aligned orthographic,
phonetic, and word transcriptions as well as 16-bit, 16 kHz speech waveform in the
National Institute of Standards and Technology (NIST) format. Also, the dataset is
separated by two major sets: test and train. The test set has 168 speakers and 1344
utterances available (recalling that SA sentences were not meant to be used in ASR
systems). This test set is also called the complete test set. Using the complete test
set has a drawback: the intersection of SX sentences by different speakers. Facing
that, the researchers would rather evaluate the ASR system in the core test set.

The core test set has 24 speakers, 2 men and 1 woman of each dialect region,
where each one reads 5 unique SX sentences plus its 3 SI sentences, given 192
utterances, as shown in Tab. 4.2. Usually, the rest of the sentences presented in the
complete test set are used as the validation set.

It is worth mentioning that the TIMIT dataset presents high-quality records,
with high signal-to-noise ratio, and controlled environment. Also, the TIMIT corpus
transcriptions have been hand verified, containing balanced phonetic sentences and
great dialect coverage. In total, there are 61 different annotated phonemes; however,
it is usually mapped to a 39-phone subset as proposed in [118].

72

Table 4.2: The core test set distribution. The column “Man” and “Woman” shows
the unique speaker identification.

Region Man Woman
1 DAB0, WBT0 ELC0
2 TAS1, WEW0 PAS0
3 JMP0, LNT0 PKT0
4 LLL0, TLS0 JLM0
5 BPM0, KLT0 NLP0
6 CMJ0, JDH0 MGD0
7 GRT0, NJM0 DHC0
8 JLN0, PAM0 MLD0

4.1.2 Brazilian Portuguese dataset

We aim to build an end-to-end Portuguese speech recognition system using state-
of-the-art algorithms powered by deep learning. Therefore, we need a large dataset,
and it is difficult to find one because they are either not freely accessible or expensive
to acquire.

The Brazilian Portuguese speech dataset (BRSD) for long vocabulary contin-
uous speech recognition has been built from four different datasets that we have
available. Three of them are freely distributed. The last one is distributed by the
Linguistic Data Consortium under catalog number LDC2006S16. These datasets
are summarized in Tab. 4.3.

Table 4.3: Basic summary of each dataset employed. “CE”: Controlled environment.
“WRD/PHN”: word or phonetic-level transcription. *: Not all utterances contain
both types of transcription.

Dataset Distribution Speakers Utterances WRD/PHN CE?
CSLU: Spoltech Brazilian Portuguese Paid 477 8,080 Both* No

Sid Free 72 5,777 WRD No
VoxForge Free +111 4,090 WRD No
LapsBM1.4 Free 35 700 WRD No

The center for spoken language understanding (CSLU): Spoltech Brazilian Por-
tuguese dataset version 1.0 [119] includes recordings from several regions in Brazil.
The corpus contains 477 speakers, totalizing 8080 utterances, consisting both of
reading speech (for phonetic coverage) and response to questions (for spontaneous
speech). A total of 2,540 utterances have been transcribed at word level and without
alignment, and 5,479 utterances have been transcribed at phoneme level, with time
alignments. All audio samples have been recorded at 44.1 kHz, and the acoustic
environment was not controlled. As pointed in [120], some audio records do not
have their corresponding transcriptions, and many of these records contain both
transcriptions with errors, such as misspelling or typos. Also, they have used 189

73

phonetic symbols, many of them with few occurrences. For comparison, the TIMIT
dataset has only 61 symbols.

The Sid dataset contains 72 speakers (20 are women), ranging from 17 to 59
years old. Each speaker has information about place of birth, age, genre, education,
and occupation. All audios have been recorded at 22.05 kHz in a non-controlled
environment. A total of 5,777 utterances has been transcribed at word level with-
out time alignment. The sentences vary from spoken digits, single words, complex
sequences, spelling of name and local of birth to phonetic covering, and semanti-
cally unpredictable sentences. Reading the transcribed utterances, we have noticed
a recurrent error in the same chunk of sentences, probably due to automation of
the process (e.g. parsing each transcription to the text file), forcing us to disregard
these sentences.

The Voxforge [121] dataset is the most heterogeneous corpus. The idea of Vox-
Forge is to distribute transcribed speech audio under GPL license, facilitating the
development of acoustic models. Everyone can record specific utterances and send
to them. Their Portuguese Brazilian language section contains at least 111 speakers1

not all having information about genre or age. The audio files have been recorded
at different sample rates ranging from 16 kHz to 44.1 kHz, and many records are in
low-quality, presenting low signal-to-noise ratio (SNR). A total of 4,130 utterances
were transcribed at word level.

Finally, LapsBM1.4 [122] is a dataset used by the Fala Brasil group of Fed-
eral University of Pará to evaluate large vocabulary continuous speech recognition
(LVCSR) system in Brazilian Portuguese. It contains 35 speakers (10 women), each
one with 20 unique utterances, totaling 700 utterances. Audio has been recorded at
22.05 kHz without environment control.

We need to define three distinct sets: train, validation, and test. It seems clear
that the LapsBM should be used as the test set since it was created to evaluate
LVCSR systems. Sid, VoxForge and the CSLU datasets will integrate the train set.
Randomly choosing a part of the train set to form the validation set is not wise.
We do not have control on which utterance belongs to a speaker from the VoxForge
dataset, and we do not want to contaminate our validation set with speakers from
the train set. Also, choosing one “sub-dataset” from the training set would bias our
result. Furthermore, separating some speakers from the LapsBM to validate our
results seems more natural, since each speaker has spoken unique utterances. We
randomly split 21 speakers (7 women) from the LapsBM for the validation set and
maintain the others (14 speakers) for the test set.

We have preprocessed the dataset to clean up wrong transcriptions, short records
that could cause an error on the CTC (remembering that we need that our target

1Many utterances are sent anonymously.

74

sequences should be smaller than our input sequence), and many other defects as
described above. Also, we are only interested in word-level transcription. Hence, we
have discarded many CSLU utterances that did not have word-level transcriptions.
All audio files were resampled to 16 kHz. The recordings’ length is concentrated
around 3 seconds but could span up to 25 seconds, as shown in Fig. 4.1a. The
distribution of spoken utterances among speakers is shown in Fig. 4.1b. The highest
peak is due to the anonymous contributions of VoxForge dataset. In Figs. 4.1c
and 4.1d, we show the relation between the total number of utterances and the
number of unique utterances in each sub-dataset as well the mean duration of those
recordings. The summarization of our dataset is shown in Tab. 4.4. In Tab. 4.5,
we show the evaluation of three major commercial systems with public API on our
test set. The Google API demonstrates the best perfomance on both metrics (LER
and WER). The difference between the best and worst LER is 4.52%, while this
difference for WER is of about 13% — indicating that using a proper language
model can make a huge difference in real ASR systems.

Gathering four different datasets, with various environments conditions and dis-
tinct hardware to acquire the signal, makes this dataset an ideal challenge for a deep
learning approach, and far more stringent than the TIMIT dataset.

Table 4.4: Train, valid and test split of BRSD. In the second column “M/F” indicates
the number of Males/Females. “LL” means the label length and “TD” indicates the
total duration of all records.

Dataset Speakers (M/F) Utterances (unique) LL (min/max) TD (hours)
Train 390 (150/29) 11,702 (3,437) 2/149 13.01
Valid 21 (14/7) 420 (420) 36/95 0.55
Test 14 (11/3) 280 (280) 39/87 0.35

Table 4.5: Results for the 4 commercial systems evaluated on our test set. Generated
in 02/15/16.

System LER WER
Google API 10.25% 27.83%
IBM Watson 11.38% 35.61%

Microsoft Bing Speech 14.77% 40.84%

4.2 Hardware and software

All simulations were performed in a computer with a video card GTX 1080
8GB, 64GB DDR4 2133MHz of RAM, IntelTM Core i7 6850-K 3.6 GHz processor,
and using Ubuntu 16.04 as the operational system.

75

0 5 10 15 20 25

Duration (s)

0

200

400

600

800

1000

1200

1400

U
tt

er
an

ce
s

(a) Distribution of recordings’ length.

0 50 100 150 200 250 300 350 400

Speakers

0

200

400

600

800

1000

1200

U
tt

er
an

ce
s

(b) Number of utterances by speaker.

CSLU LapsBM Sid VoxForge

Dataset

0

1000

2000

3000

4000

5000

6000

U
tt

er
an

ce
s

Total Unique

(c) Utterances per dataset.

CSLU Sid VoxForge LapsBM

Dataset

0

5

10

15

20

25

D
u

ra
ti

on
,

s

(d) Mean duration of recordings in each
dataset.

Figure 4.1: Some statistics of BRSD.

Regarding software, there are a plenty of solutions and specific frameworks for
deep learning. We have searched for several toolkits that have been developed by
many researchers in the Deep Learning area, among which Torch [123], Theano [124],
PyLearn2 [125], Caffe [126], CNTK [127], and Tensorflow [128] are the top ones.

Each tool has its advantages and disadvantages2, and at the end, we chose one
that had great coverage of convolutional and recurrent layers, had a highly optimized
code for GPU, and was not developed to be used with pipelines or configuration
files (like CNTK3). Also, we already had some familiarities with Python. We chose
Tensorflow as the default toolkit, powered by Keras [129] — a nice front-end engine
for Tensorflow that encapsulates many codes.

At the time of this dissertation, Tensorflow did not have CTC GPU-based im-
plementation yet. Therefore, we have used the freely available CTC GPU-based
code [130] made by Baidu Research for Deep Speech 2 model. Also, adopting Ten-

2In https://github.com/zer0n/deepframeworks one finds very nice comparison between dif-
ferent deep learning toolkits.

3Nowadays, CNTK toolkit has Python bindings, but when we began this dissertation they were
not available.

76

https://github.com/zer0n/deepframeworks

sorflow and Keras to perform speech recognition was not straightforward as we
thought. Since then, we have already made 2 contributions to the Tensorflow code,
and 3 bug fixes to the Keras code. We have made our code freely available4 under
MIT License for the sake of reproducibility.

4.3 Case study: Graves’ model

Firstly, as we described at the beginning of the chapter, we will validate our
implementation by replicating the Graves’ model [11].

Remember that the audio data was preprocessed using a frame signal of 10 ms,
with 5 ms of overlap, using 12 MFCCs from 26 log filter-bank channels. The log-
energy and the first derivative were also added, giving a vector of 26 coefficients per
frame.

Instead of using the complete test set as was proposed by the paper, here we will
use the core test set, because the results will be more reliable and unbiased, and
400 utterances of the complete test set will be employed as validation data. As a
target, they used 61 phonemes (+ blank label) that came from the TIMIT dataset
transcriptions. Their topology, described in Sec. 3.6.1, is shown in Tab. 3.1.

As in the paper, all weights were initialized with uniform random noise ranging
from −0.1 to 0.1 and the forget bias was kept at zero. The SGD+Nesterov was used
with a learning rate of 10−4 and a momentum of 0.9 in a batch size of one sample.

Using a batch size of 1 is time-consuming. We have run their model only in
CPU, and the forward and backpropagation through the entire training set took
about 21 minutes. Considering 200 epochs, each simulation would take about 70
hours, almost 3 days. This is unacceptable because the dataset is tiny compared to
BRSD and we can spend several weeks fine-tuning our hyperparameters. We can,
however, run the simulations with a bigger batch size, thus enjoying the optimized
matrix operations.

4.3.1 Increasing the speedup with bigger batch size

Unfortunately, we had no time to run the simulations several times. Thus, the
results are for only one simulation for each batch size. As far as we have noticed,
there are no larger deviations through several runs. We ran the same model as cited
above, but with a variable batch size of {1, 2, 8, 16, 32, 64, 256} and the results are
shown in Fig. 4.2a.

First of all, this plot is not fair. Despite the increasing batch size, we have a
pitfall: we do fewer gradient updates in each epoch but at the same time, each

4Our code is available at https://github.com/igormq/asr-study.

77

https://github.com/igormq/asr-study

epoch is faster (due to the use of larger matrices and therefore better use of the
computational time of the CPU). Calculating the time spent in each epoch and
calculating the median we can see a very nice speed up, as given in Tab. 4.6. The
normalized version of Fig. 4.2a is shown in Fig. 4.2b. As one can see, using a larger
batch size we get a better gradient estimation, so the cost evolves more smoothly
than using a batch size of 1. However, as we increase our batch size we do less
weight updates per epoch. On the other hand, using a batch size of length 1, our
training could be too slow and noisy to converge to some minimum. Our best batch
size was 32.

Table 4.6: Speed up achieved increasing the batch size.

Batch Size Speedup Median (minutes)
1 1.00× 21.93
2 0.99× 22.25
8 1.54× 14.23
16 2.01× 10.91
32 2.36× 9.30
64 2.71× 8.09
256 2.91× 7.52

In Fig. 4.2b, the bias in the CTC loss between the valid set and the train set gets
worse, showing that the network was not able to generalize well, indicating that the
use of random Gaussian noise at the input of network was not a good regularizer.
Getting the best model, that occurred at epoch 706, testing it against the test set,
and applying the beam search decoder with a width of 100, we have got an LER of
29.64%, which is slightly better than the results presented in the original paper (of
30.51% ± 0.19%). However, remember that our training dataset is a little bigger,
our test set is more difficult, and we have decoded using the beam search.

4.4 Applying the knowledge: building an end-

to-end ASR that understands Brazilian Por-

tuguese

Now that we have all the tools and a working implementation, we can start
developing our model. We start from the previous model, and proceed by doing
gradual modifications.

Our input is slightly bigger than the described above, as mentioned in Sec. 3.7.
The audio data was preprocessed with a frame window of 25 ms, hop of 10 ms, using
12 MFCCs from 40 log filter banks in mel-scale. Also, the log energy was added as

78

0 500 1000 1500 2000

Epoch

0

20

40

60

80

100

C
T

C
L

os
s

1

2

4

8

16

32

64

256

(a) CTC loss per epoch for different batch sizes.

0 100 200 300 400 500 600 700 800

Epoch normalized

0

20

40

60

80

100

C
T

C
L

os
s

Loss

1

2

4

8

16

32

64

256

(b) CTC loss per normalized epoch for different batch sizes

Figure 4.2: Evolution of CTC loss for various batch sizes.

well as the first and second derivatives (delta and double delta coefficients), yielding
a vector of size 395

The training was carried out with Adam (it is faster than SGD+Nesterov), and
a learning rate η of 10−3 was chosen after a careful search. All simulations were
performed in 30 epochs6 with a batch size of 32, which takes an average of one
and a half day each simulation in our GPU. The recurrent weights of LSTM were
initialized with orthogonal matrices sampled from a normal distribution [117] — the
eigenvalues of the Jacobian matrices will be 1, and it helps to alleviate the vanishing
gradient problem over long time steps. The non-recurrent weights were initialized
from a uniform distribution following the Xavier initialization method. Also, the

5This choice of preprocessing differs from [11] in order to adopt a more common approach that
we have found through several papers.

6We have set this limit due to the time constraint.

79

forget bias was set to 1. We added the same regularization method as in Graves’
model — white Gaussian noise with standard deviation of 0.6 — to the inputs of
our model.

Our model outputs the probability of character emission instead of phonemes.
Thus, our label set is {a, . . . ,z,space,∅}, where “space” is used to delimit the word
boundaries. We have mapped the target sequences in our dataset to rely only on
this label set — punctuation, hyphens, and stress marks were removed/mapped to
their corresponded label (e.g. á - a, ç - c).

Running the same topology used by Graves et al., we evaluate each subset of
the training set against our validation set, as shown in Fig. 4.3. The solid lines
represent the results in the validation set, while the dashed lines are the results in
the training (sub)set. As we can see in Fig. 4.3b, each subset has a large bias — high
difference between training and test values — indicating that it does not generalize
well. The entire dataset, however, presented the best validation values (loss and
LER) and the lowest bias; moreover, the training loss is not evolving towards zero,
indicating that we should increase our model capacity. We have tried to increase
the regularization by increasing the standard deviation, but it did not improve the
results. It is worth mentioning that while it seems that the training with VoxForge
is overfitting in Fig. 4.3a, the LER is still decaying (Fig. 4.3b). It is due to the fact
that the CTC loss is just a proxy to the real non-differentiable evaluation, the LER.
Hence, it is pretty common finding curves like that, but the inverse (LER raising
while loss is decaying) must not happen. For the early stopping algorithm, we use
the LER value and not the CTC loss.

20 40 60 80 100
Epoch

0

20

40

60

80

100

120

140

160

L
os

s

(a) Loss

20 40 60 80 100
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

L
E

R

Sid

CSLU

VoxForge

Train set

(b) LER

Figure 4.3: Results for training with the subset instead of the full training set. The
validation set was kept the same. Solid lines show the results for the validation set
while dashed lines show the results during training.

80

4.4.1 Stacking more layers

We can increase the model capacity in four ways: stacking more recurrent layers;
using more dense layers; adding convolutional layers; or increasing the number of
hidden units. Dense layers add many parameters, and they are difficult to regularize.
Even if convolutional layers have shown promising results, we did not investigate
their application. In Fig. 4.4, we show the results for a different number of recurrent
layers with 256 hidden units each. Clearly, stacking more layers is advantageous:
LER falls from 44.97% to 33.92% as the number of layers increases from 1 to 5. We
almost did not see any improvements adding the 6th layer, and for a 7-layer model
we can observe a slight deterioration. This effect is probably due to the vanishing
gradient problem getting worse as we stack more layers.

5 10 15 20 25 30
Epoch

0

20

40

60

80

100

120

140

160

180

L
os

s

(a) Loss

5 10 15 20 25 30
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L
E

R
1

2

3

4

5

6

7

(b) LER

Figure 4.4: Different models ranging the number of layers from 1 to 7.

4.4.2 Regularization

We have investigated two methods of regularization: weight decay and dropout.
As we have already seen, applying dropout to RNN is not straightforward. Indeed,
we gave some directions in Sec. 2.12.1, which led us to the variational dropout. In
Fig. 4.5a and 4.5b, we applied variational dropout with the same dropout probability
to the recurrent and non-recurrent weights and kept the weight decay in zero, and
in Fig. 4.5c and 4.5d we used weight decay as regularizer and no dropout. As we can
see, both do the same thing, preventing overfitting and giving a better generalization.
Dropout, however, seems to give better generalization than weight decay (32.15%

of LER against 35.51%). Cross-validating them with our best previous model — 5
BLSTM layers with 256 hidden units — we found that a weight decay of 10−4 and
dropout p = 0.2 gave the best result, achieving an LER of 29.50% in the validation
set.

Also, we have instigated using zoneout (Sec. 2.12.2) instead of dropout. Adapted
to LSTM, zoneout is applied separately to the cell state (Eq. (2.65)) and the hid-

81

den state (Eq. (2.66)), each one having its own “zoneout” probability. We applied
the same zoneout probability for both equations, though. The results are shown
in Fig. 4.6 and zoneout does not seem to make any effect, even with high values
(50%). The authors that proposed zoneout [76] carefully chose different zoneout
probabilities for the cell state and hidden state; not doing that seems to be the
cause of our failure. Also, they have only tested models with one layer. All in all,
further investigation with careful choices of both probabilities are needed as well as
the investigation of zoneout applied to models with several recurrent layers.

5 10 15 20 25 30
Epoch

0

20

40

60

80

100

120

140

160

L
os

s

(a) Loss

5 10 15 20 25 30
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L
E

R

0

10

20

30

40

50

60

(b) LER

5 10 15 20 25 30
Epoch

0

20

40

60

80

100

120

140

160

L
os

s

(c) Loss

5 10 15 20 25 30
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

L
E

R

1e-6

1e-4

1e-3

1e-2

1e-1

(d) LER

Figure 4.5: Different values of dropout (top) and weight decay (bottom). The
trained model has 3 BLSTM layers with 256 hidden units each.

5 10 15 20 25 30
Epoch

0

20

40

60

80

100

120

140

160

L
os

s

(a) Loss

5 10 15 20 25 30
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

L
E

R

0

10

20

30

40

50

Dropout 20

(b) LER

Figure 4.6: Different values for the zoneout probability. Both cell state and hidden
state zoneout probability are kept the same through the layers.

82

4.4.3 Multiplicative integration and layer normalization

Multiplicative integration (MI) and layer normalization (LN) are techniques de-
veloped to speed up the training, as described in Secs. 2.12.5 and 2.12.4.

Multiplicative integration inserts three new hyperparameters per recurrent layer
(αMI, βMI, γMI). In Fig. 4.7, we have applied MI with its hyperparameters ini-
tialized with a vector of ones on our best topology — 5 BLSTM with 256 hidden
units each, weight decay of 10−4, and variational dropout of 20%. Again, Wu et
al. citeWu:2016vm have carefully tuned the hyperparameters for each task they
have presented, although they have tested MI with several layers. In their speech
recognition problem, using the EESEN model (Sec. 3.6.3), they obtained better
results with MI, but they did not specify the hyperparameters they used.

Finally, we also tried employing LN in our model. Adapting to LSTM, Ba et
al. [77] proposed the following adaptions:

a = LN(W T
xx

(t);αLN1 ,βLN1
) + LN(W T

hh
(t−1);αLN2 ,βLN2

)

h(t) = o� tanh(LN(c(t);αLN3 ,βLN3
)

(4.1)

where LN(·,αLN,βLN) is the layer normalization operation. We have tied all gains
and bias initializations, i.e. the same initialization for bias/gains in all layers. Our
best model did not converge with layer norm, and proper investigation is needed.

5 10 15 20 25 30
Epoch

0

20

40

60

80

100

120

140

160

180

L
os

s

(a) Loss

5 10 15 20 25 30
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

L
E

R

MI

Best

(b) LER

Figure 4.7: The best model with and without MI.

4.4.4 Broader context

Both Maas [90], and Deep Speech models [91, 115] used as input their pre-
processed signal with a context window (±10 in Maas and ±9 in Deep Speech),
facilitating the recurrent network to gather information about short past and future
contents. In Fig. 4.8, we have also applied to our best model a larger input using

83

a context of ±3. We did not investigate using broader contexts due to the limits
of GPU memory. As we can see, we had only a minor improvement; moreover, we
have increased the memory consumption and the number of parameters (leading to
a higher training time). There is limited evidence for a conclusion; however, both
models used vanilla RNN7, which has the problem of learning long-term dependen-
cies, and using a broader context could temper it. Nevertheless, our model employs
LSTM layers, which by themselves are more capable of learning long-term depen-
dencies, indicating that using a broader context may not be helpful in our case, as
shown in Fig. 4.8.

5 10 15 20 25 30
Epoch

10

20

30

40

50

60

70

80

90

100

L
os

s

(a) Loss

5 10 15 20 25 30
Epoch

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

L
E

R

0

3

(b) LER

Figure 4.8: Comparison of our best model without a context and with a context of
±3 time steps.

4.4.5 Final model

The best model after several design choices employs 5 layers of BLSTM with
256 units, no context window, and as regularizers variational dropout with dropout
probability of 20% and weight decay of 10−4 applied to every recurrent layer. We
have trained this model for more epochs, as shown in Fig. 4.9. Our best validation
result occurs in epoch 58, with an LER of 26.95%. In our test set, we have decoded
the sentence using the beam search with a beam width of 100. We obtained an
LER of 25.13%, which is close to the result that Maas [90] has obtained without a
language model (Sec. 3.6.2), but almost 11% worse when compared to commercial
systems (Tab. 4.5), which have several pipelines, including a lexicon and language
models.

7Actually, they have changed the tanh activation to clipped ReLU.

84

10 20 30 40 50 60 70 80 90
Epoch

10

20

30

40

50

60

70

80

90

L
os

s

(a) Loss

10 20 30 40 50 60 70 80 90
Epoch

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

L
E

R

(b) LER

Figure 4.9: Best model training.

4.4.6 Analyzing the transcriptions

We have chosen some transcriptions that are worth to analyze. We have found
out that some errors that occur to our transcription are phoneticaly reasonable, as
pointed in [91]. In Tab. 4.7, our network changed “flexa” (Lucia’s mid name) with
“flecha” (arrow), which have the same sound. This misspelling might occur because
“flecha” has a higher number of occurrences in the training set.

Another interesting fact is demonstrated in Tab. 4.8. Our model changed one
letter in the word “explicacoes” (explanation), substituting “x” by “s”. This substi-
tution could be explained due to region dialects. People from Rio de Janeiro, for
example, pronounce the “x” in “explicacoes” like “sh” as in /leash/, while people
from others states tend to pronounce as a sibilant “s” as in /juice/. Indeed, listening
to the dataset recordings, we have found that the majority of the speakers are not
from Rio de Janeiro, which explains the behavior of our network.

Finally, we also have found that our network made some “mistakes” by tran-
scribing some speakers’ peculiarities, depicted in Tab. 4.9. While the ground truth
is “tem se” the network outputs “ten ci”, which is a reasonable mistake, since both
constructions sound equal. It seems that the network transcribed the sentence in the
way the speaker has spoken. All in all, such misspellings could be easily corrected
using a proper language model8.

Table 4.7: Comparison between the ground truth sequence and the sequence tran-
scribed by our best model. The network misspelling that has the same phonetic
sound is highlighted.

Truth esta instalado na casa do avo de lucia flexa de lima
Network esta estalado na casa do arode duscia flecha dima

8With the exception of Lucia’s mid name, of course.

85

Table 4.8: Comparison between the ground truth sequence and the sequence tran-
scribed by our best model. The network misspelling that could be explained by the
difference in region dialects is highlighted.

Truth ele podia dar explicacoes praticas para sua preferencia por faroestes
Network ele putiadar esplicacoes cratifos para soubre ferencia por faraeste

Table 4.9: Comparison between the ground truth sequence and the sequence tran-
scribed by our best model. The network misspelling that could be explained by the
way that the speaker speaks is highlighted.

Truth tem se uma receita mensal de trezentos e quarenta mil dolares
Network ten ci uma receira mensalbe trezentos e quarenta mil bolarte

86

Chapter 5

Conclusions and future works

A lot of information was given through the chapters. We have started writing
about neurons, layers, and how they connected to each other to perform some real
calculation. We have described the universal approximation theorem and pointed
that a feedforward network with a single hidden layer and enough number of neurons
can approximate any continuous function. Stacking more than two layers, however,
have demonstrated to learn better representations than the shallow ones when the
input has a high number of features (e.g. speech, pixels of an image) [21]. Deep
learning is only a new fancy name for neural networks with more than a couple of
layers, but it has not been a reality until the development of parallel computation
using GPUs and the Hinton’s idea.

Training deep models can be a lot easier with properly initialization of the
weights, and for that, we have developed some mathematical grounds for the
Xavier [24] and He [19] initialization. Batch norm, a technique to alleviate the
internal covariate shift, is a must for any machine learning practitioner. Due to the
non-linearity of the model, a gradient-based method was required to training the
network to perform the desired calculation. For that, we have associated neural
networks to computational graphs, and we have shown how to perform the back-
propagation on them. Then, simple methods like stochastic gradient descent and its
flavors (Momentum [31], RMSProp [33], and Adam [34]) should be used to minimize
the loss by adjusting the weights.

The vanilla neural network can not model well sequences, and for that, we have
described the recurrent networks — powerful models that can handle sequences
at input and sequences at the output. Recurrent neural networks, however, do
not perform well for long sequences due to the vanishing and exploding gradient
problems. For the exploding gradient, gradient clipping is a simple but very effective
tool. Long Short-Term Memory networks were introduced to deal with the vanishing
gradient, using several gates to control the gradient flow.

Recurrent neural networks do not generalize well, are more prone to overfitting,

87

and regularizing recurrent networks have not been proved a trivial task. Indeed,
quite an effort has been made through the years to find an ultimate method. We
have discussed new approaches like variational dropout [75] and zoneout [76] for
that. Another common problem of recurrent nets is that their training is quite
slow, and to cut down the training time we have shown recent methods like batch
recurrent norm [28], layer norm [77], and multiplicative integration [78].

The central theme of this dissertation is the construction of an all-neural speech
recognition system for the Brazilian Portuguese language. Unfortunately, using the
recurrent network for that task is only possible if we have a dataset with frame-
alignment transcriptions, which is costly and time demanding. To address that
problem, we have shown Graves’ work [53] — the connectionist temporal classifica-
tion method. CTC works by computing all possible paths of a sequence of labels
and intuitively can be interpreted as the soft cross-entropy loss function by adding
all possible paths instead of one path.

Decoding the sequence after training a CTC-based model is not trivial. Indeed,
using a naïve decoding could lead to errors. We have shown that a more powerful
decoding could be achieved with the beam search decoder [90]. The decoder by itself
does not have any information about the peculiarities of the language (e.g. how to
spell words), and we could improve our recognizer by adding a language model.

Subsequently, we have discussed several CTC-based models that arose in the
last years. Graves et al. [11], the first successful end-to-end solution showed us the
advantage of deep models — dropping the LER from 23.9% to 18.4% as the number
of layers increases from one to five. Maas et al. [90], one of the first successful
shot to convert speech directly to characters, introduced a different topology by
mainly focusing on dense connections with minimum recurrent layers, and by using
clipped ReLU as activation for all layers (including the recurrent). It is worth
mentioning that they achieved a result of 27.7% without a proper language model.
EESEN, which it is considered the (feasible) state-of-the-art end-to-end CTC-based
methods, proposed decoding the sequences using a weighted finite-state transducer
(WFST) [57], which is a clever way to incorporate the lexicons and language models
into CTC decoding. They have shown comparable WERs with standard hybrid
DNN system. Finally, the last couple of models studied, Deep Speech 1 and 2 made
by Baidu Research, are huge by their nature: models with hundreds of millions of
parameters trained over a dataset of thousand of hours. They have shown similar
results to humans.

Afterwards, we have validated our implementation by replicating the first Graves’
model. We have demonstrated that we could achieve a speedup of 2.36 by increasing
the batch size from 1 to 32. Then, we have achieved a slightly lower LER than
Graves due to our bigger training set and the better decoder, showing that our

88

implementation is working. Furthermore, based on the case study model, we have
built our model by doing gradual modifications. Firstly, we increased the number
of hidden layers from 100 to 256. Secondly, we removed the white Gaussian noise at
the input, since it has not shown any improvement. Then, we tested bigger models,
showing that a 5-layer BLSTM gave the best results. Next, we cross-validated
different values of weight decay and variational dropout, and found out that the
best configuration is 10−4 for weight decay and a variational dropout of 20%. Also,
we demonstrated that using a broader context gave us no improvement because the
LSTM network already handles long-term dependencies quite well. We have tried
applying zoneout, multiplicative integration and layer norm to our model, without
any success yet.

Given enough training time to our best model, we achieved an LER of 26.95% in
the validation set. In the test set, we have decoded our sequences by applying the
beam search decoder with a beam width of 100 and no language model. Thus, we
have achieved an LER of 25.13%, which is comparable to the results of Maas [90];
however, we have a long way of improvements to achieve results similar to those of
commercial systems (Tab. 4.5).

5.1 Future works

There is a lot of work to be done. Firstly, we have not succeeded in applying zo-
neout, LN, and MI to our model, and further investigation (with a broader range of
hyperparameters) must be carried out to validate these methods. Using a language
model is an essential tool for any reliable ASR system, and yet we have applied none
to our system. Further investigation of different language models (e.g. RNN-based,
WFST) is necessary. Also, we have not stressed our topology by adding convolu-
tional layers, or employing other kinds of RNN structures (e.g. GRU) or different
kinds of input (e.g. raw audio, and filter banks without MFCCs computation).

Increasing our training data is also required. Besides being bigger than TIMIT, it
is far away from more used datasets, like the SwitchBoard (over 300 hours of speech).
Furthermore, we did not investigate adding punctuation, accents, and hyphens to
our softmax layer, which could disambiguate some Portuguese Brazilian words, and
seems more logical to be used.

Moreover, encoder-decoder based models with attention mechanism is a raising
area for end-to-end solutions in speech recognition, and future work must be done
with these models.

89

Bibliography

[1] KRIZHEVSKY, A., SUTSKEVER, I., HINTON, G. E. “ImageNet classification
with deep convolutional neural networks”. In: Advances in Neural Infor-
mation Processing Systems, pp. 1097–1105, Lake Tahoe, USA, December
2012.

[2] LECUN, Y., BOTTOU, L., BENGIO, Y., et al. “Gradient-based learning applied
to document recognition”, Proceedings of the IEEE, v. 86, n. 11, pp. 2278–
2324, November 1998.

[3] GOODFELLOW, I., BENGIO, Y., COURVILLE, A. Deep learning. Adap-
tive computation and machine learning series. Cambridge, England, MIT
Press, 2016.

[4] OUYANG, W., WANG, X. “Joint deep learning for pedestrian detection”. In:
IEEE International Conference on Computer Vision, pp. 2056–2063, Syd-
ney, Australia, December 2013.

[5] CHEN, C., SEFF, A., KORNHAUSER, A., et al. “DeepDriving: Learning af-
fordance for direct perception in autonomous driving”. In: IEEE Interna-
tional Conference on Computer Vision, pp. 2722–2730, Santiago, Chile,
December 2015.

[6] HINTON, G. E., DENG, L., YU, D., et al. “Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups”,
IEEE Signal Processing Magazine, v. 29, n. 6, pp. 82–97, November 2012.

[7] SUK, H.-I., LEE, S.-W., SHEN, D., et al. “Hierarchical feature representation
and multimodal fusion with deep learning for AD/MCI diagnosis”, Neuro
Image, v. 101, pp. 569–582, November 2014.

[8] DAVIS, K., BIDDULPH, R., BALASHEK, S. “Automatic recognition of spoken
digits”, The Journal of the Acoustical Society of America, v. 24, n. 6,
pp. 637–642, November 1952.

90

[9] RABINER, L. R. “A tutorial on hidden markov models and selected applications
in speech recognition”, Proceedings of the IEEE, v. 77, n. 2, pp. 257–286,
February 1989.

[10] DAHL, G. E., YU, D., DENG, L., et al. “Context-dependent pre-trained deep
neural networks for large-vocabulary speech recognition”, IEEE Transac-
tions on Audio, Speech, and Language Processing, v. 20, n. 1, pp. 30–42,
January 2012.

[11] GRAVES, A., FERNÁNDEZ, S., GOMEZ, F. J., et al. “Connectionist temporal
classification: Labelling unsegmented sequence data with recurrent neural
networks”. In: International Conference on Machine Learning, pp. 369–
376, Pittsburgh, USA, June 2006.

[12] CHOROWSKI, J., BAHDANAU, D., SERDYUK, D., et al. “Attention-based
models for speech recognition”. In: Advances in Neural Information Pro-
cessing Systems, pp. 577–585, Montreal, Canada, December 2015.

[13] CYBENKO, G. “Approximation by superpositions of a sigmoidal function”,
Mathematics of Control, Signals, and Systems, v. 2, n. 4, pp. 303–314,
December 1989.

[14] HORNIK, K. “Approximation capabilities of multilayer feedforward networks”,
Neural Networks, v. 4, n. 2, pp. 251–257, January 1991.

[15] HAYKIN, S. Neural networks and learning machines. Pearson Education, 2009.

[16] LECUN, Y., KANTER, I., SOLLA, S. A. “Second order properties of error
surfaces”. In: Advances in Neural Information Processing Systems, pp.
918–924, Denver, USA, November 1990.

[17] NAIR, V., HINTON, G. E. “Rectified linear units improve restricted Boltzmann
machines”. In: International Conference on Machine Learning, v. 30, pp.
807–814, Haifa, Israel, June 2010.

[18] MAAS, A. L., HANNUN, A., NG, A. Y.-T. “Rectifier nonlinearities improve
neural network acoustic models”. In: International Conference on Ma-
chine Learning, v. 30, p. 1–6, Atlanta, USA, June 2013.

[19] HE, K., ZHANG, X., REN, S., et al. “Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification”. In: IEEE Interna-
tional Conference on Computer Vision, pp. 1026–1034, Santiago, Chile,
December 2015.

91

[20] BISHOP, C. M. Pattern Recognition and Machine Learning. Information Sci-
ence and Statistics. New York, USA, Springer Verlag, 2006.

[21] BENGIO, Y. “Learning deep architectures for AI”, Foundations and Trends in
Machine Learning, v. 2, n. 1, pp. 1–127, January 2009.

[22] HINTON, G. E., OSINDERO, S., TEH, Y.-W. “A fast learning algorithm for
deep belief nets”, Neural Computation, v. 18, n. 7, pp. 1527–1554, July
2006.

[23] FISCHER, A., IGEL, C. “Training restricted Boltzmann machines: An intro-
duction”, Pattern Recognition, v. 47, n. 1, pp. 25–39, January 2014.

[24] GLOROT, X., BENGIO, Y. “Understanding the difficulty of training deep
feedforward neural networks”. In: International Conference on Artificial
Intelligence and Statistics, v. 9, pp. 249–256, Sardinia, Italy, May 2010.

[25] HE, K., ZHANG, X., REN, S., et al. “Deep residual learning for image recogni-
tion”. In: IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778, Las Vegas, USA, June 2016.

[26] IOFFE, S., SZEGEDY, C. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: International Conference
on Machine Learning, v. 37, pp. 1–9, Lille, France, July 2015.

[27] LAURENT, C., PEREYRA, G., BRAKEL, P., et al. “Batch normalized recur-
rent neural networks”. In: IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 2657–2661, Shanghai, China, March
2016.

[28] COOIJMANS, T., BALLAS, N., LAURENT, C., et al. “Recurrent batch nor-
malization”. February 2016. eprint arXiv:1502.03167v3.

[29] SRIVASTAVA, N., HINTON, G. E., KRIZHEVSKY, A., et al. “Dropout: A
simple way to prevent neural networks from overfitting”, Journal of Ma-
chine Learning Research, v. 15, pp. 1929–1958, June 2014.

[30] HINTON, G. E., SRIVASTAVA, N., KRIZHEVSKY, A., et al. “Improving
neural networks by preventing co-adaptation of feature detectors”. July
2012. eprint arXiv:1207.0580v1.

[31] QIAN, N. “On the momentum term in gradient descent learning algorithms”,
Neural Networks, v. 12, n. 1, pp. 145–151, January 1999.

92

[32] SUTSKEVER, I., MARTENS, J., DAHL, G. E., et al. “On the importance
of initialization and momentum in deep learning”. In: International Con-
ference on Machine Learning, v. 28, pp. 1139–1147, Atlanta, USA, June
2013.

[33] HINTON, G. E., TIELEMAN, T. “Neural networks for machine learn-
ing”. http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_
slides_lec6.pdf. Lecture 6a. Slide 29. Accessed: 2017-02-24.

[34] KINGMA, D. P., BA, J. “Adam: A method for stochastic optimization”. In:
international conference for learning representations, pp. 1–15, San Diego,
USA, May 2015.

[35] LECUN, Y., BOSER, B. E., DENKER, J. S., et al. “Backpropagation applied
to handwritten zip code recognition”, Neural Computation, v. 1, n. 4,
pp. 541–551, Winter 1989.

[36] RAZAVIAN, A. S., AZIZPOUR, H., SULLIVAN, J., et al. “CNN features off-
the-shelf: An astounding baseline for recognition”. In: ieee conference on
computer vision and pattern recognition workshops, pp. 512–519, Colum-
bus, USA, June 2014.

[37] YOSINSKI, J., CLUNE, J., BENGIO, Y., et al. “How transferable are features
in deep neural networks?” In: Advances in Neural Information Processing
Systems, pp. 3320–3328, Montreal, Canada, December 2014.

[38] DAI, J., LI, Y., HE, K., et al. “R-FCN: Object detection via region-based fully
convolutional networks”. In: Advances in Neural Information Processing
Systems, pp. 379–387, Long Beach, USA, December 2016.

[39] FARABET, C., COUPRIE, C., NAJMAN, L., et al. “Learning hierarchical
features for scene labeling”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, v. 35, n. 8, pp. 1915 – 1929, August 2013.

[40] HARIHARAN, B., ARBELÁEZ, P. A., GIRSHICK, R. B., et al. “Simultane-
ous detection and segmentation”. In: European Conference on Computer
Vision, pp. 297–312, Zurich, Switzerland, September 2014.

[41] HARIHARAN, B., ARBELÁEZ, P. A., GIRSHICK, R. B., et al. “Hyper-
columns for object segmentation and fine-grained localization”. In: IEEE
Conference on Computer Vision and Pattern Recognition, pp. 447–456,
Boston, USA, June 2015.

93

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

[42] DAI, J., HE, K., SUN, J. “Instance-aware semantic segmentation via multi-
task network cascades”. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3150–3158, Las Vegas, USA, June 2016.

[43] TAIGMAN, Y., YANG, M., RANZATO, M., et al. “Deepface: Closing the gap
to human-level performance in face verification”. In: IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1701–1708, Columbus,
USA, June 2014.

[44] SUN, Y., LIANG, D., WANG, X., et al. “DeepID3: Face recognition with very
deep neural networks”. 2015. eprint arXiv:1502.00873v1.

[45] FARFADE, S. S., SABERIAN, M. J., LI, L.-J. “Multi-view face detection using
deep convolutional neural networks”. In: ACM International Conference
on Multimedia Retrieval, pp. 643–650, Shanghai, China, June 2015.

[46] LIN, M., CHEN, Q., YAN, S. “Network in network”. March 2013. eprint
arXiv:1312.4400v3.

[47] SIMONYAN, K., ZISSERMAN, A. “Very deep convolutional networks for large-
scale image recognition”. April 2014. eprint arXiv:1409.1556v6.

[48] CHO, K., VAN MERRIENBOER, B., GÜLÇEHRE, Ç., et al. “Learning phrase
representations using RNN encoder-decoder for statistical machine trans-
lation”. In: Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 1724–1734, Doha, Qatar, October 2014.

[49] WU, Y., SCHUSTER, M., CHEN, Z., et al. “Google’s neural machine transla-
tion system: Bridging the gap between human and machine translation”.
October 2016. eprint arXiv:1609.08144v2.

[50] FIRAT, O., CHO, K., BENGIO, Y. “Multi-way, multilingual neural machine
translation with a shared attention mechanism”. In: Annual Conference
of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pp. 866–875, San Diego, USA,
June 2016.

[51] MIKOLOV, T., KARAFIÁT, M., BURGET, L., et al. “Recurrent neural net-
work based language model”. In: Annual Conference of the International
Speech Communication Association, pp. 1045–1048, Makuhari, Japan,
September 2010.

94

[52] KIM, Y., JERNITE, Y., SONTAG, D., et al. “Character-aware neural language
models”. In: AAAI Conference on Artificial Intelligence, pp. 2741–2749,
Phoenix, USA, February 2016.

[53] GRAVES, A. Supervised Sequence Labelling with Recurrent Neural Networks.
Studies in Computational Intelligence. Heidelberg, Germany, Springer
Verlag, 2012.

[54] SCHUSTER, M., PALIWAL, K. K. “Bidirectional recurrent neural networks”,
IEEE Transactions on Signal Processing, v. 45, n. 11, pp. 2673–2681,
November 1997.

[55] GRAVES, A., MOHAMED, A.-R., HINTON, G. E. “Speech recognition
with deep recurrent neural networks”. In: IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 6645–6649, Vancouver,
Canada, May 2013.

[56] GRAVES, A., JAITLY, N. “Towards end-to-end speech recognition with recur-
rent neural networks”. In: International Conference on Machine Learning,
v. 32, pp. 1–9, Beijing, China, June 2014.

[57] MIAO, Y., GOWAYYED, M., METZE, F. “EESEN: end-to-end speech recog-
nition using deep RNN models and WFST-based decoding”. In: IEEE
Workshop on Automatic Speech Recognition and Understanding, pp. 167–
174, Scottsdale, USA, December 2015.

[58] GRAVES, A., SCHMIDHUBER, J. “Offline handwriting recognition with mul-
tidimensional recurrent neural networks”. In: Advances in Neural Infor-
mation Processing Systems, pp. 545–552, Whistler, Canada, December
2008.

[59] PASCANU, R., MIKOLOV, T., BENGIO, Y. “On the difficulty of training re-
current neural networks”. In: International Conference on Machine Learn-
ing, v. 28, pp. 1310–1318, Atlanta, USA, June 2013.

[60] HOCHREITER, S., SCHMIDHUBER, J. “Long short-term memory”, Neural
Computation, v. 9, n. 8, pp. 1735–1780, November 1997.

[61] GERS, F. A., SCHMIDHUBER, J. “Recurrent nets that time and count”. In:
IEEE-INNS-ENNS International Joint Conference on Neural Networks,
v. 3, pp. 189–194, Como, Italy, July 2000.

[62] YAO, K., COHN, T., VYLOMOVA, K., et al. “Depth-gated LSTM”. August
2015. eprint arXiv:1508.03790v4.

95

[63] ZILLY, J. G., SRIVASTAVA, R. K., KOUTNÍK, J., et al. “Recurrent highway
networks”. March 2016. eprint arXiv:1607.03474v4.

[64] KOUTNÍK, J., GREFF, K., GOMEZ, F. J., et al. “A clockwork RNN”. In:
International Conference on Machine Learning, v. 32, p. 1–9, Beijing,
China, June 2014.

[65] GRAVES, A., WAYNE, G., DANIHELKA, I. “Neural Turing machines”. De-
cember 2014. eprint arXiv:1410.5401v2.

[66] SUKHBAATAR, S., SZLAM, A., WESTON, J., et al. “End-to-end memory
networks”. In: Advances in Neural Information Processing Systems, pp.
2440–2448, Montreal, Canada, December 2015.

[67] GREFF, K., SRIVASTAVA, R. K., KOUTNÍK, J., et al. “LSTM: A search space
odyssey”, IEEE Transactions on Neural Networks and Learning Systems,
v. PP, n. 99, pp. 1–11, July 2015.

[68] JÓZEFOWICZ, R., ZAREMBA, W., SUTSKEVER, I. “An empirical explo-
ration of recurrent network architectures”. In: International Conference
on Machine Learning, v. 37, p. 1–9, Lille, France, July 2015.

[69] BENGIO, Y., SIMARD, P. Y., FRASCONI, P. “Learning long-term depen-
dencies with gradient descent is difficult”, IEEE Transactions on Neural
Networks, v. 5, n. 2, pp. 157–166, March 1994.

[70] ZAREMBA, W., SUTSKEVER, I., VINYALS, O. “Recurrent neural network
regularization”. February 2014. eprint arXiv:1409.2329v5.

[71] OGNAWALA, S., BAYER, J. “Regularizing recurrent networks: On injected
noise and norm-based methods”. 2014. eprint arXiv:1410.5684v1.

[72] MAAS, A. L., LE, Q. V., O’NEIL, T. M., et al. “Recurrent neural networks
for noise reduction in robust ASR”. In: Annual Conference of the Inter-
national Speech Communication Association, pp. 22–25, Portland, USA,
September 2012.

[73] NEELAKANTAN, A., VILNIS, L., LE, Q. V., et al. “Adding gradient noise im-
proves learning for very deep networks”. 2015. eprint arXiv:1511.06807v1.

[74] BAYER, J., OSENDORFER, C., CHEN, N., et al. “On fast dropout and its
applicability to recurrent networks”. 2013. eprint arXiv:1311.0701v7.

[75] GAL, Y., GHAHRAMANI, Z. “A theoretically grounded application of dropout
in recurrent neural networks”, pp. 1019–1027, December 2016.

96

[76] KRUEGER, D., MAHARAJ, T., KRAMÁR, J., et al. “Zoneout: Regularizing
RNNs by randomly preserving hidden activations”. January 2016. eprint
arXiv:1606.01305v3.

[77] BA, L. J., KIROS, R., HINTON, G. E. “Layer normalization”. 2016. eprint
arXiv:1607.06450v1.

[78] WU, Y., ZHANG, S., ZHANG, Y., et al. “On multiplicative integration with
recurrent neural networks”, pp. 2856–2864, December 2016.

[79] LI, Y., QI, H., DAI, J., et al. “Fully convolutional instance-aware semantic
segmentation”. November 2016. eprint arXiv:1611.07709v1.

[80] XIONG, W., DROPPO, J., HUANG, X., et al. “Achieving human
parity in conversational speech recognition”. February 2016. eprint
arXiv:1610.05256v2.

[81] DALAL, N., TRIGGS, B. “Histograms of oriented gradients for human detec-
tion”. In: IEEE Conference on Computer Vision and Pattern Recognition,
pp. 886–893, San Diego, USA, June 2005.

[82] LEE, L., ROSE, R. C. “Speaker normalization using efficient frequency warping
procedures”. In: IEEE International Conference on Acoustics, Speech, and
Signal Processing, v. 1, pp. 353–356, Atlanta, USA, May 1996.

[83] WELLING, L., KANTHAK, S., NEY, H. “Improved methods for vocal tract
normalization”. In: IEEE International Conference on Acoustics, Speech,
and Signal Processing, v. 2, pp. 761–764, Phoenix, USA, March 1999.

[84] JURAFSKY, D., MARTIN, J. H. Speech and language processing. Prentice
Hall Series in Artificial Intelligence. 2nd ed. New Jersey, USA, Prentice
Hall, 2014.

[85] BAHL, L., BROWN, P., DE SOUZA, P., et al. “Maximum mutual information
estimation of hidden Markov model parameters for speech recognition”.
In: IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, v. 11, pp. 49–52, Tokyo, Japan, April 1986.

[86] POVEY, D., KANEVSKY, D., KINGSBURY, B., et al. “Boosted MMI for
model and feature-space discriminative training”. In: IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 4057–4060,
Las Vegas, USA, March 2008.

97

[87] JUANG, B.-H., HOU, W., LEE, C.-H. “Automatic recognition of spoken digits”,
IEEE Transactions on Speech and Audio Processing, v. 5, n. 3, pp. 257–
265, May 1997.

[88] KAISER, J., HORVAT, B., KACIC, Z. “A novel loss function for the overall risk
criterion based discriminative training of HMM models”. In: International
Conference on Spoken Language Processing, pp. 887–890, Beijing, China,
October 2000.

[89] GIBSON, M., HAIN, T. “Hypothesis spaces for minimum Bayes risk train-
ing in large vocabulary speech recognition”. In: International Conference
on Spoken Language Processing, v. 6, pp. 2406–2409, Pittsburgh, USA,
September 2006.

[90] MAAS, A. L., XIE, Z., JURAFSKY, D., et al. “Lexicon-free conversational
speech recognition with neural networks”. In: Annual Conference of the
North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (NAACL-HLT), pp. 345–354, Denver,
USA, May 2015.

[91] AMODEI, D., ANUBHAI, R., BATTENBERG, E., et al. “Deep speech 2:
end-to-end speech recognition in english and mandarin”. In: International
Conference on Machine Learning, v. 48, pp. 1–10, New York, USA, June
2016.

[92] “Google voice search: Faster and more accurate”. https://research.

googleblog.com/2015/09/google-voice-search-faster-and-more.

html. Accessed: 2017-03-02.

[93] BAHDANAU, D., CHOROWSKI, J., SERDYUK, D., et al. “End-to-end
attention-based large vocabulary speech recognition”. In: IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, pp. 4945–
4949, Shanghai, China, March 2016.

[94] BAHDANAU, D., CHO, K., BENGIO, Y. “Neural machine translation by
jointly learning to align and translate”. In: International Conference on
Learning Representations, pp. 1–15, San Diego, USA, April 2014.

[95] XU, K., BA, J., KIROS, R., et al. “Show, attend and tell: Neural image
caption generation with visual attention”. In: International Conference
on Machine Learning, v. 37, pp. 1–10, Lille, France, July 2015.

[96] GRAVES, A. “Generating sequences with recurrent neural networks”. June
2013. eprint arXiv:1308.0850v5.

98

https://research.googleblog.com/2015/09/google-voice-search-faster-and-more.html
https://research.googleblog.com/2015/09/google-voice-search-faster-and-more.html
https://research.googleblog.com/2015/09/google-voice-search-faster-and-more.html

[97] PALAZ, D., MAGIMAI-DOSS, M., COLLOBERT, R. “Analysis of CNN-based
speech recognition system using raw speech as input”. In: Annual Confer-
ence of the International Speech Communication Association, pp. 11–15,
Dresden, Germany, September 2013.

[98] GHAHREMANI, P., MANOHAR, V., POVEY, D., et al. “Acoustic modelling
from the signal domain using CNNs”. In: Annual Conference of the In-
ternational Speech Communication Association, pp. 3434–3438, San Fran-
cisco, USA, September 2016.

[99] DAVIS, S., MERMELSTEIN, P. “Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences”, IEEE
Transactions on Acoustics, Speech, and Signal Processing, v. 28, n. 4,
pp. 357–366, August 1980.

[100] JUANG, B.-H., RABINER, L. R., WILPON, J. G. “On the use of bandpass
liftering in speech recognition”, IEEE Transactions on Acoustics, Speech,
and Signal Processing, v. 35, n. 7, pp. 947–954, July 1987.

[101] PALAZ, D., COLLOBERT, R., MAGIMAI-DOSS, M. “Estimating phoneme
class conditional probabilities from raw speech signal using convolutional
neural networks”. In: Annual Conference of the International Speech Com-
munication Association, pp. 1766–1770, Lyon, France, August 2013.

[102] HOSHEN, Y., WEISS, R. J., WILSON, K. W. “Speech acoustic modeling
from raw multichannel waveforms”. In: IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 4624–4628, Brisbane, Aus-
tralia, April 2015.

[103] ABDEL-HAMID, O., MOHAMED, A.-R., JIANG, H., et al. “Convolutional
neural networks for speech recognition”, IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, v. 22, n. 10, pp. 1533–1545, October
2014.

[104] CHAN, W., LANE, I. “Deep convolutional neural networks for acoustic mod-
eling in low resource languages”. In: IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 2056–2060, Brisbane, Aus-
tralia, April 2015.

[105] MIKOLOV, T., KOMBRINK, S., BURGET, L., et al. “Extensions of recurrent
neural network language model”. In: IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 5528–5531, Prague, Czech
Republic, May 2011.

99

[106] JÓZEFOWICZ, R., VINYALS, O., SCHUSTER, M., et al. “Exploring the
limits of language modeling”. February 2016. eprint arXiv:1602.02410v2.

[107] GAROFOLO, J. S., LAMEL, L. F., FISHER, W. M., et al. “Timit acoustic-
phonetic continuous speech corpus LDC93S1”. Philadelphia, 1993. Lin-
guistic Data Consortium.

[108] GRAVES, A. “Sequence transduction with recurrent neural networks”. Novem-
ber 2012. eprint arXiv:1211.3711v1.

[109] JIM, K.-C., GILES, C. L., HORNE, B. G. “An analysis of noise in recurrent
neural networks: Convergence and generalization”, IEEE Transactions on
Neural Networks, v. 7, n. 1–6, pp. 1424–1438, November 1996.

[110] GODFREY, J., HOLLIMAN, E. “Switchboard-1 release 2 LDC97S62”.
Philadelphia, 1993. Linguistic Data Consortium.

[111] NIST MULTIMODAL INFORMATION GROUP. “1997 hub5 english evalua-
tion LDC2002S23”. Philadelphia, 2002. Linguistic Data Consortium.

[112] GAROFOLO, J., GRAFF, D., PAUL, D., et al. “CSR-I (WSJ0) Sennheiser
LDC93S6B”. Philadelphia, 1993. Linguistic Data Consortium.

[113] “CSR-II (WSJ1) Sennheiser LDC94S13B”. Philadelphia, 1994. Linguistic Data
Consortium.

[114] COATES, A., HUVAL, B., WANG, T., et al. “Deep learning with cots HPC
systems”. In: International Conference on Machine Learning, v. 30, pp.
1–9, Atlanta, USA, June 2013.

[115] HANNUN, A. Y., CASE, C., CASPER, J., et al. “Deep speech: Scaling up
end-to-end speech recognition”. December 2014. eprint arXiv:1412.5567v2.

[116] CIERI, C., MILLER, D., WALKER, K. “The fisher corpus: A resource for
the next generations of speech-to-text”. In: International Conference on
Language Resources and Evaluation, pp. 69–71, Lisbon, Portugal, May
2004.

[117] SAXE, A. M., MCCLELLAND, J. L., GANGULI, S. “Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks”. In: Inter-
national Conference on Learning Representations, pp. 1–22, San Diego,
USA, April 2014.

100

[118] LEE, K.-F., HON, H.-W. “Speaker-independent phone recognition using hid-
den markov models”, IEEE Transactions on Acoustics, Speech, and Signal
Processing, v. 37, n. 11, pp. 1641–1648, November 1989.

[119] SCHRAMM, M., FREITAS, L. F., ZANUZ, A., et al. “CSLU: Spoltech Brazil-
ian Portuguese version 1.0 LDC2006S16”. Philadelphia, 2006. Linguistic
Data Consortium.

[120] NETO, N., SILVA, P., KLAUTAU, A., et al. “Spoltech and OGI-22 baseline
systems for speech recognition in Brazilian Portuguese”. In: International
Conference on Computational Processing of Portuguese Language, v. 5190,
pp. 256–259, Aveiro, Portugal, September 2008.

[121] “Voxforge”. https://http://www.voxforge.org. Accessed: 2017-03-06.

[122] “Falabrasil - UFPA”. http://www.laps.ufpa.br/falabrasil/. Accessed:
2017-03-06.

[123] COLLOBERT, R., KAVUKCUOGLU, K., FARABET, C. “Torch7: A matlab-
like environment for machine learning”. 2015.

[124] AL-RFOU, R., ALAIN, G., ALMAHAIRI, A., et al. “Theano: A Python
framework for fast computation of mathematical expressions”. May 2016.
eprint arXiv:1605.02688v1.

[125] GOODFELLOW, I. J., WARDE-FARLEY, D., LAMBLIN, P., et al.
“PyLearn2: A machine learning research library”. August 2016. eprint
arXiv:1308.4214v1.

[126] JIA, Y., SHELHAMER, E., DONAHUE, J., et al. “Caffe: Convolutional archi-
tecture for fast feature embedding”. June 2014. eprint arXiv:1408.5093v1.

[127] AGARWAL, A., AKCHURIN, E., BASOGLU, C., et al. An introduction to
computational networks and the computational network toolkit. Technical
Report 112, Microsoft, 2014.

[128] ABADI, M., AGARWAL, A., BARHAM, P., et al. “Tensorflow: large-
scale machine learning on heterogeneous systems”. 2015. Disponível em:
<http://tensorflow.org/>. Software available from tensorflow.org.

[129] CHOLLET, F. “Keras”. https://github.com/fchollet/keras, 2015.

[130] “Warp-CTC”. https://github.com/baidu-research/warp-ctc. Accessed:
2017-03-06.

101

https://http://www.voxforge.org
http://www.laps.ufpa.br/falabrasil/
http://tensorflow.org/
https://github.com/fchollet/keras
https://github.com/baidu-research/warp-ctc

	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	1 Introduction
	1.1 The rise of Deep Learning
	1.2 Evolution of automatic speech recognition (ASR) systems: from hidden Markov models (HMMs) to end-to-end solutions
	1.3 Contributions of this dissertation
	1.4 Chapter organization

	2 Neural Networks
	2.1 Feedforward neural networks
	2.2 Commonly used activation functions
	2.2.1 Sigmoid
	2.2.2 Tanh
	2.2.3 ReLU

	2.3 Loss function
	2.3.1 Two-layer feedforward neural network as a universal model for any continuous function

	2.4 The forward pass
	2.4.1 Toy example: Learning XOR

	2.5 The backward pass
	2.5.1 Recursively applying the chain rule to obtain backprop
	2.5.2 Computational graph
	2.5.3 Applying the chain rule to a computational graph
	2.5.4 Backpropping through a neural network

	2.6 Deep feedforward neural networks
	2.6.1 Why did stacking layers not work?
	2.6.2 Unsupervised learning as a bootstrap of deeper models
	2.6.3 Xavier and He initialization
	2.6.4 The internal covariate shift problem

	2.7 Regularization for deep learning
	2.7.1 Weight decay
	2.7.2 Dropout as an exponential ensemble of thinner networks

	2.8 Network optimization
	2.8.1 Gradient descent
	2.8.2 Momentum
	2.8.3 Adaptive methods

	2.9 Sharing weights across time and space
	2.10 Convolutional networks
	2.10.1 Convolutional layer
	2.10.2 Pooling layer
	2.10.3 ConvNet architectures

	2.11 Recurrent neural networks
	2.11.1 Vanilla RNNs
	2.11.2 Bidirectional RNNs
	2.11.3 Back propagation through time
	2.11.4 Vanishing and exploding gradients in recurrent nets
	2.11.5 Dealing with exploding gradients: clipping
	2.11.6 Dealing with vanishing gradients: LSTM
	2.11.7 LSTM and beyond

	2.12 On the difficulty of regularizing recurrent nets
	2.12.1 Dropout for RNNs
	2.12.2 Zoneout
	2.12.3 Batch norm for RNNs
	2.12.4 Layer normalization
	2.12.5 Multiplicative integration
	2.12.6 General discussion

	3 All-neural speech recognition
	3.1 Traditional speech recognizers
	3.2 End-to-end speech recognizers
	3.3 Connectionist Temporal Classification
	3.3.1 Loss function
	3.3.2 Loss gradient

	3.4 Feature extraction
	3.4.1 MFCC
	3.4.2 Convolutional networks as features extractors

	3.5 Decoding the sequence
	3.5.1 Improving performance: employing a language model

	3.6 Related work
	3.6.1 Graves' models
	3.6.2 Maas' model
	3.6.3 EESEN
	3.6.4 Deep Speech 1 and 2 by Baidu Research

	3.7 Proposed model

	4 Experiments on all-neural speech recognition
	4.1 English and Portuguese datasets
	4.1.1 TIMIT
	4.1.2 Brazilian Portuguese dataset

	4.2 Hardware and software
	4.3 Case study: Graves’ model
	4.3.1 Increasing the speedup with bigger batch size

	4.4 Applying the knowledge: building an end-to-end ASR that understands Brazilian Portuguese
	4.4.1 Stacking more layers
	4.4.2 Regularization
	4.4.3 Multiplicative integration and layer normalization
	4.4.4 Broader context
	4.4.5 Final model
	4.4.6 Analyzing the transcriptions

	5 Conclusions and future works
	5.1 Future works

	Bibliography

