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Abstract

Deep learning is an improvement to the neural network that contains more computa-
tional layers that allow for higher levels of abstraction and prediction in the data. So
far, it is becoming a leading machine learning tool for general imaging and computer
vision. Current trends in research have also demonstrated that deep convolutional
neural networks (DCNNs) are very effective in automatically analyzing images. How-
ever, the requirement of large number of annotated samples prohibits its wide use in
medical image analysis, since collecting and labeling a large amount of data is difficult
due to the challenges in obtaining the data from the medical domain.

Polyps are known as possible colorectal cancer precursors, and their early detec-
tion is of great importance, but highly challenging from an image processing stand-
point. In this work, we evaluate several state-of-the-art machine learning techniques
and deep learning methods in the medical image processing domain and research solu-
tions about how they can be more efficiently utilized for automatic detection of polyps
in endoscopy and colonoscopy images.

This work proposes an effective transfer learning (TL) framework relying on pre-
trained DCNNs using a large collection of natural ImageNet images. This has been
achieved by evaluating various kinds of cutting edge techniques including both tradi-
tional machine learning methods by training feature-based classifiers from scratch and
modern DCNNs algorithms with (TL) and fine tuning pre-trained models. We transfer
learned ImageNet weights as initial weights, and then fine-tune this model combined
with a new deep classifier called fully connected networks (FCNs) with data augmen-
tation and patch-extraction of colonoscopy images to automatically detect polyps. In
case of insufficient colonoscopy images, patch-based data augmentation and deep fea-
tures extracted using TL strategy can provide sufficient and balanced classification in-
formation.

With the proposed TL framework with our optimized hyper-parameters, the sys-
tem achieved overall 96.00% polyp detection precision and sensitivity, which outper-
formed the traditional machine learning classification methods in each defined perfor-
mance metric. Moreover, the TL framework proposed is scalable and flexible so that
it can easily be extended to include other types of disease detection in the future and
also be able to integrate one more DCNNs model to boost its generalizing capabilities.
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Chapter 1

Introduction

1.1 Background

Colorectal cancer is the third most common type of cancer in men and women in the
United States of America and also the second highest cause of cancer deaths [1]. Early
detection of polyps, protrusions from the colon surface, is vital to the prevention of
colorectal cancers, since colorectal cancer is highly curable when it is detected early. It
often begins as a benign polyp of the tissue lining the colon or rectum and, without
proper treatment at early stage, it will eventually develop into a cancer. Therefore,
one of the major goals of endoscopy and colonoscopy is early detection of polyps and
cancers.

FIGURE 1.1: Gastro-Intestinal Track Diagram (Image from Wikimedia
Commons).

Endoscopy, colonoscopy and wireless capsule endoscopy

The conventional endoscopy performs a visual inspection of the gastro-intestinal (GI)
track (see Figure 1.1) using a lighted, flexible tube with a tiny video camera at its tip
(endoscope). There are two basic types of endoscopy: upper endoscopy carried out by
inserting a flexible endoscope through the mouth to collect images from the esophagus,
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FIGURE 1.2: Examples of the type of polyp in colonscopy images.

stomach, and small intestines; and Colonoscopy, performed by inserting the endoscope
via the anus to examine the large intestine, colon, and rectum.

Wireless (video) capsule endoscopy (WCE/VCE) is a noninvasive technology de-
signed primarily to provide diagnostic imaging of the small intestine in a less invasive
manner. The capsule measures 26 by 11 mm, the size of a large vitamin pill, and is
propelled through the small bowel by peristalsis. Wireless capsule endoscopes have
also been developed for the esophagus and colon, but their use in those areas is not yet
as popular [54]. Colonoscopy is still the preferred technique for colon cancer screening
and prevention.

Appearances of polyps

Polyps appears in different shapes ranging from flat to predunculated forms. The flat
polyps are often attached to the colon wall by their base, predunculated polyps are
attached via a stem. The figure 1.2 shows some examples of colonic polyps extracted
from different colonscopy videos from CVC-ColonDB.

Besides, a polyp may appear in scale depending on the distance between the polyps
and the colonoscopy camera. This is shown in the Fig.1.3 where the same polyp ap-
pears different in scale in each image.

1.2 Problem statement

Colonoscopy is an operator dependent procedure wherein human factors such as fa-
tigue and insufficient attentiveness can lead to the miss-detection of polyps during
long and back-to-back procedures. The average polyp miss-rate is estimated around 4-
12%. Patients with missed polyps may be diagnosed with a late stage colorectal cancer
with the survival rate of less than 10%. In addition, though WCE is now also used for
colon examination, including the identification of polyps, after ingestion of the capsule,
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FIGURE 1.3: A polyp appears in different scales and shades in colonscopy
videos from CVC-ClinicDB.

over 50,000 images are captured for analysis, which is time-consuming for physicians
to assess manually.

To reduce the miss-detection of polyps caused by human factors and the cost and
time of screening a large number of colonoscopy or WCE frames, a large number of
techniques have been studied and exploited recently for the automatic detection of
polyps in colonic images.

However, computer-aided automatic detection of polyps is still a difficult task due
to the variety of shape, size, color, texture and size scale in the captured images. Ad-
ditionally, the complex structure of the GI tract, similar color between polyp and non-
polyp regions, poor image quality, and image variation of the same polyp caused by
frequent camera angle changes creates further challenges.

1.3 Motivation

Current trends in research have demonstrated that deep learning methods, especially
deep convolutional neural networks (DCNNs), are very effective for automatic analy-
sis of images. So far, DCNNs have become a leading machine learning tool for general
imaging and computer vision. Indeed, recent advances in deep learning frameworks
and and methods have shown great potential to enhance the performance in computer
vision applications, owing to their robust learning capabilities [17]. This captured our
curiosity to explore and develop an effective approach based on cutting edge DL algo-
rithms to solve a real world problem in medical image analysis. This work, focusing on
automatic polyp detection, can potentially be a life savior, and builds upon our initial
study presented in [31].
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1.4 Objective

The objective of this work is to develop high performance, scalable and reliable auto-
mated polyp detection systems that can tolerate polyp variability. By handling differ-
ences such as shape, size, color, and texture, computer-aided automatic polyp detection
systems become more feasible in clinical practice.

1.5 Approach

To achieve our objectives and desired outcomes, we chose the SCRUM methodology.
This choice was based on the type of project to be carried out. This method allowed us
to achieve maximum efficiency using iterative weekly sprints on which the work done
the last week was reviewed and new tasks were organized and defined for the next
week. We proposed the following sub-tasks:

• Researching work on the topics related to automatic polyp detection

• Studying and evaluating imaging processing algorithms and the state-of-the-art
machine learning approaches.

• Extensively studying DCNNs algorithms and choosing the most appropriate mod-
els for automatic polyp detecting tasks.

• Developing pre-processing techniques for dataset preparation and performing
primarily experiments on the domain dataset.

• Designing and implementing the DCNNs models for the detection of polyps.

• Performing extensive tests and fine-tuning the models to obtain the best perfor-
mance.

• Final evaluation and suggesting future work.

We first studied the literature that focused on image processing algorithms and
machine learning methods for polyp classification. We then built tools to evaluate these
techniques. Meanwhile, we extensively studied and investigated the newest DCNNs
architectures which could be employed in our work. Then we developed a scalable
transfer learning framework to utilize pre-trained DCNN models for polyp detection
tasks. After the proposed DCNNs models were implemented, we performed extensive
tests and fine-tuning of the models in order to obtain the best performance. Eventually,
we evaluated all supposed methods using comprehensive performance metrics and
suggested an outlook on future work.

1.6 Outline

The remainder of this thesis is organized as follows.

• In Chapter 2, we provide an overview literature discussion on topics related
to automatic polyp detection. This covers a brief description about traditional
texture/shape based methods, conventional machine learning classification and
deep learning concepts.
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• Chapter 3 contains our complete methodologies and various frameworks for
polyp detection by using both traditional machine learning methods and new
DCNNs algorithms, which covers the description of low-lever image processing
techniques, various popular classifiers and the cutting edge DCNNs framework
which are employed in our work.

• In Chapter 4, we present in-depth information about our design and implemen-
tation. We discuss experimental results we have performed and further evaluate
the proposed methods by well defined performance metrics.

• Chapter 5 provides conclusions of our work, summarizing our main contribu-
tions and achievements, and providing a suggested outlook on future work.
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Chapter 2

Literature review

This chapter covers general aspects of ML and DL methods in order to build the nec-
essary foundations to understand to scope and results presented in this work. First, an
overview of machine learning techniques is given with a brief discussion of different
learning types such as supervised and unsupervised learning, reinforcement learn-
ing and so on. Subsequently different low-level feature extraction approaches, which
include the texture, shape and fusion of texture and shape features, are presented sep-
arately in the context of automatic polyp detection. Next, the chapter focuses on dis-
cussing deep learning methods, which represent the current state-of-the-art of current
work and future trends. We first present deep learning concepts in general. Then
several cutting edge DCNN models including AlexNet, VGG Net, GoogLeNet and
ResNet, are described in detail since DCNN models are used as an important part of
our work. In the subsequent sections, we analyze different deep learning applications
for the automatic detection of polyp and publications related to this topic, which are
grouped into two separate sections namely CNN-based CAD systems and pre-trained
CNNs according to their utilized methods. Finally, we summarize and evaluate the
results against our specific requirements.

2.1 Machine learning

The fields of Machine Learning (ML) and Deep Learning (DL) have been experiencing
great progress in recent years and many useful techniques have been developed. These
techniques are currently playing an important role in fields such as medical image
processing and computer-aided diagnosis (CAD).

2.1.1 Overview

The typical goal of machine learning is to determine a mapping from input patterns to
an output value [4]. A machine learning algorithm can be expressed as a function y(x)
that uses a input x and generates an output y. The output is usually encoded in the
same way as the target vectors [4]. The form of the function y(x) is determined during
the training or learning phase, based on a training data set. Once the model is trained,
it is then using new date referred to as the test set.

Machine learning algorithms are typically classified into three categories, based on
the nature of the training signals or feedback to the learning system, as follows [43]:

• Supervised learning: In supervised learning problems, the training data is made
up of tuples (xi, yi), where xi is the input and yi the corresponding target vec-
tor [10]. The goal is to learn a general rule, also called mapping function f : X →
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Y , that maps inputs to outputs. Supervised learning tasks can be further classi-
fied into classification and regression categories based on the desired output of a
machine-learned system [4]:

– In classification, inputs are grouped into two or more classes or categories,
where the output variable is a category as well, e.g., "disease" or "no disease".

– In regression, the output is a continuous real value rather than a discrete
category, such as the prediction of the price a house.

• Unsupervised learning: In unsupervised learning tasks, no corresponding labels
are given to the algorithms during training process. The algorithms are left to
their own devises to find structure in the input data (x). Unsupervised learning
problems can be further divided into clustering and density estimation problems
as described in the following.

– In clustering, the goal is to discover the inherent groups in similar examples
based on measured or perceived similarities from the input data, such as
grouping polyps by shapes.

– In density estimation, the objective is to determine the distribution of the
input data in some space.

• Reinforcement learning: It is concerned with the interaction tasks with a dy-
namic environment in which it can choose and perform a suitable actions in a
given scenario, such as driving a car or playing a game [4].

In most of machine learning techniques the main stages are the feature extrac-
tion/descriptor step, and a decision-making stage called a classification step. Addi-
tional steps could be added prior to the feature extraction stage such as image smooth-
ing or noise filtering and region-of-interest(ROI) selection.

There are primarily two types of features namely, the shape/geometric features
and texture-color features. Both types of features have been utilized in the literature
for polyp detection in medical images. To improve further the quality of the features
and to have more information acquired on the images, feature fusion approach have
been employed as well. This is done by combining geometric and textual features of
the image to benefit from the information that both provide.

2.1.2 Texture features

The early work of Iakovidis et al. [24], investigated four texture extraction methods
for the discrimination of gastric polyps in endoscopic videos, namely Color Wavelet
Covariance (CWC), Texture Spectrum Histogram (TSH), Texture Spectrum and Color
Histogram (TSCHS), and Local Binary Pattern (LBP). Results reported so far support
the feasibility of using texture (and color information) feature analysis for detection of
polyps.

A similar comparative study of Li et al. [30] was published in 2012 where three
different color spaces, namely RBG, Lab, and HIS, were used to examine the perfor-
mance. It claims that Lab color space coupled with CLBP (completed LBP) color fea-
tures showed the best experimental results reaching a 77.20% detection rate. Both cases
used the SVM as classifier.
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However, texture-color based analysis has two major limitations [23]: it uses a fixed
size analysis window; and relies heavily on an exhaustive training set of images, which
make them very sensitive to parameters tuning.

Nawarathna et al. [37] made use of texton histograms for identifying abnormal
regions with different classifiers such as SVM and KNN. An accuracy of 95.27% was
obtained for polyp detection by using Schmid filter bank based textons and SVM clas-
sifier. Nawarathna et al. [36] later extended futher this approach by using an local
binary patterns (LBP) feature. In addition, a bigger filter bank (Leung–Malik), which
includes Gaussian filters, were proposed for capturing texture more effectively. These
approaches only use texture features without any color or geometrical features. The
best performance of 92% accuracy was obtained based on the Leung–Malik-LBP filter
bank with KNN classifier.

Yuan and Meng [59] utilized scale invariant feature transform (SIFT) feature vec-
tors with K-means clustering for bag of features representation of polyps. The authors
calculated weighted histograms of the visual words by integrating histograms in both
saliency and non-saliency regions. These were fed into an SVM classifier and experi-
ments on 872 images with 436 polyp frames showed that 92% detection accuracy was
obtained.

2.1.3 Shape features

The objective of shape-based methods is to localize those specific appearances that
most polyps commonly have in endoscopy frames. One method, as Hwang et al. [23]
suggested, is to utilize elliptical shape features to detect the shots of polyps, assuming
that polyps tend to have an elliptical shape.

Hwang et al. further improved their method in [22] by involving a watershed seg-
mentation base on Gabor texture features and K-means clustering, prior to identifying
polyp candidates by extracting curvature-based geometric information from the re-
sulting segments. But the author only tested their method using a small dataset of 128
images containing 64 polyp shots and 64 non-polyp images, which make the results
(100% sensitivity and over 81% specificity) little convincing, since a small number of
test dataset tend to lead to over tuning that may easily create an illusion of good per-
formance.

A more sophisticated shape-based method, introduced by Bernal et al. [7], em-
ployed valley information and a region growing approach to find polyps. Bernal et
al. called it Sector Accumulation – Depth of Valleys Accumulation (SA-DOVA). The
method was further improved and renamed as Window Median DOVA (WM-DOVA).
Further performance evaluations presented in [8] claim to have reduced the number of
false positives around vascular structures and specular reflections. In principle, WM-
DOVA not only exploited some available methods of low-level image processing such
as valleys or edges analysis, but also first introduced a searching method for concavity
of boundaries and elements of the scene such as blood vessels and specular highlights
[8]. Nonetheless, shape-based approaches tend to mislead a polyp detector towards
other polyp-like structures such as fecal content and reflection spots [51].



10 Chapter 2. Literature review

2.1.4 Texture and shape features

Both texture-based and shape-based methods have benefits and drawbacks. For that
reason, more recent systems have considered combining them as an attempt to obtain
improved performance. Mamonov et al. [33] presented an algorithm of polyp de-
tection in colon capsule endoscopy, which is referred to as binary classification with
pre-selection. This algorithm relies on geometrical analysis and the texture content of
the frame. They assumed the polyps are characterized as protrusions that are mostly
round in shape, and then considered a best fit ball radius as a decision parameter of
the binary classifier. In addition, the author also introduced a pre-selection procedure
used to discards the frames with too much or too little texture content, considering that
the surface of polyps is often highly textured. Meanwhile, too much texture tends to
imply the presence of bubbles or trash liquids. Therefore, it makes sense to discard the
frames with both too little and too much texture information in them.

Although, the above algorithm demonstrated high per polyp sensitivity (81.2%)
and high per patient specificity (92.2%) by a thorough statistical testing with a rich
data set, there are still some drawbacks and areas of improvement as listed below:

• It did not detect the actual location of polyp in a colon. This problem is particu-
larly exacerbated in capsule colonoscopy.

• Its effectiveness lies partially in the use of a pre-selection criterion; however, the
pre-selection approach proposed was robust in some sense, but not sophisticated
enough. It was less effective in filtering out frames with bubbles.

• It only utilized texture and geometry information, but the color content was dis-
carded since the frame had to be converted to grayscale before processing.

• It just used a binary classifier; however, more advanced classification techniques
such support vector machines (SVM) may improve its detection performance.

Another work by Tajbakhsh et al. [51] proposed a hybrid context-shape approach,
which utilizes texture context information to remove non-polyp structures and shape
information to reliably localize polyps. The proposed system consists of four stages as
follows:

• Constructing Edge Maps for input images.

• Refining the edge map using context information.

• Localizing polyp candidates using shape information.

• Placing a band around each polyp candidate.

The suggested system had been tested using two public polyp database contain-
ing 300 unique polyps, and achieved a sensitivity of 88.0%. However, the author also
pointed out that the suggested system might fail to detect the polyps with faint gra-
dients around their boundaries, resulting in a polyp localization failure. In addition,
unsuccessful edge classification could also lead to localization failures.
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2.1.5 Classifiers

In most cases that we studied, SVM has been the widely used classifier in medical im-
age processing. SVM determines some support vectors from the feature space which
are helpful to determine the optimal hyperplane to separate a set of objects with max-
imum margin [12]. However, there are no single classification methods which outper-
forms all others on all data sets and there are also some other state of the art classifiers
such as Random Forests (RF) [32], KNN and so on. We will evaluate all of them in this
work.

2.2 Deep learning

More recently, Deep learning (DL) techniques have become state-of-the-art for many
image and signal processing tasks. DL is a new branch of ML that is based on a set
of algorithms to model high level abstractions in data by extracting multiple process-
ing layers, which allows the systems to be able to learn complex mapping functions
directly from input data f : X → Y . DL is indeed moving ML closer to the one of its
original goals: Artificial Intelligence (AI), which was acknowledged as one of the top
10 breakthroughs of 2013 [11].

There are various deep learning architectures have been extensively studied in re-
cent years, which include deep belief network (DBN) [19], autoencoder [55], deep
convolutional neural network (DCNN) [28], recurrent neural network (RNN), region-
based convolutional neural network (R-CNN) [16], signal processing [21, 44] and so
on. They have been successfully applied in various areas, such as natural language
processing [3, 34, 56], computer vision [45, 50, 58], and so on. However, current trends
in research have demonstrated that DCNNs are highly effective in automatically ana-
lyzing images, that is the reason they are nowadays the first choice in complex com-
puter vision applications. We therefore choose to utilize DCNN techniques as well in
our work.

2.2.1 Deep architectures

The main power of CNNs lies in its deep architectures [14, 47, 49], which allows for
extracting a great number of features at multiple levels of abstraction. Nowadays, there
are various state-of-the-art deep CNN models developed as presented as following.

AlexNet [28] developed by Krizhevsky, Sutskever, and Hinton in 2012 was the first
time a model performed so well on ImageNet dataset, which achieved a top-5 error of
15.4% (Top-5 error is the rate at which, given an image, the model does not output the
correct answer with its top-5 predictions). AlexNet was composed by 5 convolutional
layers along with 3 fully connected layers, which illustrated the power and benefits
of CNNs and backed them up with record breaking performance in the competition
of 2012 ILSVRC(ImageNet Large-Scale Visual Recognition Challenge). And more, the
techniques utilized by AlexNet such as data augmentation and dropout are still used
today.

VGG Net [9] was proposed by the Oxford Visual Geometry Group (VGG) in ILSVRC
2014 best utilized with its 7.3% error rate. This model consists of five main groups of
convolution operations. Adjacent convolution groups are connected via max-pooling
layers. Each group contains a series of 3x3 convolutional layers (i.e. kernels). The
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number of convolution kernels stays the same within the group and increases from 64
in the first group to 512 in the last one. The total number of learnable layers could
be 11, 13, 16, or 19 depending on the number of convolutional layers in each group.
Figure 2.1 illustrate the architecture of 16-layer VGG net (VGG16). VGG Net is one of
the most influential architectures since it strengthened the intuitive notion that CNNs
have to have deep layers for making this hierarchical representation of visual data to
work.

FIGURE 2.1: The architecture of VGG16 model [9].

GoogLeNet [49] was the winner of ILSVRC 2014 with a top-5 error of 6.7%. The
authors introduced an novel Inception module which performs pooling and convo-
lutional operations in parallel. GoogLeNet used 9 inception modules with over 100
layers in total but had 12x fewer parameters than AlexNet. It was the first model that
introduced the idea that CNN layers with different kernel filters can be stacked up and
operating in parallel. Utilizing the creative inception module, GoogLeNet can lead
to improved performance and computationally efficiency, since it avoided stacking all
convolution layers and adding huge numbers of filters sequentially which require a
greater number of computational and memory resources and increase the chance of
over-fitting issue as well.

ResNet were originally introduced in the paper "Deep Residual learning for Image
Recognition" [18] by He et.al. It won the championship of ILSVRC 2015 with a new 152-
layer convolutional network architecture (ResNet152) trained on an 8 GPU machine for
two to three weeks. It achieved an incredible top-5 error of 3.6% that set new records
in classification, detection, and localization. Resnets architectures were demonstrated
with 50, 101 and 152 layers. The deeper ResNets got, the more its performance grew.

The authors of ResNet proposed a residual learning approach to ease the difficulty
of training deeper networks by reformulating the layers as residual blocks, with each
block containing two branches, one directly connecting input to the output, the other
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FIGURE 2.2: The structure of an Inception module of GoogLeNet.

performing two to three convolutions and calculating the residual function with ref-
erence to the layer inputs. The outputs of these two branches are then added up as
shown in Figure 2.3.

FIGURE 2.3: The residual block for residual learning approach.

2.2.2 CNNs-based CAD systems

With the revival of CNNs techniques, the medical image processing field has also been
experiencing a new generation of CAD systems with more promising performance.
Wimmer et al. applied CNNs for the computer assisted diagnosis of celiac disease
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based on endoscopic images of the duodenum in [57]. To evaluate which network
configurations are best suited for the classification of celiac disease, the author trained
several different CNN models with different numbers of layers and filters and dif-
ferent filter dimensions. The results of the CNNs are compared with the results of
popular general purpose image representations methods. The results show that the
deeper CNN architectures outperform these comparison approaches and that combin-
ing CNNs with linear support vector machines furtherly improves the classification
rates for about 3–7% leading to distinctly better results (up to 97%) than those of the
comparison methods.

Jia et al. employed Deep CNNs for detection of bleeding in GI 10,000 Wireless Cap-
sule Endoscopy (WCE) images [25]. The WCE is a non-invasive image video method
for examination small bowel disease. They claimed F-measure approximately to 99%.
Pei etal. mainly focused on evaluation of contraction frequency of bowel by investiga-
tion diameter patterns and length of bowel by measuring temporal information [38].

A popular approach of automatic feature extraction from endoscopy images adopted
using CNN [61]. Then the features vector to the SVM for classification and detection of
gastrointestinal lesions. The proposed system realized on 180 images for lesions detec-
tion and 80% accuracy reported. Similarly hybrid approach used by [15]. Fast features
extraction using CNN architectures and then the extracted features passed to SVM for
detection of inflammatory GI disease in WCE videos. The experiments conducted on
337 annotated inflammatory images and 599 non-inflammatory images of the GI tract.
Training set containing 200 normal and 200 abnormal while the test set containing 27
normal and 27 abnormal and obtained an overall accuracy upto 90%.

There are several recent works [41, 52, 53] that have exploited CNNs-based meth-
ods for automatic detection of polyps in endoscopy and colonoscopy images. Though
DL approaches have the property of extracting a set of discriminating features at multi-
ple levels of abstraction by exploiting the input image pixel directly, it usually requires
a large amount of training dataset that might be quite rare in some medical imaging
fields. Ribeiro et al. [40] proposed a method allowing the use of small patches to in-
crease the size of the database and classify different regions in the same image and
then train the CNNs.

In yet another work, Tajbakhsh et al. proposed a new polyp detection method based
on the unique 3-way image presentation and CNNs in [52]. The 3-way image rep-
resents the three major types of polyp features, namely (1) color and texture clues,
(2) temporal features, and (3) shape in context. This method fully utilizes a variety
of polyp features such as color, texture, shape, and temporal information in multiple
scales, which enable more accurate polyp detection in [52].

To train the CNNs, the author first collected all the generated polyp candidates and
grouped them into true and false detections, then collected the three sets of patches
Pc, Pt, and Ps at multiple scales, translations, and orientations, and finally, total of
400,000 patches were labeled as positive or negative and resized to 32x32 pixels for
the entire training dataset. The evaluations based on a large annotated polyp database
showed a superior performance and significantly reducing polyp detection latency and
the number of false positives [52]. There was one drawback that this method was not
reliant on the future frames and avoiding the delayed feedback on the locations of
polyps.
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2.2.3 Pre-trained CNNs

The above methods need to train CNNs from scratch with a large amount of training
database that might be quite rare in medical fields. The updated work of Tajbakhsh et
al. [53] tried to address the problem by making use of pretrained CNNs, with sufficient
fine-tuning, to eliminate the need for training CNNs from scratch.

The author considered four distinct medical imaging applications (polyp detection,
pulmonary embolism detection, colonoscopy frame classification and intima-media
boundary segmentation) in three specialties (radiology, cardiology, and gastroenterol-
ogy) involving classification, detection, and segmentation, and investigated how the
performance of deep CNNs trained from scratch compared with the pre-trained CNNs
fine-tuned in a layer-wise manner. Their experiments demonstrated that [53]:

• Use of a pre-trained CNN with adequate fine-tuning outperformed or, in the
worst case, performed as well as a CNN trained from scratch.

• Fine-tuned CNNs were more robust to the size of training sets than CNNs trained
from scratch

• Neither shallow tuning nor deep tuning was the optimal choice for a particular
application.

• Layer-wise fine-tuning scheme could offer a practical way to reach the best per-
formance for the application at hand based on the amount of available data.

These results showed the knowledge transfer from natural images to medical im-
ages is possible and suggested [53] that the layer-wise fine-tuning might offer a practi-
cal way to achieve the best performance for some medical image application based on
the amount of available data.

2.3 Summary

In summary, we discussed all of the polyp detection approaches covered so far with
machine learning and deep learning techniques, classifiers utilized along with the
dataset as well as performance details (whenever available). We can see that plenty
of improvements was done either in the pre-processing techniques, feature extraction
algorithms, classification methods or in all, and there is a clear trend toward the use of
deep learning frameworks, especially CNN-based architectures. However, it can also
be seen that these proposed methods are tuned to obtain the best achievable detection
accuracy results for their corresponding datasets, so our belief is that the majority of
these methods have more or less over-fitting or under-fitting problems.
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Chapter 3

Methodology

In this chapter, we describe different techniques in detail for automatic polyp detection.
The first section of this chapter presents our 3 major frameworks (ML-framework, DL-
framework and TL-framework) for automatic detecting polyps in colonic images, and
we also describe a scalable framework for computer-aided diagnosis systems based on
the fusion of overall state-of-the-art techniques to generalize and extend our project in
future with versatile capabilities in medical domain.

The subsequent section analyses various image preprocessing methods that are uti-
lized in our work and also are necessary for most machine learning and deep learning
systems. These techniques cover histogram modification, noise filtering, data augmen-
tation, and dimension reduction. Next, the chapter focuses on neural networks design
methodologies that mainly cover all the necessary algorithms to build a effective ar-
tificial neural network such as feed-forward structure, activation functions, softmax
functions, loss functions, regularization, gradient descent optimizers and backpropa-
gation methods.

Finally, in the last section, we describe all necessary methodologies for designing
deep convolutional networks that represent state-of-the-art now, which include the
convolution algorithm with zero-padding and stride methods, pooling and dropout
techniques. At last, we describe the deep learning model - 50-layer ResNets with its
detail structure. ResNet50 is the major deep convolutional network architecture uti-
lized in our project.

3.1 Proposed frameworks

In this work, we propose and test 3 different methodologies for automatic detection
of colorectal polyps as shown in Figure 3.1. The first detection scheme named ML-
framework stands for the traditional machine learning classification methods based on
a set of low-level feature descriptors. The second one called DL-framework is to make
use of deep learning methods (mostly CNNs-based architectures) for image classifica-
tion. The last scheme called TL-framework presents transfer learning (TL) strategies
utilized for automatic polyp detection. We will discuss them in detail in later sections.

In addition, based on above three proposed detection methods, we layout a gen-
eralized but scalable framework for computer-aided diagnosis (CAD) systems [31] in
which fusion of machine learning algorithms and deep learning techniques are em-
ployed to further generalize and boost system’s performance and robustness. This
scheme is flexible and easy to add new types of data in future as needed in order to
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detect or predict other types of diseases. Generally, it consists of four stages: prepro-
cessing, feature extraction, classification and post-processing as shown in Figure 3.2.
Here red dash line represents the process for training the system.

First, the preprocessing stage is quite import to properly prepare the data by re-
moving noise or unwanted parts of the data. The objective of preprocessing is to refine
the quality of digital images. It can consist of subsampling, enhancing, edge detecting,
scaling or extracting research of interest (ROI) patches, and so on. It has a lot of impact
on the following feature extraction and classification processing.

For the feature extraction phase, the focus is on the extraction of some key charac-
teristics of candidates such as texture and shape by a set of low-level image processing
algorithms. However, more and more DL techniques like CNNs have been recently
utilized as feature descriptor in medical image analysis. We also took advantage of
deep CNNs techniques in our work.

In classification stage, many kinds of classifiers are utilized to discriminating multi-
ple objects on the base of features defined and extracted from previous phase. Finally,
the post-processing stage is needed to properly display the results, formulate diagno-
sis reports, or localize and annotate the diseases for further evaluations by medical
physicians.

The purpose of this suggested CAD architecture is to be as a roadmap for making
versatile CAD systems in future by reproducing, generalizing, and extending our work
on automatic polyp detection systems.

3.2 Image preprocessing

Image preprocessing here refers to processing of digital images by low-level algo-
rithms, i.e removing the noise in an image using a digital computer. Preprocessing
is a common and necessary step in machine learning pipeline. For mathematical anal-
ysis, an image is defined as 2-dimension function f(x, y), where x and y are spatial
coordinates, and the amplitude of f is called the intensity or gray level of the image
at the point of coordinates (x, y). A digital image is composed of a finite number of
elements or pixels described by x, y, and f . Pixel is the basic cell and the most widely
used term to denote the elements of a digital image.

Various algorithms and methodologies have been developed in image processing
during the past decades such as contrast and edge enhancement. In our work, we
evaluated some important algorithms to preprocess our images, including histogram
modification, contrast stretching, noise filtering, PCA etc.

3.2.1 Histogram modification

Histogram has a lot of importance in image enhancement. It reflects the characteristics
of image. By modifying the histogram, image characteristics can be modified. One
such example is Histogram Equalization. Histogram equalization is a nonlinear stretch
that redistributes pixel values so that there is approximately the same number of pixels
with each value within a range.

Meanwhile, the contrast stretching methods are designed exclusively for frequently
encountered situations, since some images are homogeneous i.e., they do not have
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FIGURE 3.1: Three frameworks for automatic polyp detection. ML-
framework stands for traditional machine learning methods; DL-
framework presents deep learning (mostly CNNs-based architectures)
classification techniques, and TL-framework is the scheme of utilizing
transfer learning strategies on pre-trained deep neural networks such as

pre-trained ResNet50, VGG16 etc.
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FIGURE 3.2: A generalized framework for computer-aided diagnosis sys-
tems which can be extended to detect or predict other types of diseases in
future. The framework has further evolved from our previous work [31].
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much change in their levels. They are characterized as the occurrence of very nar-
row peaks. Different stretching techniques have been developed to stretch the narrow
range to the whole of the available dynamic range as well. The figure 3.3 shows the
different histogram performance based on three algorithms: contrast stretching, his-
togram equalization and adaptive equalization.

FIGURE 3.3: Performance evaluation of different histogram algorithms.

3.2.2 Noise filtering

Noise Filtering is used to filter the unnecessary information from an image. It is also
used to remove various types of noises from the images. Various filters like mean,
median, max, min, sobel, prewitt, canny, laplace etc., are available for our project. We
evaluate most of them with our images. The Figure 3.4 visualizes the performances of
a number of different filtering algorithms.

3.2.3 Data augmentation

Data augmentation is one way to fight over-fitting for small training dataset. Over-
fitting happens when a model exposed to too few examples learns patterns that do not
generalize to new data, i.e. when the model starts using irrelevant features for making
predictions. In our work, we make use of data augmentation methods to enlarge our
training dataset. For example, assume a training set of 100 images of polyps and non-
polyps. By rotating, mirroring (horizontal and vertical flip), shift (width and height),
zoom, and adjusting contrast, etc. It is possible to generate additional over than 2000
images. The figure 3.5 shows an example of data augmentation form one polyp image
to 10 additional images by random rotation, horizontal and vertical flip, shift and zoom
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FIGURE 3.4: Performance evaluations of different filters.

methods. In many machine learning applications, data augmentation approach allow
to build better models.

FIGURE 3.5: Examples of data augmentation results.
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3.2.4 Dimension reduction

Dimensionality reduction is an useful way to reduce the running time of machine
learning algorithms, since the number of input features has an effect upon runtime.
Principal component analysis (PCA) is an algorithm which can be used for dimension-
ality reduction. Basically, PCA can be represented in major 4 steps.

• Normalize the data to have features on the same scale.

• Calculate the covariance matrix to measure of how two different variables change
together.

• Find the eigenvectors of the covariance matrix.

• Translate the data to be in terms of the components.

The covariance between X and Y, can be given by the following formula 3.1, and
then covariance matrix can be computed with this form 3.2:

cov =

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

(n− 1)
(3.1)

C =

 cov(x, x) cov(x, y) cov(x, z)
cov(y, x) cov(y, y) cov(y, z)
cov(z, x) cov(z, y) cov(z, z)

 (3.2)

3.3 Neural network design

Neural Networks are a group of models based on biological neural networks. Fig-
ure(3.6) shows how a general neuron looks. Where W is a matrix and X is an input
column vector containing all pixel data of an image. For instance, X can be a [32*32*3
x 1] column vector, and W is a [2 x 32*32*3] matrix, and the output is a vector Y of N
class scores (class-1, to class-N). That is Y (xi,W, b) = σ(Wxi + b). The weights W are
learn-able and control the strength of influence of each input. Where activation func-
tion is usually an abstraction representing the firing rate in the cell.

FIGURE 3.6: Mathematical model of a neuron.
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3.3.1 Neural networks

Neural networks take inputs and transform them by a series of hidden layers. Figure
3.7 shows a 3-layer feed-forward neural network with 2 hidden layers. Each hidden
layer consists of a set of neurons, where each neuron is fully connected to all neurons
in the previous layer, and where neurons in a single layer function completely inde-
pendently and do not share any connections. The last fully-connected layer is called
the “output layer” and in classification settings it represents the class scores.

A feed-forward neural network takes in an input, then that input "trickles" through
the network and the neural network returns an output vector. More formally, call aij
the activation output of the jth neuron in the ith layer, where aij is the jth element in the
input vector.

FIGURE 3.7: 3-layer feed-forward neural network model.

Then we can relate the next layer’s input to it’s previous via the following relation:

aij = σ

(∑
k

wi
jka

i−1
k + bij

)
(3.3)

Where in equation (3.3)

• σ is the activation function;

• wi
jk is the weight from the kth neuron in the (i− 1)th layer to the jth neuron in the

ith layer;

• bij is the bias of the jth neuron in the ith layer;

• aij represents the activation value of the jth neuron in the ith layer.

Sometimes we write zij to represent
∑
k

(wi
jk ·ai−1

k ) + bij , in other words, the activation

value of a neuron before applying the activation function.

zij =
∑
k

wi
jka

i−1
k + bij (3.4)
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3.3.2 Activation functions

The most important unit in neural network structure is a scalar-to-scalar function called
“the activation function or threshold function or transfer function”, output a result
value called the “unit’s activation”. An activation function for limiting the amplitude
of the output of a neuron. The goal of an activation function is to transform its input
to an output that makes binary decisions more separable. The widely-used activation
functions are sigmoid, tanh, and the rectified linear unit (ReLU), since they avoid sat-
uration issues and make learning faster than other functions.

Sigmoid (non-linear) functions have the mathematical form as below. They are
often used for mathematical convenience because their derivatives are very easy to
calculate, which we will use to calculate the weight updates in training algorithms.

aij = σ(zij) =
1

1 + e−zij
(3.5)

The Tanh functions with the mathematical form as below are related linearly and
can be seen as a rescaled version of the sigmoid function so that its output range is
between -1 to 1.

aij = σ(zij) = tanh(zij) (3.6)

The ReLu functions are the most popular choice for deeper architectures. It can be
seen as a ramp function whose range lies above 0 to infinity, so that it is much easier to
calculate than the sigmoid function. The biggest benefit of ReLU is that it bypasses the
vanishing gradient problem.

aij = σ(zij) = max(0, zij) (3.7)

3.3.3 Softmax functions

In our work, we make use of Softmax functions as the output of a classifier which
represent the probability distribution over C classes, in our case, C = 2 since we have
only 2 classes: polyp and non-polyp. This function is a normalized exponential and is
defined as:

yc = %(z)c =
ezc∑C
d=1 e

zd
for c = 1 · · ·C (3.8)

Here the softmax function % takes as input a C-dimensional vector z and outputs a
C-dimensional vector y of real values between 0 and 1. The denominator

∑C
d=1 e

zd acts
as a regularizer to make sure that

∑C
c=1 yc = 1.

Loss functions

A loss function, or a cost function is used for parameter estimation in training neural
networks. The choice of the loss function is an important aspect for designing a deep
neural network. In our project, we make use of cross-entropy loss function which is
defined as:

L(X, Y ) = − 1

n

n∑
i=1

y(i) ln a(x(i)) +
(
1− y(i)

)
ln
(
1− a(x(i))

)
(3.9)
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Here X =
{
x(1), . . . , x(n)

}
is the set of input examples in the training dataset, and

Y =
{
y(1), . . . , y(n)

}
is the corresponding set of labels for those input examples. The

a(x) is the output of the neural network given input x, which is typically restricted to
the open interval (0, 1) by using a ReLU 3.7 or sigmoid 3.5 activation function.

Regularization

Regularization is a very important technique in neural network design to prevent over-
fitting. Regularization works by extending the loss function with a regularization
penalty (R(W )) as:

L = L(X, Y )︸ ︷︷ ︸
loss function

+ λR(W )︸ ︷︷ ︸
regularization penalty

(3.10)

Then the loss function can be weighted by a hyper-parameter λ in order to pre-
vent the coefficients. The most common regularization penalty is the L2 norm that is
utilized in our design. It is defined as:

R(W ) =
∑
k

∑
l

W 2
k,l (3.11)

3.3.4 Gradient descent optimizers

Gradient descent is one of the most popular algorithms to optimize neural networks.
There are five popular optimization techniques: Stochastic gradient descent (SGD),
SGD+momentum, Adagrad [13], Adadelta [60] and Adam [27] – methods for finding
local optimum (global when dealing with convex problem) of certain differentiable
functions. The gradient descent algorithm is used in every layer to update the weights
in the direction of the negative gradient by backpropgation learning algorithm.

In our work, we choose Adadelta as the optimizer of the model, since in practi-
cal, Adadelta seems to be "safer" because it doesn’t depend so strongly on setting of
learning rates, and base on our own experiments as well, it alway gave us the quick-
est convergence and performed better than AdaGrad or SGD and Momentum with
decaying learning rate. The full algorithm of Adadelta is as shown in Figure 3.8.

FIGURE 3.8: Algorithm of computing Adadelta [60].

Although adadelta algorithm strive to do away with learning rate tuning, in prac-
tice the issue isn’t completely solved. Setting and tuning constant ε and decay rate
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ρ are still important and necessary in our work to achieve sound performance curve
while the adaptation can effectively counter the learning rate with its own scaling if the
optimization directs it in that direction. The constant ε can be consider as the ’learning
rate’ of adadelta because it actually determines the update of ∆xt since RMS[∆x]t =√
E[∆x2]t + ε and E[∆x2]t = ρE[∆x2]t−1+(1−ρ)∆x2t , where RMS stands for root mean

squared.

Backpropagation

Technically, the backpropagation algorithm is a supervised learning method for train-
ing the weights in multilayer feed-forward neural networks. The algorithm can be
divided into two phases: propagation and weight update.

The propagation covers 2 steps: first forward propagation of a training input through
the neural network and then backward propagation of the generated deltas (the error
between the targeted and actual output value). While the weight update must follow
2 steps as well: first, the weight’s delta and input activation are multiplied to deter-
mine the gradient of the weight, and a ratio of that gradient is then subtracted from
the weight.

3.4 Convolutional networks

Convolutional networks (ConvNets) [29], also known as convolutional neural net-
works (CNNs), are a specialized kind of neural networks for processing data that has
a known, grid-like topology [17]. In principle, though CNNs/ConvNets are very sim-
ilar to regular neural networks which consist of neurons with learnable weights and
biases, ConvNets architectures make the explicit assumption that the inputs are im-
ages, which allows us to encode certain properties into the architecture. These then
make the forward function more efficient to implement and vastly reduce the amount
of parameters in the network than regular neural nets do, because regular neural nets
don’t scale well to full images [26]. For instance, if taking an images of size 200x200x3
(200 wide, 200 high, 3 color channels) as inputs, so a single fully-connected neuron
in a first hidden layer would have 200*200*3 = 120,000 weights. Moreover, we would
almost have to have many such neurons, so the parameters would grow up quickly
which would cause over-fitting issues.

3.4.1 Convolutional layer

The Convolutional layer is the core building block of a convolutional network which
takes the convolution operation of the input image with convolution matrices (also
known as kernel filters) to generate the output feature maps. Figure (3.9) is an exam-
ple of a convolution operation with 2-kernel filters (5x5x3x2) on a RGB image of size
28x28x3. The output feature maps can be produced by the form below:

(k ? im)(x, y) =
2∑

c=0

4∑
n=0

4∑
m=0

k(n,m, c).im(x+ n− 2, y +m− 2, c) (3.12)
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FIGURE 3.9: Convolutional operation examples on a 3-channel image.

Here the input volume size is represented as Hi × Wi × Ci, and the kernel filter
setting is F × F × Ci ×K where F stands for the size of the kernel, Ci is the channels
of the kernel (must be equal to the channels of input) and K stands for the number
of kernel filters, if given a stride of S and a zero-padding of P , the volume of output
maps (Ho ×Wo × Co) can be produced by the forms below:

• Ho = (Hi − F + 2P )/S + 1 (the output dimension of hight)

• Wo = (Wi − F + 2P )/S + 1 (the output dimension of width)

• Co = K (the output channels or depths)

Stride and padding

As we can see, there are 2 key hyper parameters control the size of the output volume:
stride and padding. Stride controls how the filter convolves around the input volume.
When the stride is 1 then the filters would move one pixel at a time. When the stride
is 2 then the filters would jump 2 pixels at a time as we slide them around. This will
produce smaller output maps spatially. However, sometimes it would be necessary
to pad the input volume with zeros around the border. The feature of zero-padding
allows us to control the spatial size of the output feature maps. Figure 3.10 illustrates
an example of setting for zero-padding and stride to produce the output spatial size as
the same with the input volume.

3.4.2 Pooling layer

Pooling layer (also known as subsampling layer) is a popular approach to mainly
down-samples the input volume spatially, and hence to reduce the amount of parame-
ters and computation in the network which also give the network more invariance and
robustness to control overfitting.
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FIGURE 3.10: An example of setting zero-padding and strides.

In practice, pooling layers are commonly stacked in-between successive convlu-
tional layers in a ConvNets model. The most used method for pooling layer in image
processing tasks is max pooling. Max pooling decreases the dimension of input vol-
ume simply by taking only the maximum value from a fixed region while average
pooling taking the average of each groups as shown in Figure 3.11.

FIGURE 3.11: Max and average pooling examples for subsampling fea-
tures.

In addition to max pooling method, average pooling or even L2-norm pooling was
often used historically. However, it has recently fallen out of favor compared to the
max pooling, which has been shown to work better in practice [26]. But we still made
use of both max pooling and average pooling methods in our neural networks, and
it demonstrated that average pooling performed better in some situation than max
pooling.
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3.4.3 Dropout layer

In our work, we introduced dropout layers to avoid over-fitting problems. The idea of
dropout is simplistic in nature. This layer “drops out” a random set of activations by
setting them to zero in that layer that would force the network to learn the multiple
characteristics of input example to be redundant and robust, so that the network could
be able to provide the right output even if some of the activations are dropped out.
Figure 3.12 illustrates an example of applying dropout methods on a neural network.

FIGURE 3.12: An example of applying dropout to a neural network.

FIGURE 3.13: The structure of a residual block for ResNet.

3.4.4 ResNet architecture

In our work, we propose to utilize 50-layer ResNets as our deep learning model. ResNets
reformulate the layers as residual blocks. The idea behind residual blocks is that the
input x goes through some convolution layers, and you will get the result f(x) . That
result is then added to the original input x. Let’s call that y(x) = f(x) + x. In tradi-
tional CNNs, your y(x) would just be equal to f(x), so instead of just computing that
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transformation from x directly to f(x), in ResNet we’re computing the term of y that
add f(x) to the identity x as shown in Figure 3.13.

The residual network design addresses the problem of vanishing gradients in the
simplest way possible, since the main challenge in training deeper networks is that
accuracy degrades with network depth. The concept of residual learning behind is a
great innovation and becoming one of the hot new ways to build deep convolutional
neural networks. Safe to say, the ResNet model is now the best single CNN architecture
for object detection, which is the main reason we choose this model for our work. Fig-
ure 3.14 illustrates ResNets with 50 layers. ResNets use bottleneck blocks of different
numbers of repetitions which converges very fast and can be trained with hundreds or
thousands of layers.
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FIGURE 3.14: The architecture of 50-layer ResNet.
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Chapter 4

Implementation and Results

In this chapter, we present in-depth information about our design, implementation
and experiments on proposed different methodologies for automatic polyp detection.
First, we describe our project requirements on both hardware configuration and soft-
ware toolkits and libraries that are necessary to implement our design. We then pro-
vide the detailed information about our dataset preparation including patch extraction
strategies and data augmentation process. Next,the definitions of performance metrics
are presented in order to measure the effectiveness of our applications, including ac-
curacy, precision, sensitivity/recall, F1-score, and specificity. Then, the chapter focuses
on the implementation details about traditional machine learning methods discussed
in previous chapters for polyp detection tasks. We describe 10-different classifiers uti-
lized in our application which cover KNN, Liner SVM, RBF SVM, SGD, Decision tree,
MLP, Random forest and so on. The experimental results in terms of each classifier’s
performance are therefore analyzed by visualization and comparison.

The most important part and major contributions of our work are related to Deep
CNNs, we therefore present a comprehensive discussion in the following sectors with
all aspects in terms of implementation, experimentation and evaluation with regard to
our proposed deep learning framework. We first analyze two deep learning schemes:
full-training and transfer learning based on related experimental results. We then high-
light our transfer learning architecture along with its specific hyper-parameter list. Fi-
nally, we describe the detailed process of hyper-parameter fine-tuning by our unique
experimentation and hand-tuning strategy. By analyzing a large number of learning
curves, we therefore demonstrate our practical fine-tune and training skills like k-fold
cross validation methods etc. The eventually implemented 9 deep models are illus-
trated with comprehensive evaluation and discussions along with our key findings
and strategies.

4.1 Project requirements

4.1.1 Hardware requirements

Deep learning is a field with intense computational requirements, so advanced DCNNs
always make use of the computational power of the graphics processing units (GPUs)
to speed up all computation work, as with no GPUs this might take weeks or even
months for an experiment to finish, or run an experiment for a day or more only to see
that the chosen parameters were incorrect. In our work, we use one NVIDIA GTX970
GPU with 4GB RAM plus one CPU of Intel Core i7-6700@3.40GHz with 16GB RAM
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as our hardware platform. Table 4.1 shows the basic configurations and the tested
configurations for our project.

TABLE 4.1: System configuration requirements.

Basic configuration Tested configuration

OS Windows 10 or Ubuntu 14.04 Windows 10

CPU Intel Core i5 2.7GHz Itel Core i7 3.40GHz

RAM 8GB 16GB

GPU N/A Nvidia GeForce GTX 970

RAM N/A 4GB

4.1.2 Software toolkits and libraries

There are many open source deep learning toolkits currently available. It is much
more efficient to utilize the resources available in a deep learning toolkit than writing
a deep learning algorithm from scratch. After careful evaluation based on the specific
requirements and time constraints of our project, we chose to use the below listed
toolkits and libraries in this work.

• CUDA and cuDNN: CUDA (Compute Unified Device Architecture) is a parallel
computing platform and programming model created by NVIDIA and imple-
mented by the GPUs that they produce. The NVIDIA CUDA Deep Neural Net-
work library (cuDNN) is a GPU-accelerated library of primitives for deep neural
networks. cuDNN provides highly tuned implementations for standard routines
such as forward and backward convolution, pooling, normalization, and activa-
tion layers. Please refer to NVIDIA.cuDNN.

• TensorFlow: TensorFlow [2] is an open source Python library for fast numerical
computing created and released by Google and released under the Apache 2.0
open source license. It is a foundation library that can be used to create Deep
Learning models directly or by using other wrapper libraries like Keras that sim-
plify the process built on top of TensorFlow. It can run on single CPU systems,
GPUs as well as mobile devices and large scale distributed systems of hundreds
of machines. Please refer to Tensorflow.org.

• Keras: Keras is an open source API written in Python which uses as backend
either Theano or Tensorflow. It was developed with a focus on enabling fast ex-
perimentation, so that it is easier to build complete solutions, and is easy to read
with the greatest selection of state-of-the-art algorithms (optimizers, normaliza-
tion routines, activation functions). Please refer to Keras.io.

• Other APIs: Besides the above libraries, we also utilize some other open source
APIs that focus on more specific tasks, which include OpenCV, Pandasm, Numpy,
Matplotlib, Scripy, H5py, QtPy, and so on. For more details, please refer to Ap-
pendix A.

https://developer.nvidia.com/cudnn/
https://www.tensorflow.org/
https://keras.io/
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4.2 Input data preparation

4.2.1 Dataset description

We validated our proposed methodology on our patch-balanced dataset generated
from CVC-ColonDB dataset [7], which contained 300 colonoscopy frames with a to-
tal of 300 polyp instances extracted from 15 different colonoscopy video studies. These
frames were selected in order to maximize the visual differences between them and
provide an annotation of the region of interest (ROI) for all 300 images selected from
all the sequences.

4.2.2 Patch extraction and augmentation

As the CVC-ColonDB dataset was very small and extremely unbalanced, we decided
to utilize patch extraction and data augmentation techniques to generate a larger bal-
anced dataset from the original dataset.

We propose the following methodology for patch extraction:

• Positive patches: we extract a patch (300*300) which covers the whole polyp from
every frame (574*500).

• Negative patches (non-polyp patches): we crop the region which does not con-
tain any part or only cover a little part of polyp from each frame.

Figure 4.1 illustrates the process of extracting positive and negative patches from a
positive frame (containing a polyp)

FIGURE 4.1: Patch extraction examples from a frame with a polyp.

After patch extraction, we make use of data augmentation techniques with hori-
zontal and vertical flips, random rotations and so on to artificially boost the amount
of positive and negative samples. Finally we generate our new balanced dataset with
2200 training samples and 400 test samples. The positive and negative sets are equal
in size as shown in Table 4.2

4.2.3 Performance metrics

We propose the following performance measure metrics to indicate the effectiveness
of our application, where TP stands for True Positive, FN- False Negative, TN- True
Negative, FP- False Positive, P- Positive, and N- Negative, as shown in the table 4.3.
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TABLE 4.2: Patch-balanced dataset after data augmentation.

Original CVC-ColonDB dataset

Train Test

Positive Negative Positive Negative

260 (574x500) 0 40 (574x500) 0

By patch extraction and data augmentation

Patch-balanced Dataset for our experiments

Train (81.2%) Test (18.8%)

Postive (50%) Negative (50%) Postive (50%) Negative (50%)

1100 (300x300) 1100 (300x300) 200 (300x300 ) 200 (300x300)

TABLE 4.3: Definition of performance metrics.

Polyp in the image No polyp in the image
Predicts polyp presence TP FP

Predicts no polyp presence FN TN

• Accuracy: The proportion of all predictions that are correct. Accuracy is a mea-
surement of how good a model is.

Accuracy =
TP+TN

TP+FN+TP+TN

• Precision: The proportion of all positive predictions that are correct. Precision is
a measure of how many positive predictions were actual positive observations.

Precision =
TP

TP+FP

• Recall/Sensitivity: The proportion of all real positive observations that are cor-
rect.

Recall/Sensitivity =
TP

TP+FN

• Specificity: The proportion of all real negative observations that are correct.

Specificity =
TN

TN+FP

• F1-Score: The harmonic mean of precision and recall.

F1-score = 2 ∗ Precision ∗ Recall
Precision + Recall

In practice, sensitivity/recall indicates how good a test is at detecting the positives,
while specificity represents how good a test is at avoiding false alarms, and precision
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illustrates how many of the positively classified were relevant. Sensitivity, specificity
and precision are the most used performance metrics in the medical field.

4.3 Traditional ML methods

4.3.1 Detecting process

We first propose to conduct some experiments on traditional machine learning meth-
ods with a set of popular classifiers to establish a benchmark of detection performance
on the patch-balanced datasets. Figure 4.2 illustrates the traditional machine learning
scheme for polyp detection.

FIGURE 4.2: Traditional machine learning process for polyp detection.

Though SVM seems the most popular classifier and has achieved very good per-
formance in image classification tasks according to our literature review, there are no
single classification methods which outperforms all others on all data sets. Therefore,
we decided to evaluate 10 different state-of-the-art classifiers together to compare their
performance on our own data set. The 10 classifiers are shown below.

• KNN : K-nearest Neighbor (KNN) classifier implements based on the K nearest
neighbors of each query point.

• Linear SVM: An implementation of SVM with a linear kernel requiring only one
hyper parameter C which reduces the training and testing times by trading off
misclassification of training examples against simplicity of the decision surface.

• RBF SVM: Another implementation of SVM with radical basis function (RBF)
kernel requiring 2 parameters C and γ which defines how much a single training
example has.

• SGD: Stochastic gradient descent(SGD) classifier requires a number of hyper pa-
rameters and is sensitive to feature scaling.

• GP: Gaussian Process (GP) classifier uses the whole sample’s information to per-
form the prediction.

• DT: Decision tree (DT) classifier is a non-parametric method by using a tree-like
decision model.
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• RF: Random Forest (RF) classifier is a collection of ensemble decision trees, each
tree in RF is built or grown from randomly selected subset.

• MLP: Multi-layer Perceptron (MLP) classifier is based on the feedforward ANN
with multiple layers of nodes.

• AdaBoost: AdaBoost is a popular boosting method achieved by combining mul-
tiple weak learners into a single stronger classifier.

• Naive Bayes: Naive Bayes classifier is a set of learning algorithms based on Bayes’
theorem with the naive assumption of independence between every pair of fea-
tures.

4.3.2 Benchmark results

Table 4.4 shows the detailed results for each classifier’s performance in terms of de-
fined measure metrics, and Figure 4.3 visualizes the experimental results. As we can
see from the data and figures, the Random Forest (RF) classifier had the overall best
performance with average precision, recall and F1-score at 77%, which exceeded our
expectations on SVM classifiers’ performance. Both the linear SVM and RBF SVM had
worse average performance than KNN classifier (at 76%) and GP classifier (at 73%).
The experiments on traditional machine learning classification methods achieved gen-
eral benchmarks with 77% overall precision, recall and F1-score for automatic detection
of polyps in the patch-balanced dataset. Our next objective was to beat the benchmark
and improve the overall detection performance by utilizing promising deep learning
techniques.

4.4 Deep CNNs methods

4.4.1 Full training vs transfer learning

It is a great challenge to train DCNNs from scratch (full training). Not only because
CNN requires a large number of domain tagged datasets which is difficult to achieve
in the medical field, but also the training DCNNs require a lot of computing resources,
without which the training process would be very time-consuming. Additionally,
training DCNNs is often complicated by over-fitting and convergence problems, and it
is often necessary to optimize a large number of learning parameters and architectures
of the network to achieve proper convergence which requires a great deal of expertise
and effort to ensure that all layers are learning at a considerable rate. As one of our
experiments demonstrates in the figure 4.4, it came to a situation where the weights
of the CNNs not converging even after 30 epochs when we tried to full-train a 5-layer
CNNs with our patch-balanced dataset for over 10 hours with just 200 epochs.

In view of the above difficulties, a promising alternative to full training DCNNs is
to transfer learning and fine-tune DCNNs pre-trained by a large labeled dataset from
a different domain (e.g. ImageNet [42], which contains 1.2 million images with 1000
categories). The pre-trained models have been applied successfully to various com-
puter vision tasks as a feature generator or as a baseline for transfer learning [39, 46].
In our work, we are using ResNet50 model [18] with weights pre-trained on ImageNet.
Motivations for this model were a simultaneously deeper as well as computationally
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TABLE 4.4: Classifiers comparison results.

Classifiers Subset Precision Recall F1-score

KNN
polyp 0.74 0.79 0.77
none 0.77 0.73 0.75
avg 0.76 0.76 0.76

Linear SVM
polyp 0.69 0.62 0.65
none 0.66 0.72 0.68
avg 0.67 0.67 0.67

RBF SVM
polyp 0.71 0.75 0.73
none 0.74 0.69 0.71
avg 0.72 0.72 0.72

SGD
polyp 0.68 0.68 0.68
none 0.68 0.69 0.68
avg 0.68 0.68 0.68

Gaussian Process
polyp 0.71 0.76 0.73
none 0.74 0.69 0.71
avg 0.73 0.72 0.72

Decision Tree
polyp 0.67 0.62 0.64
none 0.64 0.69 0.67
avg 0.65 0.65 0.65

Random Forest
polyp 0.78 0.76 0.77
none 0.77 0.78 0.77
avg 0.77 0.77 0.77

MLP Classifier
polyp 0.68 0.68 0.68
none 0.68 0.68 0.68
avg 0.68 0.68 0.68

Ada Boost
polyp 0.67 0.68 0.68
none 0.68 0.67 0.67
avg 0.67 0.67 0.67

Naive Bayes
polyp 0.68 0.73 0.70
none 0.71 0.66 0.68
avg 0.69 0.69 0.69
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FIGURE 4.3: Classifiers comparison results of visualization. RF classifier
achieved the overall best performance in terms of avg precision, recall and

F1-score at 77%.

inexpensive architecture. These weights are ported from the ones released by Kaiming
He under the MIT license.

4.4.2 Transfer learn and fine-tune

To transfer learn and fine tune ResNet50, we first design a new top layer to replace
the FC-1000-d layer of ResNet50 as shown in Table 4.5. The new top layer consists of
2 new FC layers (FC-512 and FC-2) and one dropout layer between the 2 FC layers,
as shown in Figure 4.5. The new top layer also uses softmax as the output layer to
predict a separate probability for each of our categories: polyp or no-polyp, and the
probabilities will all add up to 1.

We then transfer the learned ImageNet weights as the initial weights, and fine-tune
the customized model with the new top layer by training and running back propa-
gation on the built-in ResNet50 with our patch-balanced polyp dataset as shown in
Figure 4.5.

4.4.3 Hyper parameters

The process of tweaking parameters for a given neural network architecture is known
as hyper-parameter optimization. There is a brief list of hyper-parameters we tuned in
our work:
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FIGURE 4.4: Learning curve of 5-layer CNNs by full-training from scratch.

• Learning rate (η) : Learning rate is one of the most important and sensitive pa-
rameters that multiplies the computed gradient in the update. The most common
approach here is to start with a small learning rate and increase it exponentially if
two epochs in a row reduce the error, while on the other hand decrease it rapidly
if a significant error increase occurs.

• Decay rate (ρ): When training a deep neural networks, it is necessary to lower
the learning rate as the training progresses by setting a proper decay rate. The
learning rate is a parameter that determines how much an updating step influ-
ences the current value of the weights, while the weight decay is an additional
term in the weight update rule that prevents over fitting and leads to convergence
faster. Adadelta [60] uses exponential decaying methods. The detail algorithm
was presented in the chapter 3.4.4.

• Batch size (Bs): In practice, batch size and learning rate are linked. If a batch size
is too small then the gradients would become more unstable and would need to
reduce the learning rate. And more, the higher the batch size, the more memory
space we will need. Due to the limits of hardware configurations, the maximum
batch size is up to 10 with 224x224 image size as input, and maximum 32 batch
size for 100x100 inputs.

• Input size (Is): The size of image resized to feed to the model, which is really
linked to batch size that depends on the GPU’s capability, so we have to com-
promise on the setting because of the limitation of our hardware configuration as



42 Chapter 4. Implementation and Results

FIGURE 4.5: Transfer learning architecture, by full-tuning 50-layer ResNet
model with a new designed top layer that consists of FC-512, Dropout,

FC-2, and softmax output.
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TABLE 4.5: The architecture of 50-layer RestNet.

Layer name Output size 50-layer ResNet

conv1 112 x 112 7 x 7, 64, stride 2

3 x 3 max pool, stride 2

1 x 1, 64
conv2_x 56 x 56 3 x 3, 64 x 3

1 x 1, 256

1 x 1, 128
conv3_x 28 x 28 3 x 3, 128 x 4

1 x 1, 512

1 x 1, 256
conv4_x 14 x 14 3 x 3, 256 x 6

1 x 1, 1024

1 x 1, 512
conv5_x 7 x 7 3 x 3, 512 x 3

1 x 1, 2048

average pool,
FC 1 x 1 1000-d fc,

softmax

mentioned above.

• Training epochs (Te): One epoch means one forward pass and one backward
pass of all the training samples. Early stopping method can be applied given
enough training dataset along with k-fold cross validation strategy. Typically a
patience number should be defined first. Patience number stands for the num-
ber of epochs to wait before early stop if no progress on the validation set. The
patience number is often set somewhere between 3 and 20.

• Dropout rate (Dr ): Dropout is a simple but quite effective way to regularize the
neural networks and address the over-fitting problem. It has been demonstrated
that dropout improves the performance of neural networks on supervised learn-
ing tasks in vision, speech recognition, document classification and computa-
tional biology, obtaining state-of-the-art results on many benchmark data sets
[48]. However, too high rate could result in under-fitting problem as well base on
our experimentations.

• Pooling size (Ps): In our neural networks, we utilized average pooling methods
before the fully connected layers in order to reduce the resolution of the feature
map but retain features of the map required for classification through transla-
tional and rotational invariants. Its default filter size is 7 × 7 which should de-
crease carefully to smaller filters (2 × 2, 3 × 3, or 5 × 5) in order to fit different
input image sizes.
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4.4.4 Experimentation and hand-tuning

For our unique problems and deep architecture, experimentation and hand-tuning
(hand-random-search) can be an ideal way to start fine-tuning our hyper parameters,
since a few training epochs and evaluations can give us a good judgment which set-
tings would be suitable or not, and then we can give better and better configuration
for the next set of parameters.

We fist conduct experiments to primarily establish a proper setting range for the
most important 3 hyper parameters (learning rate, decay rate, and drop rate) of the TL
framework, whereby we can avoid wasting time on poor settings which would likely
have resulted in worse performance caused by over-fitting or non-convergent prob-
lems. However, for our project, fine-tuning hyper-parameter directly on the whole
dataset is too costly and time-consuming considering the limitation of hardware. There-
fore, we decided to take the following hand-tuning strategy:

• Set up a subset database (sub-sample 650 images from our patch-balanced dataset).

• Tune a hyper-parameter one time on the subset database with a small input size
and big batch size to reduce training time.

• Figure out a rough setting range of the hyper-parameter by observing and ana-
lyzing the experimental results and related learning curves.

• Further fine-tune parameters within the rough range on the whole dataset with
increased input sizes.

• Determine a more accurate setting range of hyper-parameter by careful trade-offs
in tuning among different combination settings.

By using a small dataset we could quickly get a rough but valuable information
about the detail performance of our network against different parameter settings. Fig-
ure 4.6 illustrates an experimentation for searching proper learning rates. It only took
us about 1 hour to get a valuable indication that the learning rate should not be set
lower than 0.01 for our transfer learning system.

We then repeated a few similar experiments afterward with a set of different learn-
ing rates ranging from 0.01 to 0.09. At last we worked out reasonable learning rates
that could be in the range of 0.04-0.07. Based on the same strategy, we then fixed the
learning rate at 0.05 to tune the dropout rate as shown in Figure 4.7, and the decay rate
as shown in Figure 4.8.

The other hyper parameters (input size, batch size, epoch and pooling size) are
linked and depend on the size of networks and GPU’s capability. We have to take some
trade-offs and compromise on their settings based on our hardware configuration so
that their varying ranges are not so wide as learning rate or drop rate. Thus, it is easier
for us to optimize since there are only several optional combination settings for them.
Figure 4.9 illustrate an experiment for tuning the batch-size. The results indicated the
proper range of batch-size could be from 16 to 24 giving the input image resize of
100x100.

When we determined the rough range of each key hyper parameter on the subset
database, we need to conduct a large number experiments on the whole dataset to fur-
ther evaluate and adjust the setting ranges. Through observing plenty of experimental
results, we finally established reasonable configuration ranges of the considered hyper
parameters for our TL framework as shown in Table 4.6.



4.4. Deep CNNs methods 45

FIGURE 4.6: Fine-tuning learning rate experimentation. We first only
tuned learning rates and fixed other parameters (ρ:0,Dr:0.5, Ps:3×3 ) with
fixed small input image size (100 × 100) and big batch size (20) in order
to reduce the training time. It is clear that CFG1-1 configured with η:0.01
performed much better than the other two models (CFG1-2 and CFG1-3)
with setting of lower learning rates at η:0.001 and η:0.0001 separately. The
results showed that the proper range of learning rate should be above 0.01
for our system. Based on this general idea, we can avoid wasting time to

try the learning rates lower than 0.01 for the next experimentations.

TABLE 4.6: The suggested setting ranges of hyper parameters for the pro-
posed TL framework.

Hyper Setting Range Examples

Parameters From To CFG-1 CFG-2 CFG-3

η 0.045 0.055 0.049 0.05 0.05

ρ 0.002 0.0027 0.0025 0.002 0.0023

Dr 0.75 0.85 0.75 0.8 0.85

Is 100x100 224x224 100x100 150x150 224x224

Te 20 200 200 100 30

Bs 5 32 32 25 8

Ps 2x2 7x7 3x3 3x3 7x7
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FIGURE 4.7: Dropout rate tuning experimentation.

FIGURE 4.8: Tuning decay rate experimentation.
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FIGURE 4.9: Batch-size experimentation.

4.4.5 K-fold cross validation

In our work, K-fold (K) Cross Validation (CV) approach is employed to estimate the
performance of various models configured by different setting of hyper parameters.
K-fold CV method works by splitting the dataset into K parts (e.g. K = 3, 5 or 10).
Each split of the data is called a fold. Each model is trained on K-1 folds with one
held back and validated on the held back fold. This is repeated so that each fold of the
dataset is given a chance to be the validation set.

TABLE 4.7: An example of 3-fold cross validation process.

Train data Test data

random split by 3

fold-1 fold-2 fold-3 for val test data

fold-1 fold-2 for val fold-3 test data

fold-1 for val fold-2 fold-3 test data

The table 4.7 shows an example of 3-fold CV process. The training data is split
into 3 folds, the folds 1-2 first become the training set. Fold 3 here is denoted as the
validation fold for tuning the hyper-parameters. Once the training process of given
epochs is completed, the model is tested a single time on the test data (marked yellow).
Therefore, after running 3-fold CV we gain 3 different performance scores on the test
dataset that we can summarize using a mean and a standard deviation. The result is
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more accurate because the model is trained and evaluated multiple times on different
data.

4.5 Evaluation and discussion

We conducted a set of different experiments on 9 models with specific input sizes and
optimized hyper-parameters as shown in the Tables 4.8 and 4.9. Their training curves
are showing in Figures 4.20 to 4.12. Basically, model-0, -1, and -2 have the same input
size of 100x100; model-3, -4, and -5 use a slightly bigger input size of 150x150; while
model-5, -6, and -8 take the default input size of 224x224. Figure 4.10 visualized the
overall performance of these 9 different models compared with the benchmark of RF-
BM, where RF-BM stands for the benchmark of random forest classifier.

We eventually achieved the best overall 96.00% polyp detection accuracy, precision,
sensitivity, specificity, and F1-score with Model-8 configured by the optimized hyper-
parameters (η:0.05, ρ:0.0025, Bs:10, Dr:0.8, Ps:7x7, and Te:50), which outperformed
the traditional machine learning classification methods in each defined performance
metric, such as feature-based SVM (avg-72%) and RF (avg-77%).

TABLE 4.8: Model-1 to model-5 polyp detection results.

Hpyer-Parameters Model-1 Model-2 Model-3 Model-4 Model-5

K 3 3 3 5 3
Te 150 200 50 100 150
Is 100x100 100x100 150x150 150x150 150x150
Bs 25 32 10 10 16
Dr 0.8 0.75 0.805 0.803 0.8
η 0.049 0.049 0.049 0.049 0.049
ρ 0.0025 0.0025 0.002 0.0023 0.0025
Ps 3x3 3x3 3x3 3x3 3x3

Test Results

FP 22 23 43 24 22
FN 37 37 26 35 38
TP 163 163 174 165 162
TN 178 177 157 176 178

Performances

Accuracy 85.25% 85.00% 82.75% 85.25% 85.00%
Precision 88.11% 87.63% 80.18% 87.30% 88.04%
Sensitivity/recall 81.50% 81.50% 87.00% 82.50% 81.00%
F1-score 84.68% 84.46% 83.45% 84.83% 84.38%
Specificity 89.00% 88.50% 78.50% 88.00% 89.00%

4.5.1 Impact of input size

From what we can observe, the larger input size used to train the models, the better
performance achieved given proper hyper parameters. For instance, by comparing
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FIGURE 4.10: 10 Models performance comparison, where RF-BM stands
for the benchmark of Random Forest classifier, and model-0 to model-8
present different settings of hyper-parameters (K,Te, Is,Bs,Dr, η, ρ and

Ps).

TABLE 4.9: Model-6 to model-8 polyp detection results.

Hpyer-Parameters Model-6 Model-7 Model-8 Model-0 Model-3

K 3 3 3 3 3
Te 50 50 50 50 50
Is 224x224 224x224 224x224 100x100 150x150
Bs 10 5 10 10 10
Dr 0.805 0.805 0.8 0.805 0.805
η 0.049 0.049 0.05 0.049 0.049
ρ 0.002 0.0025 0.0025 0.002 0.002
Ps 7x7 7x7 7x7 3x3 3x3

Test Results

FP 19 7 8 41 43
FN 10 30 8 58 26
TP 190 170 192 142 174
TN 181 193 192 159 157

Performances

Accuracy 92.75% 90.75% 96.00% 75.25% 82.75%
Precision 90.91% 96.05% 96.00% 77.60% 80.18%
Sensitivity/recall 95.00% 85.00% 96.00% 71.00% 87.00%
F1-score 92.91% 90.19% 96.00% 74.15% 83.45%
Specificity 90.50% 96.50% 96.00% 79.50% 78.50%
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FIGURE 4.11: The impact of different input image sizes. The larger input
sizes could dramatically improve the model’s performance, while greater

number of system memories and training time is required as well.

Model-0 (100x100), Model-3 (150x150) with Model-6 (224x224), the hyper parameters
almost have the same setting, but Model-6 achieved much better performances than
Model-3 and Model-0 - accuracy (92.75% vs 82.75% vs 75.25%), precision (90.91% vs
80.18% vs 77.60%), sensitivity (95.00% vs 87.00% vs 71.00%), and F1-score (92.91% vs
83.45% vs 74.15%) as shown in the figure 4.11. The best sensitivity rates achieved by in-
put size of 100x100 and 150x150 are only 81.50% (Model-1) and 87.00% (Model-3) sep-
arately among all the models, while for the input size of 224x224, we finally achieved
96.00% sensitivity and F1-score with Model-8.

Though the larger input sizes improve the performance of models, a longer time is
required for each training epoch, and a greater number of system memories are occu-
pied as well. Sometimes the out-of-memory issue may occur during training DCNNs
with too big input sizes. In this case, either the input size and batch size must be de-
creased, or the system hardware configuration improved with greater memory and
more powerful CPUs to solve the problem.

4.5.2 Tackling over-fitting

Deep Neural networks is known to overfit easily due to the large number of parame-
ters. In our experiments, the overfitting was expected to be significant since the dataset
was small even if we utilized data augmentation. To Tackle over-fitting problems, we
introduced a dropout layer built-in the top FCNs layer in our proposed TL framework.
We traded off three key hyper parameters- dropout rate, learn rate, and decay rate
to effectively prevent over-fitting problems. For instance, by comparing Model-6 and
Model-8, we can see that Model-6 had a slight over-fitting problem with K-2 fold train-
ing process as shown in the learning curve of Model-6, while after increasing the decay
rate from 0.002 to 0.0025, learn rate from 0.049 to 0.05, and slightly downing the drop
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rate from 0.805 to 0.8, Model-8 mitigated the over-fitting problem and achieved better
performance than Model-6 as shown in Table 4.9.

Meanwhile, from our observation, we also found bigger batch size could mitigate
over-fitting issues in some way, and greater input sizes commonly require a slightly
higher dropout rate and decay rate to avoid over-fitting than smaller input sizes, how-
ever, too high dropout rate or decay rate could result in under-fitting problems as well,
as shown in the curve of Model-7 and Model-0.

However, through our experiments, we can observe surprisingly that it does not
lead to an overall performance improvement by increasing k-fold or training epochs
by comparing the model-1 with model-2, or model-4 with model-5 or model-3. Mean-
while, the decay rates should also be altered a little higher to avoid over-fitting if the
training epochs are increased significantly.

4.5.3 Fine-tuning hyper-parameter

Fine-tuning the hyper parameters of a neural network is a tricky process, and there are
many different approaches. We utilized hand-tuning methods (hand-random-search
on experimentations) for our project rather than automatic tuning algorithms such as
Grid search [20] or Random search [5]. Because these automatic methods would take
too long time to finish tuning process. For instance, if we take the grid search method
which is a simple and straightforward algorithm. We just need to define a set of hy-
per parameter values to train the model for all possible parameter combinations and
select the best one. Imagine that we need to optimize 7 parameters. Let’s assume
that we just try only 10 different values per each parameter. Therefore, we need to
make almost 10,000,000 (107) evaluations. Assuming that the model trains 1 hour on
average we would have finished the tuning process in almost 700 years. Even if we
choose random-search algorithm (instead of trying all possible combinations we only
just take a randomly selected subset of the parameter combinations), it would also
take at least 7 years by best guess. Although there are other automatic tuning methods
such as Bayesian Optimization [35] and TPE algorithms [6] that show great improve-
ment over the grid-search or random-search methods by allowing to learn from the
training history and give better and better estimations for the next set of parameters,
it would still take too long time to apply these algorithms. Therefore, experimenta-
tion and hand-tuning is still the best approach for unique problems and deep neural
networks.

4.5.4 Generalization

As we can observe in our experiments, the proposed TL models generalize quite well
given that the training accuracy are almost all 100%. First, dropout strategy improves
the generalization capability of our models by a large rate (at 0.8% for Model-8). Sec-
ond, for the structure of ResNets, batch normalization applied in convolutional blocks
also help improve both the training speed and generalization. Another important rea-
son is that we replace the fully-connected layer of ResNet50 by a global average pool-
ing layer, and 2 FC layers before the softmax output layer, which greatly reduces the
amount of parameters. Thus, our TL DCNNs models demonstrate very strong gener-
alization capability with the state-of-the-art performance.
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4.5.5 Constraints

Since we are using the pre-trained model, the convolutional filters, the kernel size, and
the number of layers are fixed in our TL architecture. We are also slightly constrained
in terms of the model architecture. For example, we can’t arbitrarily take out certain
convolutional layers from ResNet50. However, the input layer with different image
size can be customized due to parameter sharing.

Another constraint of our work is the hardware. When training a deep neural net-
works, the system has to keep all the intermediate activation outputs for the backwards
pass. So we need to compute how much memory it will need to store all the relevant
activation outputs in the forward pass, in addition to other memory constraints such
storing the weights on the GPU and so on. Since our model is quite deep with 50-
layers, we have to take a smaller batch-size as we do not have enough system and
GPU memory. For instance, we are not able to take batch-size over 10 given the in-
put size of 224x224 due to our GPU’s memory constraints, which actually limited our
system’s performance. In practice, especially in the case of deep learning with GPUs,
larger batches are very attractive computationally and it is very common to take larger
batch-sizes that fully leverage the GPU.

4.5.6 Proposed strategy

Based on all the results and analysis above, it is clear that hyper-parameter optimiza-
tion is the key to ensure the model does not over-fit the training dataset by tuning
which could make the model achieve the best generalized performance on test domain
data. However, hyper-parameter optimization is still very much an open question in
deep learning pipeline. There are currently no good theoretical frameworks for doing
so automatically. Therefore experimentation and random search (hand-tuning) can be
the best strategy to start fine-tuning hyper parameters so far.

For our proposed TL framework for automated polyp detection, the best setting
of hyper parameters to obtain promising performance would be one similar to the
configuration of Model-8 (η = 0.05, ρ = 0.0025, Dr = 0.8, Bs = 10, Ps = 7 × 7, Is =
224×224×3, and Te = 50). However, in practice, the setting of hyper parameters might
need to be altered carefully with the variability in the size and resolution of source data.
There could be trade-offs in tuning among drop rate, decay rate, learning rate, and
so on according to different domain dataset, to achieve state-of-the-art performance
with strong generalization capability. From what we can observe on a large number of
experimental data and figures, we highlight some useful strategies as below:

• Tuning some key hyper parameters on a small subset database could allow you
to quickly establish a rough but very valuable tuning range of each parameter.
The subset should be sub-sampled from your own entire dataset.

• Once you establish a rough tuning range of each hyper parameter, you could fur-
ther conduct a set of specific experimentation within the range but with a smaller
scale to alter each parameter one time.

• After above two steps, you could obtain both more accurate setting ranges of
each parameter and high valuable insights on the performance of your system
against different settings.
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In addition, from what we can observe on a large number of experiments, the sys-
tem’s test performance, in terms of accuracy, precision, sensitivity, specificity and F1-
score, can be significantly affected by some just slight changes among several key hy-
per parameters like dropout rate, decay rate and learning rate in our case. For instance,
looking at Model-6, -7, and Model-8 in Table 4.9, Model-8 has just slightly increased the
learning rage to 0.05 from 0.049, and decreased the dropout rate to 0.8 from 0.805, and
keep the day rate at 0.0025 same with Model-7, but surprisingly Model-8 finally yields
much better results than Model-6 and Model-7.

All in all, DNN hyper-parameter tuning is still considered as a “dark art”, master-
ing the ’dark art’ requires not only a solid background in machine learning algorithms,
but also extensive experience working with real-world datasets.

FIGURE 4.12: The learning curve of Model-0.
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FIGURE 4.13: The learning curve of Model-1.

FIGURE 4.14: The learning curve of Model-2.
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FIGURE 4.15: The learning curve of Model-3.

FIGURE 4.16: The learning curve of Model-4.
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FIGURE 4.17: The learning curve of Model-5.

FIGURE 4.18: The learning curve of Model-6.
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FIGURE 4.19: The learning curve of Model-7.

FIGURE 4.20: The learning curve of Model-8.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we investigated various techniques and solutions for automatic detec-
tion of polyps in endoscopic images. The goal of our study is to explore the use of
the cutting-edge machine learning, computer vision and deep learning algorithms to
achieve automated disease diagnosis.

We first studied and discussed work on topics related to the automatic polyp de-
tection in colon images. We consider shape and texture-based classification (such as
SVM, KNN, etc.) techniques as the conventional machine learning methods for dis-
tinguishing with deep learning based ones. For traditional ML-based techniques, we
first provided an overview of machine learning approaches with a brief discussion
of different learning types such as supervised and unsupervised learning and so on.
Then we discussed different feature extraction and classification algorithms utilized for
polyp detection tasks which covered shape and texture-color based methods. As for
DL-based techniques, we first studied a set of state-of-the-art deep learning networks
such as ALexNet, VGG Net, GoogLeNet, and ResNet which have demonstrated out-
standing effectiveness in image classification domain which also can be applied into
medical image processing pipelines. Subsequently CNN-based CAD systems along
with pre-trained CNNs techniques were discussed.

Based on our literature review, we first proposed our three different schemes for
automatic detection of colorectal polyps named ML-framework, DL-framework and
TL-framework separately standing for machine learning, deep learning and transfer
learning frameworks. We also provided a scalable CAD framework which consisted of
4 flexible modules based on the fusion of a set of state-of-the-art image processing algo-
rithms in order to generalize and extend our work in future with versatile capabilities
in the medical domain. automatic polyp detection. We then presented and analyzed
various image preprocessing methods including histogram modification, noise filter-
ing, data augmentation and dimension reduction etc. The next most important part
of our work is related to the detailed design methodologies of deep neural networks
that are also our major contributions. We analyzed the cutting edge techniques and
algorithms that are all necessary to build a high effective deep learning network. That
covered general neuron algorithm, feed-forward network, activation and loss func-
tions with regularization approach, gradient descent optimization algorithms with the
backpropagation process. And last we described the key techniques in detail for deep
ConvNets that covered the convolution algorithm with stride and padding methods,
different pooling techniques and dropout methodologies etc. Finally, we analyzed the
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50-layer ResNet architecture that was the major deep learning model utilized in our
transfer-learning framework.

In the implementation phase, we developed a set of software tools to extract patches
from the ground truth CVC-ColonDB and enlarged the data set by automatic augmen-
tation algorithms and finally made our patch-balanced dataset with sufficient size for
our research and experiments. Meanwhile, we built 10-classifiers (Linear SVM, RBF
SVM, KNN, RF,GP, SGD, MLP, Adaboost and Bayes) along with a set of low-level fea-
ture extractors (Histogram and a set of different filters) to evaluate the performance
for detecting polyps by making use of these classifiers with low-level feature extrac-
tors. We then established the benchmarks from these experiments on our own dataset
by using these conventional machine learning methods, which can be used later as a
comparison base against DCNNs’ performance.

Based on our extensively study and research on different cutting-edge DCNNs
techniques, we successfully developed an effective transfer learning architecture which
consists of a new FCNs classifier and input layer combined with a pre-trained 50-layer
ResNet model. We implemented the proposed TL-framework by Python with Tensor-
flow and CUDA as backend to make the best use of the parallel computational power
of GPUs.

DCNNs are very sensitive to the setting of their hyper-parameters. In our TL-
framework, we provide 8 hyper parameters that include learn rate (η), decay(ρ), batch
size (Bs), input size (Is), epoch number (Te), dropout rate (Dr), k-fold number (K),
and pooling size (Ps). These hyper parameters make our system very flexible and
scalable. However, fine-tuning the hyper parameters is a tricky process. Though
there are some automatic fine-tuning approaches such as grid search, random search,
or Bayesian optimization and TPE algorithms, etc. All these methods either are too
costly and time-consuming or too difficult to apply in unique deep neural networks.
Therefore, experimentation with hand-tuning is still the best approach till now for
fine-tuning deep learning systems. In our work, we creatively made an high effective
hand-tuning strategy with first establishing a rough range of each hyper parameter by
conducting a set of quick experiments on a small sub-sampled training set, and then
further fine-tuning each parameter on the whole dataset to determine a more accu-
rate setting range. This unique hand-tuning methods saved us a lot of time to search
and select the best and most suitable setting of the hyper-parameter to obtain better
performance in terms of accuracy, precision, sensitivity and so on.

We finally achieved overall 96.00% detection accuracy and precision, 96.00% sensi-
tivity and specificity, and 96.00% f1-score by using the proposed TL framework with
our optimized hyper-parameters, which outperformed the traditional machine learn-
ing classification methods in each defined performance metric. Moreover, the TL frame-
work proposed is scalable and flexible so that it can easily be extended to include other
types of disease detection in future.

5.2 Future work

Though this work contains an extensive evaluation of the hyper-parameters, due to the
limitation of hardware and the time constraints, our experiments are still too limited to
achieve the best optimization results, so future work should also focus on examining
wider ranges of the hyper-parameters. The most interesting direction would be to
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explore automatic hyper-parameter optimization methods to replace manually tuning
hyper-parameter which was highly necessary for future work.

We have only used colonoscopy images for this thesis to evaluate our methods. It is
therefore necessary to further collect a greater number of capsule endoscopy images or
other larger medical datasets, in order to re-evaluate, qualify and respectively confirm
the results of this work, and then we could further optimize the proposed framework
to be able to detect all different polyp morphological types in future.

Our work unveils another interesting direction for future work, from a practical
point of view, to combine pre-trained DCNNs with traditional classifiers. For instance,
to train SVM or Random Forest classifier by the low-level features learned from pre-
trained DCNNs models could be possible to achieve better classification accuracy.

In addition, though the proposed TL framework allows the use of more than one
pre-trained model, we only tested the ResNet50 model in this work, so it would be
valuable to further add some other cutting-edge pre-trained models such as Google
Inception, to achieve better performance and further boost its generalizing capabilities
in future.

Finally, we layout a generalized scalable framework for computer-aided diagno-
sis systems in which fusion of a set of cutting-edge machine learning algorithms and
deep learning techniques are employed together to boost CAD system’s performance
and robustness. This proposed framework in the chapter of methodology shows us
an interesting and feasible direction for making versatile CAD systems in future by re-
producing, generalizing and extending our current work on automatic polyp detection
systems.
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Appendix A

Required toolkits and libraries

Based on the specific requirements and time constraints of our project, we chose to use
Python programming language and the below toolkits and libraries in this work.

Python:

Python is an interpreted, object-oriented, high-level programming language which is
developed under an OSI-approved open source license, making it freely usable and
distributable. And its high-level built in data structures, dynamic typing and dynamic
binding, make it very attractive for rapid prototyping and application development
especially in the big data and deep learning domain. For more information, please
refer to Python.org.

CUDA and cuDNN:

CUDA (Compute Unified Device Architecture) is a parallel computing platform and
programming model created by NVIDIA and implemented by the GPUs that they pro-
duce. The NVIDIA CUDA Deep Neural Network library (cuDNN) is a GPU-accelerated
library of primitives for deep neural networks. cuDNN provides highly tuned imple-
mentations for standard routines such as forward and backward convolution, pooling,
normalization, and activation layers. Please refer to NVIDIA.cuDNN.

TensorFlow:

TensorFlow [2] is an open source Python library for fast numerical computing created
and released by Google and released under the Apache 2.0 open source license. It is a
foundation library that can be used to create Deep Learning models directly or by using
other wrapper libraries like Keras that simplify the process built on top of TensorFlow.
It can run on single CPU systems, GPUs as well as mobile devices and large scale
distributed systems of hundreds of machines. Please refer to Tensorflow.org.

Keras:

Keras is an open source API written in Python which uses as backend either Theano or
Tensorflow. It was developed with a focus on enabling fast experimentation, so that it
is easier to build complete solutions, and is easy to read with the greatest selection of
state-of-the-art algorithms (optimizers, normalization routines, activation functions).
Please refer to Keras.io.

https://www.python.org/
https://developer.nvidia.com/cudnn/
https://www.tensorflow.org/
https://keras.io/
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OpenCV:

OpenCV is a famous open source computer vision library. It is free for both commer-
cial and research use under a BSD license. The library is cross-platform, and runs on
Windows, Linux, Mac OS X, mobile Android and iOS with support of C/C++, Python
and Java interfaces. The library itself is written in C/C++, but Python bindings are
provided when running the installer. We utilized OpenCV 3.0 in our application. For
more details, please refer to OpenCV.org.

Scikit-learn:

Scikit-learn is an open source library built on Numpy, Scipy and Matplotlib. It is devel-
oped by a large community of developers and machine learning experts. Scikit-learn
provides a set of tools for many of the standard machine-learning tasks (such as clus-
tering, classification, regression, etc.). It can be commercially usable under BSD license.
For more details, please refer to Scikit-learn.org

Others:

There are also some other open source APIs utilized in our applications that include
NumPy, SciPy, Matplotlib, Pandas, H5py, QtPy, etc. We will not present them here
in more detail, since it is convenient to get these resources on-line.

http://opencv.org/
http://scikit-learn.org/stable/
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Appendix B

Code snippets for implementation

B.1 ResNet50 model

The code snippets for implementing ResNet50 model are presented in Listing B.1, B.2,
and B.3. We will not discuss these functions in more detail, however, it is worth noting
that the new top layer is created from line-51 to line-58 in Listing B.1, and the short
snippet in Listing B.2 illustrates the definition of identity_block function which is
to build the blocks without convolutional layers in ResNet. Accordingly, the function
conv_block presented in Listing B.3 is to build the blocks of convolutional layers.

1 def resnet50_model ( img_rows , img_cols , co lor_ type =3 , num_class =3 ,
2 l r =0 .05 , dec =0 .0027 , dr = 0 . 8 , ps = ( 3 , 3 ) ) :
3 " " "
4 Resnet Model f o r Keras
5 Model Schema i s based on
6 ht tps :// github . com/ f c h o l l e t /deep−learning−models/blob/master/

resnet50 . py
7 ImageNet Pre t ra ined Weights
8 ht tps :// github . com/ f c h o l l e t /deep−learning−models/ r e l e a s e s /download/

v0 .2/ resnet50_weights_th_dim_order ing_th_kernels . h5
9 Parameters :

10 img_rows , img_cols − r e s o l u t i o n of inputs
11 channel − 1 f o r grayscale , 3 f o r c o l o r
12 num_class − number of c l a s s l a b e l s f o r our c l a s s i f i c a t i o n task
13 " " "
14

15 bn_axis = 3
16

17 img_input = Input ( shape =( img_rows , img_cols , co lor_ type ) )
18 x = ZeroPadding2D ( ( 3 , 3 ) ) ( img_input )
19 x = Convolution2D ( 6 4 , 7 , 7 , subsample =(2 , 2 ) , name= ’ conv1 ’ ) ( x )
20 x = BatchNormalization ( a x i s =bn_axis , name= ’ bn_conv1 ’ ) ( x )
21 x = Act iva t ion ( ’ r e l u ’ ) ( x )
22 x = MaxPooling2D ( ( 3 , 3 ) , s t r i d e s =(2 , 2 ) ) ( x ) # dim_ordering = ’ th ’
23

24 x = conv_block ( x , 3 , [ 6 4 , 64 , 2 5 6 ] , s tage =2 , block= ’ a ’ , s t r i d e s =(1 ,
1 ) )

25 x = i d e n t i t y _ b l o c k ( x , 3 , [ 6 4 , 64 , 2 5 6 ] , s tage =2 , block= ’ b ’ )
26 x = i d e n t i t y _ b l o c k ( x , 3 , [ 6 4 , 64 , 2 5 6 ] , s tage =2 , block= ’ c ’ )
27

28 x = conv_block ( x , 3 , [ 1 2 8 , 128 , 5 1 2 ] , s tage =3 , block= ’ a ’ )
29 x = i d e n t i t y _ b l o c k ( x , 3 , [ 1 2 8 , 128 , 5 1 2 ] , s tage =3 , block= ’ b ’ )
30 x = i d e n t i t y _ b l o c k ( x , 3 , [ 1 2 8 , 128 , 5 1 2 ] , s tage =3 , block= ’ c ’ )
31 x = i d e n t i t y _ b l o c k ( x , 3 , [ 1 2 8 , 128 , 5 1 2 ] , s tage =3 , block= ’d ’ )
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32

33 x = conv_block ( x , 3 , [ 2 5 6 , 256 , 1 0 2 4 ] , s tage =4 , block= ’ a ’ )
34 x = i d e n t i t y _ b l o c k ( x , 3 , [ 2 5 6 , 256 , 1 0 2 4 ] , s tage =4 , block= ’ b ’ )
35 x = i d e n t i t y _ b l o c k ( x , 3 , [ 2 5 6 , 256 , 1 0 2 4 ] , s tage =4 , block= ’ c ’ )
36 x = i d e n t i t y _ b l o c k ( x , 3 , [ 2 5 6 , 256 , 1 0 2 4 ] , s tage =4 , block= ’d ’ )
37 x = i d e n t i t y _ b l o c k ( x , 3 , [ 2 5 6 , 256 , 1 0 2 4 ] , s tage =4 , block= ’ e ’ )
38 x = i d e n t i t y _ b l o c k ( x , 3 , [ 2 5 6 , 256 , 1 0 2 4 ] , s tage =4 , block= ’ f ’ )
39

40 x = conv_block ( x , 3 , [ 5 1 2 , 512 , 2 0 4 8 ] , s tage =5 , block= ’ a ’ )
41 x = i d e n t i t y _ b l o c k ( x , 3 , [ 5 1 2 , 512 , 2 0 4 8 ] , s tage =5 , block= ’ b ’ )
42 x = i d e n t i t y _ b l o c k ( x , 3 , [ 5 1 2 , 512 , 2 0 4 8 ] , s tage =5 , block= ’ c ’ )
43

44 model = Model ( img_input , x )
45

46 # Load ImageNet pre−t r a i n e d data
47 weights_path = ’ ./ model/

resnet50_weights_ t f_dim_order ing_t f_kerne ls_notop . h5 ’
48 model . load_weights ( weights_path )
49

50 # Truncate and r e p l a c e softmax l a y e r f o r t r a n s f e r l earn ing
51 x = AveragePooling2D ( pool_s ize=ps , name= ’ avg_pool ’ ) ( x )
52 x_newfc = F l a t t e n ( input_shape=model . output_shape [ 1 : ] ) ( x )
53 x_newfc = Dense ( 5 1 2 , a c t i v a t i o n = ’ r e l u ’ ) ( x_newfc )
54 x_newfc = Dropout ( dr ) ( x_newfc )
55 x_newfc = Dense ( num_class , a c t i v a t i o n = ’ softmax ’ , name= ’ f c10 ’ ) (

x_newfc )
56

57 # Create another model with our customized softmax
58 model = Model ( img_input , x_newfc )
59 # model . summary ( )
60 adade = Adadelta ( l r = l r , decay=dec )
61 model . compile ( opt imizer=adade ,
62 l o s s = ’ c a t e g o r i c a l _ c r o s s e n t r o p y ’ ,
63 metr ics =[ ’ accuracy ’ ,
64 metr ics . mse ,
65 metr ics . prec i s ion ,
66 metr ics . r e c a l l ,
67 metr ics . f 1 s c o r e ]
68 )
69

70 re turn model

LISTING B.1: Create ResNet50 model with a customized top layer for
transfer learning.

1 def i d e n t i t y _ b l o c k ( input_tensor , kerne l_s ize , f i l t e r s , stage , block ) :
2 " " "
3 The i d e n t i t y _ b l o c k i s the block t h a t has no conv l a y e r a t s h o r t c u t
4 Arguments
5 input_tensor : input tensor
6 k e r n e l _ s i z e : d e f u a l t 3 , the kernel s i z e of middle conv l a y e r a t

main path
7 f i l t e r s : l i s t of i n t e g e r s , the n b _ f i l t e r s of 3 conv l a y e r a t

main path
8 s tage : in teger , current s tage l a b e l , used f o r generat ing l a y e r

names
9 block : ’ a ’ , ’ b ’ . . . , current block l a b e l , used f o r generat ing

l a y e r names
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10 " " "
11

12 n b _ f i l t e r 1 , n b _ f i l t e r 2 , n b _ f i l t e r 3 = f i l t e r s
13 bn_axis = 3
14 conv_name_base = ’ r es ’ + s t r ( s tage ) + block + ’ _branch ’
15 bn_name_base = ’ bn ’ + s t r ( s tage ) + block + ’ _branch ’
16

17 x = Convolution2D ( n b _ f i l t e r 1 , 1 , 1 , name=conv_name_base + ’ 2a ’ ) (
input_tensor )

18 x = BatchNormalization ( a x i s =bn_axis , name=bn_name_base + ’ 2a ’ ) ( x )
19 x = Act iva t ion ( ’ r e l u ’ ) ( x )
20

21 x = Convolution2D ( n b _ f i l t e r 2 , kerne l_s ize , kerne l_s ize ,
22 border_mode= ’ same ’ , name=conv_name_base + ’ 2b ’ ) ( x )
23 x = BatchNormalization ( a x i s =bn_axis , name=bn_name_base + ’ 2b ’ ) ( x )
24 x = Act iva t ion ( ’ r e l u ’ ) ( x )
25

26 x = Convolution2D ( n b _ f i l t e r 3 , 1 , 1 , name=conv_name_base + ’ 2 c ’ ) ( x )
27 x = BatchNormalization ( a x i s =bn_axis , name=bn_name_base + ’ 2 c ’ ) ( x )
28

29 x = merge ( [ x , input_tensor ] , mode= ’sum ’ )
30 x = Act iva t ion ( ’ r e l u ’ ) ( x )
31 re turn x

LISTING B.2: Build non-convolutional layer blocks of RestNet.

1 def conv_block ( input_tensor , kerne l_s ize , f i l t e r s , stage , block , s t r i d e s
=(2 , 2 ) ) :

2 " " "
3 conv_block i s the block t h a t has a conv l a y e r a t s h o r t c u t
4 # Arguments
5 input_tensor : input tensor
6 k e r n e l _ s i z e : d e f u a l t 3 , the kernel s i z e of middle conv l a y e r a t

main path
7 f i l t e r s : l i s t of i n t e g e r s , the n b _ f i l t e r s of 3 conv l a y e r a t

main path
8 s tage : in teger , current s tage l a b e l , used f o r generat ing l a y e r

names
9 block : ’ a ’ , ’ b ’ . . . , current block l a b e l , used f o r generat ing

l a y e r names
10 Note t h a t from stage 3 , the f i r s t conv l a y e r a t main path i s with

subsample = ( 2 , 2 )
11 And the s h o r t c u t should have subsample = ( 2 , 2 ) as well
12 " " "
13

14 n b _ f i l t e r 1 , n b _ f i l t e r 2 , n b _ f i l t e r 3 = f i l t e r s
15 bn_axis = 3
16 conv_name_base = ’ r es ’ + s t r ( s tage ) + block + ’ _branch ’
17 bn_name_base = ’ bn ’ + s t r ( s tage ) + block + ’ _branch ’
18

19 x = Convolution2D ( n b _ f i l t e r 1 , 1 , 1 , subsample= s t r i d e s ,
20 name=conv_name_base + ’ 2a ’ ) ( input_tensor )
21 x = BatchNormalization ( a x i s =bn_axis , name=bn_name_base + ’ 2a ’ ) ( x )
22 x = Act iva t ion ( ’ r e l u ’ ) ( x )
23

24 x = Convolution2D ( n b _ f i l t e r 2 , kerne l_s ize , kerne l_s ize , border_mode=
’ same ’ ,

25 name=conv_name_base + ’ 2b ’ ) ( x )



68 Appendix B. Code snippets for implementation

26 x = BatchNormalization ( a x i s =bn_axis , name=bn_name_base + ’ 2b ’ ) ( x )
27 x = Act iva t ion ( ’ r e l u ’ ) ( x )
28

29 x = Convolution2D ( n b _ f i l t e r 3 , 1 , 1 , name=conv_name_base + ’ 2 c ’ ) ( x )
30 x = BatchNormalization ( a x i s =bn_axis , name=bn_name_base + ’ 2 c ’ ) ( x )
31

32 s h o r t c u t = Convolution2D ( n b _ f i l t e r 3 , 1 , 1 , subsample= s t r i d e s ,
33 name=conv_name_base + ’ 1 ’ ) ( input_tensor )
34 s h o r t c u t = BatchNormalization ( a x i s =bn_axis , name=bn_name_base + ’ 1 ’ )

( s h o r t c u t )
35

36 x = merge ( [ x , s h o r t c u t ] , mode= ’sum ’ )
37 x = Act iva t ion ( ’ r e l u ’ ) ( x )
38 re turn x

LISTING B.3: Build convolutional layer blocks of ResNet.

B.2 Feature extraction and classifier

The below code snippets presented in Listing B.4 are used to implement low-level his-
togram feature extraction to train the proposed classifiers.

1 import numpy as np
2 import argparse
3 import i m u t i l s
4 import cv2
5 import os
6

7

8 def e x t r a c t _ c o l o r _ h i s t o g r a m ( image , bins =(8 , 8 , 8 ) ) :
9 # e x t r a c t a 3D c o l o r histogram from the HSV c o l o r space using

10 # the supplied number of ‘ bins ‘ per channel
11 hsv = cv2 . cvtColor ( image , cv2 .COLOR_BGR2HSV)
12 h i s t = cv2 . c a l c H i s t ( [ hsv ] , [ 0 , 1 , 2 ] , None , bins ,
13 [ 0 , 180 , 0 , 256 , 0 , 2 5 6 ] )
14

15 # handle normalizing the histogram i f we are using OpenCV 2 . 4 . X
16 i f i m u t i l s . i s_ cv2 ( ) :
17 h i s t = cv2 . normalize ( h i s t )
18

19 # otherwise , perform " in place " normal izat ion in OpenCV 3
20 e l s e :
21 cv2 . normalize ( h i s t , h i s t )
22

23 # return the f l a t t e n e d histogram as the f e a t u r e vec tor
24 re turn h i s t . f l a t t e n ( )

LISTING B.4: Histogram features extraction and normalization.

The code snippet in Listing B.5 is to implement the comparison experiments on the
10 suggested classifiers.

1 # import the necessary packages
2 from sklearn . model_se lec t ion import t r a i n _ t e s t _ s p l i t
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3 from sklearn . neural_network import MLPClassi f ier
4 from sklearn . neighbors import KNeighborsClass i f ier
5 from sklearn . gauss ian_process import G a u s s i a n P r o c e s s C l a s s i f i e r
6 from sklearn . gauss ian_process . kerne l s import RBF
7 from sklearn . l inear_model import SGDClass i f ier
8 from sklearn . t r e e import D e c i s i o n T r e e C l a s s i f i e r
9 from sklearn . ensemble import RandomForestClassi f ier , AdaBoostClass i f i e r

10 from sklearn . naive_bayes import GaussianNB
11 from sklearn . preprocess ing import LabelEncoder
12 from sklearn . svm import LinearSVC , SVC
13 from sklearn . metr i cs import c l a s s i f i c a t i o n _ r e p o r t
14 from sklearn . model_se lec t ion import c r o s s _ v a l _ s c o r e
15 from i m u t i l s import paths
16

17 # c o n s t r u c t the argument parse and parse the arguments
18 ap = argparse . ArgumentParser ( )
19 ap . add_argument ( "−t " , "−−t r a i n " , type= s t r , d e f a u l t = ’ polyp2/ t r a i n ’ ,
20 help=" path to input d a t a s e t " )
21 ap . add_argument ( "−v " , "−−t e s t " , type= s t r , d e f a u l t = ’ polyp2/ t e s t ’ ,
22 help=" path to input d a t a s e t " )
23 args = vars ( ap . parse_args ( ) )
24

25 # grab the l i s t of images t h a t we ’ l l be descr ib ing
26 p r i n t ( " Descr ibing images . . . " )
27 imageTrainPaths = l i s t ( paths . l i s t _ i m a g e s ( args [ " t r a i n " ] ) )
28 imageTestPaths = l i s t ( paths . l i s t _ i m a g e s ( args [ " t e s t " ] ) )
29

30 # i n i t i a l i z e the data matrix and l a b e l s l i s t
31 data = [ ]
32 l a b e l s = [ ]
33

34 d a t a _ t e s t = [ ]
35 l a b e l s _ t e s t = [ ]
36

37 # loop over the input t r a i n images
38 f o r ( i , imagePath ) in enumerate ( imageTrainPaths ) :
39 # load the image and e x t r a c t the c l a s s l a b e l
40 image = cv2 . imread ( imagePath )
41 l a b e l = imagePath . s p l i t ( os . path . sep ) [−2]
42

43 # e x t r a c t a c o l o r histogram from the image , then update the
44 # data matrix and l a b e l s l i s t
45 h i s t = e x t r a c t _ c o l o r _ h i s t o g r a m ( image )
46 data . append ( h i s t )
47 l a b e l s . append ( l a b e l )
48

49 # show an update every 1 ,000 images
50 i f i > 0 and i % 100 == 0 :
51 p r i n t ( " Processed { } / { } " . format ( i , len ( imageTrainPaths ) ) )
52

53 # loop over the input t r a i n images
54 f o r ( i , imagePath ) in enumerate ( imageTestPaths ) :
55 # load the image and e x t r a c t the c l a s s l a b e l
56 image = cv2 . imread ( imagePath )
57 l a b e l = imagePath . s p l i t ( os . path . sep ) [−2]
58

59 # e x t r a c t a c o l o r histogram from the image , then update the
60 # data matrix and l a b e l s l i s t
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61 h i s t = e x t r a c t _ c o l o r _ h i s t o g r a m ( image )
62 d a t a _ t e s t . append ( h i s t )
63 l a b e l s _ t e s t . append ( l a b e l )
64

65 # show an update every 1 ,000 images
66 i f i > 0 and i % 100 == 0 :
67 p r i n t ( " Processed { } / { } " . format ( i , len ( imageTestPaths ) ) )
68

69 # encode the l a b e l s , convert ing them from s t r i n g s to i n t e g e r s
70 l e = LabelEncoder ( )
71 l a b e l s = l e . f i t _ t r a n s f o r m ( l a b e l s )
72 l a b e l s _ t e s t = l e . f i t _ t r a n s f o r m ( l a b e l s _ t e s t )
73

74 # p a r t i t i o n the data i n t o t r a i n i n g and t e s t i n g s p l i t s , using 75%
75 # of the data f o r t r a i n i n g and the remaining 25% f o r t e s t i n g
76 # p r i n t ( " [ INFO] c o n s t r u c t i n g t r a i n i n g / t e s t i n g s p l i t . . . " )
77 # ( tra inData , tes tData , t r a i n L a b e l s , t e s t L a b e l s ) = t r a i n _ t e s t _ s p l i t (
78 # np . array ( data ) , l a b e l s , t e s t _ s i z e =0 .25 , random_state =42)
79

80 X_tra in = np . array ( data )
81 y _ t r a i n = l a b e l s
82 X_ te s t = np . array ( d a t a _ t e s t )
83 y _ t e s t = l a b e l s _ t e s t
84

85 names = [ " Nearest Neighbors " , " Linear SVM" , "RBF SVM" , " SGDClass i f ier " ,
86 " Gaussian Process " ,
87 " Decis ion Tree " , "Random Fores t " , " MLPClassi f ier " , " AdaBoost " ,
88 " Naive Bayes " ]
89

90 c l a s s i f i e r s = [
91 KNeighborsClass i f ier ( 5 9 ) ,
92 LinearSVC ( ) ,
93 SVC( kernel= ’ poly ’ ,C= 0 . 1 ,gamma=0 .01 , degree =3) ,
94 SGDClass i f ier ( l o s s =" log " , n _ i t e r =10) ,
95 G a u s s i a n P r o c e s s C l a s s i f i e r ( 1 . 0 ∗ RBF ( 1 . 0 ) , warm_start=True ) ,
96 D e c i s i o n T r e e C l a s s i f i e r ( max_depth =15) ,
97 RandomForestClass i f ier ( n_es t imators =100 , max_features= ’ s q r t ’ ) ,
98 MLPClassi f ier ( alpha =1) ,
99 AdaBoostClass i f i e r ( l e a r n i n g _ r a t e = 0 . 1 ) ,

100 GaussianNB ( ) ]
101

102 # c l o s s _ v a l i d a t i o n accuracy experiments
103 r e s u l t s = { }
104 f o r name , c l f in zip ( names , c l a s s i f i e r s ) :
105 s c o r e s = c r o s s _ v a l _ s c o r e ( c l f , X_train , y_tra in , cv =5)
106 r e s u l t s [name] = s c o r e s
107

108 f o r name , s c o r e s in r e s u l t s . i tems ( ) :
109 p r i n t ( "%20s | Accuracy : %0.2 f%% (+/− %0.2 f%%)" % ( name , 100 ∗ s c o r e s

. mean ( ) , 100 ∗ s c o r e s . s td ( ) ∗ 2) )
110

111 # i t e r a t e over c l a s s i f i e r s by using f i x e d a d d i t i o n a l v a l i d a t i o n data
112 f o r name , model in zip ( names , c l a s s i f i e r s ) :
113 p r i n t ( " Training and evaluat ing c l a s s i f i e r { } " . format (name) )
114 model . f i t ( X_train , y _ t r a i n )
115

116 p r e d i c t i o n s = model . p r e d i c t ( X_ t es t )
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117 p r i n t ( c l a s s i f i c a t i o n _ r e p o r t ( y_ tes t , predic t ions , target_names= l e .
c l a s s e s _ ) )

LISTING B.5: Classifiers comparison experiments.

B.3 Data augmentation

The below code snippet presented in Listing B.6 are used for image data augmentation
by random rotation, flips etc.

1 # image d a t a s e t s extended by image data generator
2 # should generate one type/ c l a s s by one type/ c l a s s
3 # the f o l d e r s t r u c t u r e as blow
4 # put only one type in the t r a i n f o l d e r f o r one time .
5 # the code need r e f l e c t o r in future
6

7 " " " d i r e c t o r y s t r u c t u r e :
8 ‘ ‘ ‘
9 d a t a s e t /

10 t r a i n /
11 Type_1/
12 0 0 1 . jpg
13 0 0 2 . jpg
14 . . .
15 " " "
16

17 from keras . preprocess ing . image import ImageDataGenerator
18

19 img_dir = ’/Users/l iuqh/Desktop/ d a t a s e t / t r a i n ’
20 sav_dir = ’/Users/l iuqh/Desktop/new ’
21

22 datagen = ImageDataGenerator (
23 ro ta t ion _range = 90 ,
24 width_shi f t_range = 0 . 2 ,
25 h e i g h t _ s h i f t _ r a n g e = 0 . 2 ,
26 zoom_range = 0 . 2 ,
27 h o r i z o n t a l _ f l i p =True ,
28 v e r t i c a l _ f l i p =True ,
29 f i l l_mode= ’ n e a r e s t ’
30 )
31

32 i = 1
33 f o r batch in datagen . f low_from_directory ( img_dir ,
34 t a r g e t _ s i z e =(224 ,224 ) ,
35 s h u f f l e =False ,
36 b a t c h _ s i z e= 100 ,
37 s a v e _ p r e f i x= ’ _gen ’ ,
38 save_to_dir=sav_dir ) :
39 i += 1
40 i f i > 6 6 :
41 break

LISTING B.6: Image data augmentation.
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B.4 Batch-image resize

The code snippet in List B.7 is used for batch resizing images.

1 # Image pre−process t o o l − automatic batch−r e s i z e images
2 # This s c r i p should be put in the same f o l d e r of images
3 # a f t e r run , r e s i z e d impages w i l l be saved i n t o a new created f o l d e r
4 # /r e s i z e d / . . image . jpg
5 # change s i z e prarameter according to your needs , the d e f a u l t s e t t i n g s

are
6 # 512 x512
7 from PIL import Image
8 import os , sys
9

10 # f o r python3 , needed def ine cmp funct ion ,
11 # f o r python2 . 7 , don ’ t need def ine i t , can remove i t .
12 def cmp( a , b ) :
13 re turn ( a > b ) − ( a < b )
14

15 def resizeImage ( i n f i l e , output_dir=" r e s i z e d/" , s i z e =(512 ,512 ) ) :
16 o u t f i l e = os . path . s p l i t e x t ( i n f i l e ) [0 ]+ " _res ized "
17 extens ion = os . path . s p l i t e x t ( i n f i l e ) [ 1 ]
18

19 i f (cmp( extension , " . jpg " ) ) :
20 re turn
21

22 i f i n f i l e != o u t f i l e :
23 t r y :
24 im = Image . open ( i n f i l e )
25 im . thumbnail ( s ize , Image . ANTIALIAS)
26 im . save ( output_dir+ o u t f i l e +extension , " JPEG " )
27 except IOError :
28 p r i n t ( " cannot reduce image f o r { } " . format ( i n f i l e ) )
29

30

31 i f __name__==" __main__ " :
32 output_dir = " r e s i z e d "
33 d ir = os . getcwd ( )
34

35 i f not os . path . e x i s t s ( os . path . j o i n ( dir , output_dir ) ) :
36 os . mkdir ( output_dir )
37

38 f o r f i l e in os . l i s t d i r ( d i r ) :
39 resizeImage ( f i l e )

LISTING B.7: Image batch resizing function .

B.5 Low-level image process test



Low-level-image-process-test

May 19, 2017

In [1]: # Author: Qinghui Liu, for my master thesis project,
# Date: 2017-03

# use the belwo command convert the file to latex
# $: jupyter nbconvert /path/to/mynotebook.ipynb --to latex
# basic image processing and analysis by python

# ####1. Spatial Filters - linear filters and non-linear filters ####
# linear ones include mean, laplacian, and laplacian of gaussian
# non-linear ones include median, maximum, minimum, sobel, prewitt and canny
# Four padding approaches: Zero padding, constant, nearest neighbor and reflect paddings.
# ---mean filter
import numpy as np
import skimage
from skimage import feature
import skimage.io as sio
import scipy.misc
import scipy.ndimage as sn
from scipy.misc.pilutil import Image
from matplotlib import pyplot
#import matplotlib.pyplot as plt

# plotting inline in Jupter Notebook
%matplotlib inline
#matplotlib.rcParams['font.size'] = 8

# open image and convert it to grayscale
img_dir = '/Users/liuqh/Desktop/keras/data/train/polyp/_0_1452.jpeg'
#a = Image.open(img_dir).convert('L')
a = sio.imread(img_dir)
a = skimage.color.rgb2gray(a)
pyplot.subplot(1,2,1)
pyplot.title('input img')
pyplot.imshow(a,cmap='gray')

# initializeing the filter of size 5x5
# divided by 25 for normalization

1

             



k = np.ones((5,5))/25

# perform convolution
b = sn.filters.convolve(a,k)

pyplot.subplot(1,2,2)
pyplot.imshow(b,cmap='gray') # try cmap = 'bone_r' or other parameters
pyplot.title('mean filter output')
pyplot.show()
# convert ndarray to an image
b = scipy.misc.toimage(b)
b.save('mean_output.png')

In [2]: ### Median Filter
# median filter - one popular non-linear filter
b_median = scipy.ndimage.filters.median_filter(a, size=5, footprint=None, output=None,

mode ='reflect', cval=0.0, origin=0)

b_median = scipy.misc.toimage(b_median)
pyplot.subplot(1,2,1)
pyplot.imshow(b_median,'gray')
pyplot.title('median filter output')

b_median.save('b_median.png')

### Max Filter
# this filter enhances the bright points

b_max = sn.filters.maximum_filter(a, size=5,
footprint=None,
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output=None,
mode ='reflect',
cval=0.0, origin=0)

b_max = scipy.misc.toimage(b_max)
pyplot.subplot(1,2,2)
pyplot.imshow(b_max,'gray')
pyplot.title('max filter output')
b_max.save('b_max.png')

In [3]: ### Min Filter
# this filter enhances the darkest points

b_min = sn.filters.minimum_filter(a, size=5,
footprint=None,
output=None,
mode ='reflect',
cval=0.0, origin=0)

b_min = scipy.misc.toimage(b_min)
pyplot.subplot(1,2,1)
pyplot.imshow(b_min,'gray')
pyplot.title('min filter output')
b_min.save('b_min.png')

### Edge detection
# Sobel, and Prewitt filters are used to enchance all edges
# horizontal or vertical - sobel or prewitt just enhance all vertical or horizontal endges

from skimage import filter
b_edge = filter.sobel(a) # try to use sobel_v(a) or sobel_h(a)
pyplot.subplot(1,2,2)
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pyplot.imshow(b_edge,'gray')
pyplot.title('sobel filter output')

b_edge = scipy.misc.toimage(b_edge)
b_edge.save('b_edge.png')

/usr/local/Cellar/anaconda2/lib/python2.7/site-packages/skimage/filter/__init__.py:6: skimage_deprecation: The `skimage.filter` module has been renamed to `skimage.filters`. This placeholder module will be removed in v0.13.
warn(skimage_deprecation('The `skimage.filter` module has been renamed '

In [4]: # prewitt and hprewitt filters

b_prewitt = filter.prewitt(a,mask = None)
pyplot.subplot(1,2,1)
pyplot.imshow(b_prewitt,'gray')
pyplot.title('prewitt filter output')

b_prewitt = scipy.misc.toimage(b_prewitt)
b_prewitt.save('b_prewitt.png')

b_hprewitt = filter.prewitt_h(b_min,mask = None)
pyplot.subplot(1,2,2)
pyplot.imshow(b_hprewitt,'gray')
pyplot.title('hprewitt filter output')

b_hprewitt = scipy.misc.toimage(b_hprewitt)
b_hprewitt.save('b_hprewitt.png')
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In [5]: # canny and laplace filters
b_canny = feature.canny(a, sigma=0.1)
pyplot.subplot(1,2,1)
pyplot.imshow(b_canny,'gray')
pyplot.title('canny filter output')

b_canny = scipy.misc.toimage(b_canny)
b_canny.save('b_canny.png')

#b_laplace = skimage.filters.laplace(a,ksize = 3)
b_laplace = sn.filters.laplace(a,mode='reflect')
pyplot.subplot(1,2,2)
pyplot.imshow(b_laplace,'gray')
pyplot.title('laplace filter output')

b_laplace = scipy.misc.toimage(b_laplace)
b_laplace.save('b_laplace.png')
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In [6]: # Histogram Equalization
# refer to link: http://scikit-image.org/docs/dev/auto_examples

from skimage import data, img_as_float
from skimage import exposure

def plot_img_and_hist(img, axes, bins=256):
"""Plot an image along with its histogram and cumulative histogram.

"""
img = img_as_float(img)
ax_img, ax_hist = axes
ax_cdf = ax_hist.twinx()

# Display image
ax_img.imshow(img, cmap='gray')
ax_img.set_axis_off()
ax_img.set_adjustable('box-forced')

# Display histogram
ax_hist.hist(img.ravel(), bins=bins, histtype='step', color='black')
ax_hist.ticklabel_format(axis='y', style='scientific', scilimits=(0, 0))
ax_hist.set_xlabel('Pixel intensity')
ax_hist.set_xlim(0, 1)
ax_hist.set_yticks([])

# Display cumulative distribution
img_cdf, bins = exposure.cumulative_distribution(img, bins)
ax_cdf.plot(bins, img_cdf, 'r')
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ax_cdf.set_yticks([])

return ax_img, ax_hist, ax_cdf

In [7]: img = a

# Contrast stretching
p2, p98 = np.percentile(img, (2, 98))
img_rescale = exposure.rescale_intensity(img, in_range=(p2, p98))

# Equalization
img_eq = exposure.equalize_hist(img)

# Adaptive Equalization
img_adapteq = exposure.equalize_adapthist(img, clip_limit=0.03)

/usr/local/Cellar/anaconda2/lib/python2.7/site-packages/skimage/util/dtype.py:110: UserWarning: Possible precision loss when converting from float64 to uint16
"%s to %s" % (dtypeobj_in, dtypeobj))

In [8]: # Display results
fig = pyplot.figure(figsize=(8, 5))
axes = np.zeros((2, 3), dtype=np.object)
axes[0, 0] = fig.add_subplot(2, 3, 1)
for i in range(1, 3):

axes[0, i] = fig.add_subplot(2, 3, 1+i, sharex=axes[0,0], sharey=axes[0,0])
for i in range(0, 3):

axes[1, i] = fig.add_subplot(2, 3, 4+i)

#ax_img, ax_hist, ax_cdf = plot_img_and_hist(img, axes[:, 0])
#ax_img.set_title('Low contrast image')

ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_rescale, axes[:, 0])
y_min, y_max = ax_hist.get_ylim()
ax_img.set_title('Contrast stretching')

ax_hist.set_ylabel('Number of pixels')
ax_hist.set_yticks(np.linspace(0, y_max, 5))

ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_eq, axes[:, 1])
ax_img.set_title('Histogram equalization')

ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_adapteq, axes[:, 2])
ax_img.set_title('Adaptive equalization')

ax_cdf.set_ylabel('Fraction of total intensity')
ax_cdf.set_yticks(np.linspace(0, 1, 5))
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# prevent overlap of y-axis labels
fig.tight_layout()
pyplot.show()

In [9]: # Power law transformation
# t(i,j) = kI(i,j)^r
import math, numpy
im = Image.open(img_dir).convert('L')
imp = scipy.misc.fromimage(im)
gamma = 0.2 # try to use other numbers to text 0.5, 1, 2, 5, etc
imp1 = imp.astype(float)
imp3 = numpy.max(imp1)
imp2 = imp1/imp3
# compute gamma-correction
imp3 = numpy.log(imp2)*gamma
# perform gamma-correction
c = numpy.exp(imp3)*255.0
# convert c to type int
c1 = c.astype(int)
# convert c1 from ndarray to image
im_pl = scipy.misc.toimage(c1)
im_pl.save('b_powerlaw.png')

/usr/local/Cellar/anaconda2/lib/python2.7/site-packages/ipykernel/__main__.py:11: RuntimeWarning: divide by zero encountered in log
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In [10]: ## image inverse transfomation
# t(i,j) = L - 1 -I(i,j), transfrom dark intensities to bright intensities
# vice versa
im2 = 255-imp
im3 = scipy.misc.toimage(im2)
im3.save('b_invers.png')

pyplot.subplot(1,2,1)
pyplot.imshow(im_pl,'gray')
pyplot.title('img power low output')

pyplot.subplot(1,2,2)
pyplot.imshow(im3,'gray')
pyplot.title('img inverse output')

Out[10]: <matplotlib.text.Text at 0x1111d62d0>

In [11]: # log transformation
# t(i,j) = k* log(1+I(i,j)) where
# k = (L-1)/log(1+|I_max|), I_max is maximum magnitude

p1=imp1.astype(float)
p2=numpy.max(p1)
c=(255.0*numpy.log(1+p1))/numpy.log(1+p2)
c1=c.astype(int)
im_log = scipy.misc.toimage(c1)
im_log.save('b_logTrans.png')

pyplot.subplot(1,2,2)
pyplot.imshow(im_log,'gray')
pyplot.title('img log trans output')

9



Out[11]: <matplotlib.text.Text at 0x1123bcb90>

In [12]: # Gamma and log contrast adjustment

# Gamma
gamma_corrected = exposure.adjust_gamma(img, 2)

# Logarithmic
logarithmic_corrected = exposure.adjust_log(img, 1)

In [13]: # Display results
fig = pyplot.figure(figsize=(8, 5))
axes = np.zeros((2, 3), dtype=np.object)
axes[0, 0] = pyplot.subplot(2, 3, 1, adjustable='box-forced')
axes[0, 1] = pyplot.subplot(2, 3, 2, sharex=axes[0, 0], sharey=axes[0, 0],

adjustable='box-forced')
axes[0, 2] = pyplot.subplot(2, 3, 3, sharex=axes[0, 0], sharey=axes[0, 0],

adjustable='box-forced')
axes[1, 0] = pyplot.subplot(2, 3, 4)
axes[1, 1] = pyplot.subplot(2, 3, 5)
axes[1, 2] = pyplot.subplot(2, 3, 6)

ax_img, ax_hist, ax_cdf = plot_img_and_hist(img, axes[:, 0])
ax_img.set_title('Low contrast image')

y_min, y_max = ax_hist.get_ylim()
ax_hist.set_ylabel('Number of pixels')
ax_hist.set_yticks(np.linspace(0, y_max, 5))

ax_img, ax_hist, ax_cdf = plot_img_and_hist(gamma_corrected, axes[:, 1])
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ax_img.set_title('Gamma correction')

ax_img, ax_hist, ax_cdf = plot_img_and_hist(logarithmic_corrected, axes[:, 2])
ax_img.set_title('Logarithmic correction')

ax_cdf.set_ylabel('Fraction of total intensity')
ax_cdf.set_yticks(np.linspace(0, 1, 5))

# prevent overlap of y-axis labels
fig.tight_layout()
pyplot.show()

In [24]: # adapting gray-scale filters to RGB images
# each_channel, pass each of RGB channels to the filter
# hsv_vaule, convert RGB to HSV and pass the value channel to the filter
# the result is inserted back to HSV and then converted back to RGB

from skimage.color.adapt_rgb import adapt_rgb, each_channel, hsv_value
from skimage import filters
from skimage.exposure import rescale_intensity

@adapt_rgb(each_channel)
def sobel_each(image):

return filters.sobel(image)
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@adapt_rgb(hsv_value)
def sobel_hsv(image):

return filters.sobel(image)

image = sio.imread(img_dir) # rgb imaaage
fig = pyplot.figure(figsize=(8, 4))
ax_each = fig.add_subplot(131, adjustable='box-forced')
ax_hsv = fig.add_subplot(132, sharex=ax_each, sharey=ax_each,

adjustable='box-forced')
ax_orig = fig.add_subplot(133, adjustable='box-forced')
# We use 1 - sobel_each(image)
# but this will not work if image is not normalized
ax_each.imshow(rescale_intensity(1 - sobel_each(image)))
ax_each.set_xticks([]), ax_each.set_yticks([])
ax_each.set_title("Sobel filter \n on each RGB chan")

# We use 1 - sobel_hsv(image) but this will not work if image is not normalized
ax_hsv.imshow(rescale_intensity(1 - sobel_hsv(image)))
ax_hsv.set_xticks([]), ax_hsv.set_yticks([])
ax_hsv.set_title("Sobel filter \n on each HSV ")

ax_orig.imshow(image)
ax_orig.set_xticks([]), ax_orig.set_yticks([])
ax_orig.set_title("Original RGB image")

Out[24]: <matplotlib.text.Text at 0x115857690>

In [25]: ## Thresholding
# create a binary image from a grayscale image
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from skimage.filters import threshold_otsu,threshold_isodata, threshold_li
#image = skimage.color.rgb2gray(image)
#image= img_eq#.astype(float)
thresh = threshold_otsu(image)
#thresh = threshold_li(image)
#thresh = threshold_isodata(image)

binary = image < thresh # try to test other thresholds

fig, axes = pyplot.subplots(ncols=3,figsize=(8, 2.5))
ax = axes.ravel()
ax[0] = pyplot.subplot(1, 3, 1, adjustable='box-forced')
ax[1] = pyplot.subplot(1, 3, 2)
ax[2] = pyplot.subplot(1, 3, 3, sharex=ax[0], sharey=ax[0], adjustable='box-forced')

ax[0].imshow(image, cmap=pyplot.cm.gray)
ax[0].set_title('Original')
ax[0].axis('off')

ax[1].hist(image.ravel(), bins=256)
ax[1].set_title('Histogram')
ax[1].axvline(thresh, color='r')

# binary.astype(np.uint8), np.float, np.uint16
ax[2].imshow(binary.astype(np.float), cmap=pyplot.cm.gray)
ax[2].set_title('Thresholded')
ax[2].axis('off')

pyplot.show()

In [ ]:
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